Files
clang-p2996/lldb/source/Plugins/Disassembler/llvm/DisassemblerLLVMC.cpp
Jason Molenda 583b1a8a1b Consolidate the knowledge of what arm cores are always executing
in thumb mode into one method in ArchSpec, replace checks for
specific cores in the disassembler with calls to this.  Also call
this from the arm instruction emulation code.

The determination of whether a given ArchSpec is thumb-only is still
a bit of a hack, but at least the hack is consolidated into a single
place.  In my original version of this patch http://reviews.llvm.org/D13578
I was calling into llvm's feature arm feature tables to make this
determination, like

#include "llvm/Support/TargetRegistry.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/../../lib/Target/ARM/ARMGenRegisterInfo.inc"
#include "llvm/../../lib/Target/ARM/ARMFeatures.h"

[...]

        std::string triple (GetTriple().getTriple());
        const char *cpu = "";
        const char *features_str = "";
        const llvm::Target *curr_target = llvm::TargetRegistry::lookupTarget(triple.c_str(), Error);
        std::unique_ptr<llvm::MCSubtargetInfo> subtarget_info_up (curr_target->createMCSubtargetInfo(triple.c_str(), cpu, features_str));
        if (subtarget_info_up->getFeatureBits()[llvm::ARM::FeatureNoARM])
        {
            return true;
        }

but those tables are post-llvm-build generated and linking against them
for all of our different build system methods was a big hiccup that I
haven't had time to revisit convincingly.

I'll keep that reviews.llvm.org patch around to remind myself that I
need to take another run at linking against the necessary tables 
again in llvm.

<rdar://problem/23022803> 

llvm-svn: 265377
2016-04-05 05:01:30 +00:00

1006 lines
36 KiB
C++

//===-- DisassemblerLLVMC.cpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Project includes
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCDisassembler/MCExternalSymbolizer.h"
#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
// Other libraries and framework includes
#include "DisassemblerLLVMC.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Stream.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Core/RegularExpression.h"
using namespace lldb;
using namespace lldb_private;
class InstructionLLVMC : public lldb_private::Instruction
{
public:
InstructionLLVMC (DisassemblerLLVMC &disasm,
const lldb_private::Address &address,
AddressClass addr_class) :
Instruction (address, addr_class),
m_disasm_sp (disasm.shared_from_this()),
m_does_branch (eLazyBoolCalculate),
m_has_delay_slot (eLazyBoolCalculate),
m_is_valid (false),
m_using_file_addr (false)
{
}
~InstructionLLVMC() override = default;
bool
DoesBranch() override
{
if (m_does_branch == eLazyBoolCalculate)
{
GetDisassemblerLLVMC().Lock(this, NULL);
DataExtractor data;
if (m_opcode.GetData(data))
{
bool is_alternate_isa;
lldb::addr_t pc = m_address.GetFileAddress();
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr = GetDisasmToUse (is_alternate_isa);
const uint8_t *opcode_data = data.GetDataStart();
const size_t opcode_data_len = data.GetByteSize();
llvm::MCInst inst;
const size_t inst_size = mc_disasm_ptr->GetMCInst (opcode_data,
opcode_data_len,
pc,
inst);
// Be conservative, if we didn't understand the instruction, say it might branch...
if (inst_size == 0)
m_does_branch = eLazyBoolYes;
else
{
const bool can_branch = mc_disasm_ptr->CanBranch(inst);
if (can_branch)
m_does_branch = eLazyBoolYes;
else
m_does_branch = eLazyBoolNo;
}
}
GetDisassemblerLLVMC().Unlock();
}
return m_does_branch == eLazyBoolYes;
}
bool
HasDelaySlot() override
{
if (m_has_delay_slot == eLazyBoolCalculate)
{
GetDisassemblerLLVMC().Lock(this, NULL);
DataExtractor data;
if (m_opcode.GetData(data))
{
bool is_alternate_isa;
lldb::addr_t pc = m_address.GetFileAddress();
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr = GetDisasmToUse (is_alternate_isa);
const uint8_t *opcode_data = data.GetDataStart();
const size_t opcode_data_len = data.GetByteSize();
llvm::MCInst inst;
const size_t inst_size = mc_disasm_ptr->GetMCInst (opcode_data,
opcode_data_len,
pc,
inst);
// if we didn't understand the instruction, say it doesn't have a delay slot...
if (inst_size == 0)
m_has_delay_slot = eLazyBoolNo;
else
{
const bool has_delay_slot = mc_disasm_ptr->HasDelaySlot(inst);
if (has_delay_slot)
m_has_delay_slot = eLazyBoolYes;
else
m_has_delay_slot = eLazyBoolNo;
}
}
GetDisassemblerLLVMC().Unlock();
}
return m_has_delay_slot == eLazyBoolYes;
}
DisassemblerLLVMC::LLVMCDisassembler *
GetDisasmToUse (bool &is_alternate_isa)
{
is_alternate_isa = false;
DisassemblerLLVMC &llvm_disasm = GetDisassemblerLLVMC();
if (llvm_disasm.m_alternate_disasm_ap.get() != NULL)
{
const AddressClass address_class = GetAddressClass ();
if (address_class == eAddressClassCodeAlternateISA)
{
is_alternate_isa = true;
return llvm_disasm.m_alternate_disasm_ap.get();
}
}
return llvm_disasm.m_disasm_ap.get();
}
size_t
Decode(const lldb_private::Disassembler &disassembler,
const lldb_private::DataExtractor &data,
lldb::offset_t data_offset) override
{
// All we have to do is read the opcode which can be easy for some
// architectures
bool got_op = false;
DisassemblerLLVMC &llvm_disasm = GetDisassemblerLLVMC();
const ArchSpec &arch = llvm_disasm.GetArchitecture();
const lldb::ByteOrder byte_order = data.GetByteOrder();
const uint32_t min_op_byte_size = arch.GetMinimumOpcodeByteSize();
const uint32_t max_op_byte_size = arch.GetMaximumOpcodeByteSize();
if (min_op_byte_size == max_op_byte_size)
{
// Fixed size instructions, just read that amount of data.
if (!data.ValidOffsetForDataOfSize(data_offset, min_op_byte_size))
return false;
switch (min_op_byte_size)
{
case 1:
m_opcode.SetOpcode8 (data.GetU8 (&data_offset), byte_order);
got_op = true;
break;
case 2:
m_opcode.SetOpcode16 (data.GetU16 (&data_offset), byte_order);
got_op = true;
break;
case 4:
m_opcode.SetOpcode32 (data.GetU32 (&data_offset), byte_order);
got_op = true;
break;
case 8:
m_opcode.SetOpcode64 (data.GetU64 (&data_offset), byte_order);
got_op = true;
break;
default:
m_opcode.SetOpcodeBytes(data.PeekData(data_offset, min_op_byte_size), min_op_byte_size);
got_op = true;
break;
}
}
if (!got_op)
{
bool is_alternate_isa = false;
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr = GetDisasmToUse (is_alternate_isa);
const llvm::Triple::ArchType machine = arch.GetMachine();
if (machine == llvm::Triple::arm || machine == llvm::Triple::thumb)
{
if (machine == llvm::Triple::thumb || is_alternate_isa)
{
uint32_t thumb_opcode = data.GetU16(&data_offset);
if ((thumb_opcode & 0xe000) != 0xe000 || ((thumb_opcode & 0x1800u) == 0))
{
m_opcode.SetOpcode16 (thumb_opcode, byte_order);
m_is_valid = true;
}
else
{
thumb_opcode <<= 16;
thumb_opcode |= data.GetU16(&data_offset);
m_opcode.SetOpcode16_2 (thumb_opcode, byte_order);
m_is_valid = true;
}
}
else
{
m_opcode.SetOpcode32 (data.GetU32(&data_offset), byte_order);
m_is_valid = true;
}
}
else
{
// The opcode isn't evenly sized, so we need to actually use the llvm
// disassembler to parse it and get the size.
uint8_t *opcode_data = const_cast<uint8_t *>(data.PeekData (data_offset, 1));
const size_t opcode_data_len = data.BytesLeft(data_offset);
const addr_t pc = m_address.GetFileAddress();
llvm::MCInst inst;
llvm_disasm.Lock(this, NULL);
const size_t inst_size = mc_disasm_ptr->GetMCInst(opcode_data,
opcode_data_len,
pc,
inst);
llvm_disasm.Unlock();
if (inst_size == 0)
m_opcode.Clear();
else
{
m_opcode.SetOpcodeBytes(opcode_data, inst_size);
m_is_valid = true;
}
}
}
return m_opcode.GetByteSize();
}
void
AppendComment (std::string &description)
{
if (m_comment.empty())
m_comment.swap (description);
else
{
m_comment.append(", ");
m_comment.append(description);
}
}
void
CalculateMnemonicOperandsAndComment(const lldb_private::ExecutionContext *exe_ctx) override
{
DataExtractor data;
const AddressClass address_class = GetAddressClass ();
if (m_opcode.GetData(data))
{
std::string out_string;
std::string comment_string;
DisassemblerLLVMC &llvm_disasm = GetDisassemblerLLVMC();
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr;
if (address_class == eAddressClassCodeAlternateISA)
mc_disasm_ptr = llvm_disasm.m_alternate_disasm_ap.get();
else
mc_disasm_ptr = llvm_disasm.m_disasm_ap.get();
lldb::addr_t pc = m_address.GetFileAddress();
m_using_file_addr = true;
const bool data_from_file = GetDisassemblerLLVMC().m_data_from_file;
bool use_hex_immediates = true;
Disassembler::HexImmediateStyle hex_style = Disassembler::eHexStyleC;
if (exe_ctx)
{
Target *target = exe_ctx->GetTargetPtr();
if (target)
{
use_hex_immediates = target->GetUseHexImmediates();
hex_style = target->GetHexImmediateStyle();
if (!data_from_file)
{
const lldb::addr_t load_addr = m_address.GetLoadAddress(target);
if (load_addr != LLDB_INVALID_ADDRESS)
{
pc = load_addr;
m_using_file_addr = false;
}
}
}
}
llvm_disasm.Lock(this, exe_ctx);
const uint8_t *opcode_data = data.GetDataStart();
const size_t opcode_data_len = data.GetByteSize();
llvm::MCInst inst;
size_t inst_size = mc_disasm_ptr->GetMCInst (opcode_data,
opcode_data_len,
pc,
inst);
if (inst_size > 0)
{
mc_disasm_ptr->SetStyle(use_hex_immediates, hex_style);
mc_disasm_ptr->PrintMCInst(inst, out_string, comment_string);
if (!comment_string.empty())
{
AppendComment(comment_string);
}
}
llvm_disasm.Unlock();
if (inst_size == 0)
{
m_comment.assign ("unknown opcode");
inst_size = m_opcode.GetByteSize();
StreamString mnemonic_strm;
lldb::offset_t offset = 0;
lldb::ByteOrder byte_order = data.GetByteOrder();
switch (inst_size)
{
case 1:
{
const uint8_t uval8 = data.GetU8 (&offset);
m_opcode.SetOpcode8 (uval8, byte_order);
m_opcode_name.assign (".byte");
mnemonic_strm.Printf("0x%2.2x", uval8);
}
break;
case 2:
{
const uint16_t uval16 = data.GetU16(&offset);
m_opcode.SetOpcode16(uval16, byte_order);
m_opcode_name.assign (".short");
mnemonic_strm.Printf("0x%4.4x", uval16);
}
break;
case 4:
{
const uint32_t uval32 = data.GetU32(&offset);
m_opcode.SetOpcode32(uval32, byte_order);
m_opcode_name.assign (".long");
mnemonic_strm.Printf("0x%8.8x", uval32);
}
break;
case 8:
{
const uint64_t uval64 = data.GetU64(&offset);
m_opcode.SetOpcode64(uval64, byte_order);
m_opcode_name.assign (".quad");
mnemonic_strm.Printf("0x%16.16" PRIx64, uval64);
}
break;
default:
if (inst_size == 0)
return;
else
{
const uint8_t *bytes = data.PeekData(offset, inst_size);
if (bytes == NULL)
return;
m_opcode_name.assign (".byte");
m_opcode.SetOpcodeBytes(bytes, inst_size);
mnemonic_strm.Printf("0x%2.2x", bytes[0]);
for (uint32_t i=1; i<inst_size; ++i)
mnemonic_strm.Printf(" 0x%2.2x", bytes[i]);
}
break;
}
m_mnemonics.swap(mnemonic_strm.GetString());
return;
}
else
{
if (m_does_branch == eLazyBoolCalculate)
{
const bool can_branch = mc_disasm_ptr->CanBranch(inst);
if (can_branch)
m_does_branch = eLazyBoolYes;
else
m_does_branch = eLazyBoolNo;
}
}
static RegularExpression s_regex("[ \t]*([^ ^\t]+)[ \t]*([^ ^\t].*)?");
RegularExpression::Match matches(3);
if (s_regex.Execute(out_string.c_str(), &matches))
{
matches.GetMatchAtIndex(out_string.c_str(), 1, m_opcode_name);
matches.GetMatchAtIndex(out_string.c_str(), 2, m_mnemonics);
}
}
}
bool
IsValid () const
{
return m_is_valid;
}
bool
UsingFileAddress() const
{
return m_using_file_addr;
}
size_t
GetByteSize () const
{
return m_opcode.GetByteSize();
}
DisassemblerLLVMC &
GetDisassemblerLLVMC ()
{
return *(DisassemblerLLVMC *)m_disasm_sp.get();
}
protected:
DisassemblerSP m_disasm_sp; // for ownership
LazyBool m_does_branch;
LazyBool m_has_delay_slot;
bool m_is_valid;
bool m_using_file_addr;
};
DisassemblerLLVMC::LLVMCDisassembler::LLVMCDisassembler (const char *triple, const char *cpu, const char *features_str, unsigned flavor, DisassemblerLLVMC &owner):
m_is_valid(true)
{
std::string Error;
const llvm::Target *curr_target = llvm::TargetRegistry::lookupTarget(triple, Error);
if (!curr_target)
{
m_is_valid = false;
return;
}
m_instr_info_ap.reset(curr_target->createMCInstrInfo());
m_reg_info_ap.reset (curr_target->createMCRegInfo(triple));
m_subtarget_info_ap.reset(curr_target->createMCSubtargetInfo(triple, cpu,
features_str));
std::unique_ptr<llvm::MCRegisterInfo> reg_info(curr_target->createMCRegInfo(triple));
m_asm_info_ap.reset(curr_target->createMCAsmInfo(*reg_info, triple));
if (m_instr_info_ap.get() == NULL || m_reg_info_ap.get() == NULL || m_subtarget_info_ap.get() == NULL || m_asm_info_ap.get() == NULL)
{
m_is_valid = false;
return;
}
m_context_ap.reset(new llvm::MCContext(m_asm_info_ap.get(), m_reg_info_ap.get(), 0));
m_disasm_ap.reset(curr_target->createMCDisassembler(*m_subtarget_info_ap.get(), *m_context_ap.get()));
if (m_disasm_ap.get() && m_context_ap.get())
{
std::unique_ptr<llvm::MCRelocationInfo> RelInfo(curr_target->createMCRelocationInfo(triple, *m_context_ap.get()));
if (!RelInfo)
{
m_is_valid = false;
return;
}
std::unique_ptr<llvm::MCSymbolizer> symbolizer_up(curr_target->createMCSymbolizer(triple, NULL,
DisassemblerLLVMC::SymbolLookupCallback,
(void *) &owner,
m_context_ap.get(), std::move(RelInfo)));
m_disasm_ap->setSymbolizer(std::move(symbolizer_up));
unsigned asm_printer_variant;
if (flavor == ~0U)
asm_printer_variant = m_asm_info_ap->getAssemblerDialect();
else
{
asm_printer_variant = flavor;
}
m_instr_printer_ap.reset(curr_target->createMCInstPrinter(llvm::Triple{triple},
asm_printer_variant,
*m_asm_info_ap.get(),
*m_instr_info_ap.get(),
*m_reg_info_ap.get()));
if (m_instr_printer_ap.get() == NULL)
{
m_disasm_ap.reset();
m_is_valid = false;
}
}
else
m_is_valid = false;
}
DisassemblerLLVMC::LLVMCDisassembler::~LLVMCDisassembler() = default;
uint64_t
DisassemblerLLVMC::LLVMCDisassembler::GetMCInst (const uint8_t *opcode_data,
size_t opcode_data_len,
lldb::addr_t pc,
llvm::MCInst &mc_inst)
{
llvm::ArrayRef<uint8_t> data(opcode_data, opcode_data_len);
llvm::MCDisassembler::DecodeStatus status;
uint64_t new_inst_size;
status = m_disasm_ap->getInstruction(mc_inst,
new_inst_size,
data,
pc,
llvm::nulls(),
llvm::nulls());
if (status == llvm::MCDisassembler::Success)
return new_inst_size;
else
return 0;
}
void
DisassemblerLLVMC::LLVMCDisassembler::PrintMCInst (llvm::MCInst &mc_inst,
std::string &inst_string,
std::string &comments_string)
{
llvm::raw_string_ostream inst_stream(inst_string);
llvm::raw_string_ostream comments_stream(comments_string);
m_instr_printer_ap->setCommentStream(comments_stream);
m_instr_printer_ap->printInst (&mc_inst, inst_stream, llvm::StringRef(), *m_subtarget_info_ap);
m_instr_printer_ap->setCommentStream(llvm::nulls());
comments_stream.flush();
static std::string g_newlines("\r\n");
for (size_t newline_pos = 0; (newline_pos = comments_string.find_first_of(g_newlines, newline_pos)) != comments_string.npos; /**/)
{
comments_string.replace(comments_string.begin() + newline_pos, comments_string.begin() + newline_pos + 1, 1, ' ');
}
}
void
DisassemblerLLVMC::LLVMCDisassembler::SetStyle (bool use_hex_immed, HexImmediateStyle hex_style)
{
m_instr_printer_ap->setPrintImmHex(use_hex_immed);
switch(hex_style)
{
case eHexStyleC: m_instr_printer_ap->setPrintHexStyle(llvm::HexStyle::C); break;
case eHexStyleAsm: m_instr_printer_ap->setPrintHexStyle(llvm::HexStyle::Asm); break;
}
}
bool
DisassemblerLLVMC::LLVMCDisassembler::CanBranch (llvm::MCInst &mc_inst)
{
return m_instr_info_ap->get(mc_inst.getOpcode()).mayAffectControlFlow(mc_inst, *m_reg_info_ap.get());
}
bool
DisassemblerLLVMC::LLVMCDisassembler::HasDelaySlot (llvm::MCInst &mc_inst)
{
return m_instr_info_ap->get(mc_inst.getOpcode()).hasDelaySlot();
}
DisassemblerLLVMC::DisassemblerLLVMC (const ArchSpec &arch, const char *flavor_string) :
Disassembler(arch, flavor_string),
m_exe_ctx (NULL),
m_inst (NULL),
m_data_from_file (false)
{
if (!FlavorValidForArchSpec (arch, m_flavor.c_str()))
{
m_flavor.assign("default");
}
unsigned flavor = ~0U;
llvm::Triple triple = arch.GetTriple();
// So far the only supported flavor is "intel" on x86. The base class will set this
// correctly coming in.
if (triple.getArch() == llvm::Triple::x86 || triple.getArch() == llvm::Triple::x86_64)
{
if (m_flavor == "intel")
{
flavor = 1;
}
else if (m_flavor == "att")
{
flavor = 0;
}
}
ArchSpec thumb_arch(arch);
if (triple.getArch() == llvm::Triple::arm)
{
std::string thumb_arch_name (thumb_arch.GetTriple().getArchName().str());
// Replace "arm" with "thumb" so we get all thumb variants correct
if (thumb_arch_name.size() > 3)
{
thumb_arch_name.erase(0,3);
thumb_arch_name.insert(0, "thumb");
}
else
{
thumb_arch_name = "thumbv8.2a";
}
thumb_arch.GetTriple().setArchName(llvm::StringRef(thumb_arch_name.c_str()));
}
// If no sub architecture specified then use the most recent arm architecture so the
// disassembler will return all instruction. Without it we will see a lot of unknow opcode
// in case the code uses instructions which are not available in the oldest arm version
// (used when no sub architecture is specified)
if (triple.getArch() == llvm::Triple::arm && triple.getSubArch() == llvm::Triple::NoSubArch)
triple.setArchName("armv8.2a");
const char *triple_str = triple.getTriple().c_str();
// ARM Cortex M0-M7 devices only execute thumb instructions
if (arch.IsAlwaysThumbInstructions ())
{
triple_str = thumb_arch.GetTriple().getTriple().c_str();
}
const char *cpu = "";
switch (arch.GetCore())
{
case ArchSpec::eCore_mips32:
case ArchSpec::eCore_mips32el:
cpu = "mips32"; break;
case ArchSpec::eCore_mips32r2:
case ArchSpec::eCore_mips32r2el:
cpu = "mips32r2"; break;
case ArchSpec::eCore_mips32r3:
case ArchSpec::eCore_mips32r3el:
cpu = "mips32r3"; break;
case ArchSpec::eCore_mips32r5:
case ArchSpec::eCore_mips32r5el:
cpu = "mips32r5"; break;
case ArchSpec::eCore_mips32r6:
case ArchSpec::eCore_mips32r6el:
cpu = "mips32r6"; break;
case ArchSpec::eCore_mips64:
case ArchSpec::eCore_mips64el:
cpu = "mips64"; break;
case ArchSpec::eCore_mips64r2:
case ArchSpec::eCore_mips64r2el:
cpu = "mips64r2"; break;
case ArchSpec::eCore_mips64r3:
case ArchSpec::eCore_mips64r3el:
cpu = "mips64r3"; break;
case ArchSpec::eCore_mips64r5:
case ArchSpec::eCore_mips64r5el:
cpu = "mips64r5"; break;
case ArchSpec::eCore_mips64r6:
case ArchSpec::eCore_mips64r6el:
cpu = "mips64r6"; break;
default:
cpu = ""; break;
}
std::string features_str = "";
if (triple.getArch() == llvm::Triple::mips || triple.getArch() == llvm::Triple::mipsel
|| triple.getArch() == llvm::Triple::mips64 || triple.getArch() == llvm::Triple::mips64el)
{
uint32_t arch_flags = arch.GetFlags ();
if (arch_flags & ArchSpec::eMIPSAse_msa)
features_str += "+msa,";
if (arch_flags & ArchSpec::eMIPSAse_dsp)
features_str += "+dsp,";
if (arch_flags & ArchSpec::eMIPSAse_dspr2)
features_str += "+dspr2,";
}
m_disasm_ap.reset (new LLVMCDisassembler(triple_str, cpu, features_str.c_str(), flavor, *this));
if (!m_disasm_ap->IsValid())
{
// We use m_disasm_ap.get() to tell whether we are valid or not, so if this isn't good for some reason,
// we reset it, and then we won't be valid and FindPlugin will fail and we won't get used.
m_disasm_ap.reset();
}
llvm::Triple::ArchType llvm_arch = triple.getArch();
// For arm CPUs that can execute arm or thumb instructions, also create a thumb instruction disassembler.
if (llvm_arch == llvm::Triple::arm)
{
std::string thumb_triple(thumb_arch.GetTriple().getTriple());
m_alternate_disasm_ap.reset(new LLVMCDisassembler(thumb_triple.c_str(), "", "", flavor, *this));
if (!m_alternate_disasm_ap->IsValid())
{
m_disasm_ap.reset();
m_alternate_disasm_ap.reset();
}
}
else if (llvm_arch == llvm::Triple::mips
|| llvm_arch == llvm::Triple::mipsel
|| llvm_arch == llvm::Triple::mips64
|| llvm_arch == llvm::Triple::mips64el)
{
/* Create alternate disassembler for MIPS16 and microMIPS */
uint32_t arch_flags = arch.GetFlags ();
if (arch_flags & ArchSpec::eMIPSAse_mips16)
features_str += "+mips16,";
else if (arch_flags & ArchSpec::eMIPSAse_micromips)
features_str += "+micromips,";
m_alternate_disasm_ap.reset(new LLVMCDisassembler (triple_str, cpu, features_str.c_str(), flavor, *this));
if (!m_alternate_disasm_ap->IsValid())
{
m_disasm_ap.reset();
m_alternate_disasm_ap.reset();
}
}
}
DisassemblerLLVMC::~DisassemblerLLVMC() = default;
Disassembler *
DisassemblerLLVMC::CreateInstance (const ArchSpec &arch, const char *flavor)
{
if (arch.GetTriple().getArch() != llvm::Triple::UnknownArch)
{
std::unique_ptr<DisassemblerLLVMC> disasm_ap (new DisassemblerLLVMC(arch, flavor));
if (disasm_ap.get() && disasm_ap->IsValid())
return disasm_ap.release();
}
return NULL;
}
size_t
DisassemblerLLVMC::DecodeInstructions (const Address &base_addr,
const DataExtractor& data,
lldb::offset_t data_offset,
size_t num_instructions,
bool append,
bool data_from_file)
{
if (!append)
m_instruction_list.Clear();
if (!IsValid())
return 0;
m_data_from_file = data_from_file;
uint32_t data_cursor = data_offset;
const size_t data_byte_size = data.GetByteSize();
uint32_t instructions_parsed = 0;
Address inst_addr(base_addr);
while (data_cursor < data_byte_size && instructions_parsed < num_instructions)
{
AddressClass address_class = eAddressClassCode;
if (m_alternate_disasm_ap.get() != NULL)
address_class = inst_addr.GetAddressClass ();
InstructionSP inst_sp(new InstructionLLVMC(*this,
inst_addr,
address_class));
if (!inst_sp)
break;
uint32_t inst_size = inst_sp->Decode(*this, data, data_cursor);
if (inst_size == 0)
break;
m_instruction_list.Append(inst_sp);
data_cursor += inst_size;
inst_addr.Slide(inst_size);
instructions_parsed++;
}
return data_cursor - data_offset;
}
void
DisassemblerLLVMC::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
"Disassembler that uses LLVM MC to disassemble i386, x86_64, ARM, and ARM64.",
CreateInstance);
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
}
void
DisassemblerLLVMC::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
ConstString
DisassemblerLLVMC::GetPluginNameStatic()
{
static ConstString g_name("llvm-mc");
return g_name;
}
int DisassemblerLLVMC::OpInfoCallback (void *disassembler,
uint64_t pc,
uint64_t offset,
uint64_t size,
int tag_type,
void *tag_bug)
{
return static_cast<DisassemblerLLVMC*>(disassembler)->OpInfo (pc,
offset,
size,
tag_type,
tag_bug);
}
const char *DisassemblerLLVMC::SymbolLookupCallback (void *disassembler,
uint64_t value,
uint64_t *type,
uint64_t pc,
const char **name)
{
return static_cast<DisassemblerLLVMC*>(disassembler)->SymbolLookup(value,
type,
pc,
name);
}
bool
DisassemblerLLVMC::FlavorValidForArchSpec (const lldb_private::ArchSpec &arch, const char *flavor)
{
llvm::Triple triple = arch.GetTriple();
if (flavor == NULL || strcmp (flavor, "default") == 0)
return true;
if (triple.getArch() == llvm::Triple::x86 || triple.getArch() == llvm::Triple::x86_64)
{
if (strcmp (flavor, "intel") == 0 || strcmp (flavor, "att") == 0)
return true;
else
return false;
}
else
return false;
}
int DisassemblerLLVMC::OpInfo (uint64_t PC,
uint64_t Offset,
uint64_t Size,
int tag_type,
void *tag_bug)
{
switch (tag_type)
{
default:
break;
case 1:
memset (tag_bug, 0, sizeof(::LLVMOpInfo1));
break;
}
return 0;
}
const char *DisassemblerLLVMC::SymbolLookup (uint64_t value,
uint64_t *type_ptr,
uint64_t pc,
const char **name)
{
if (*type_ptr)
{
if (m_exe_ctx && m_inst)
{
//std::string remove_this_prior_to_checkin;
Target *target = m_exe_ctx ? m_exe_ctx->GetTargetPtr() : NULL;
Address value_so_addr;
Address pc_so_addr;
if (m_inst->UsingFileAddress())
{
ModuleSP module_sp(m_inst->GetAddress().GetModule());
if (module_sp)
{
module_sp->ResolveFileAddress(value, value_so_addr);
module_sp->ResolveFileAddress(pc, pc_so_addr);
}
}
else if (target && !target->GetSectionLoadList().IsEmpty())
{
target->GetSectionLoadList().ResolveLoadAddress(value, value_so_addr);
target->GetSectionLoadList().ResolveLoadAddress(pc, pc_so_addr);
}
SymbolContext sym_ctx;
const uint32_t resolve_scope = eSymbolContextFunction | eSymbolContextSymbol;
if (pc_so_addr.IsValid() && pc_so_addr.GetModule())
{
pc_so_addr.GetModule()->ResolveSymbolContextForAddress (pc_so_addr, resolve_scope, sym_ctx);
}
if (value_so_addr.IsValid() && value_so_addr.GetSection())
{
StreamString ss;
bool format_omitting_current_func_name = false;
if (sym_ctx.symbol || sym_ctx.function)
{
AddressRange range;
if (sym_ctx.GetAddressRange (resolve_scope, 0, false, range)
&& range.GetBaseAddress().IsValid()
&& range.ContainsLoadAddress (value_so_addr, target))
{
format_omitting_current_func_name = true;
}
}
// If the "value" address (the target address we're symbolicating)
// is inside the same SymbolContext as the current instruction pc
// (pc_so_addr), don't print the full function name - just print it
// with DumpStyleNoFunctionName style, e.g. "<+36>".
if (format_omitting_current_func_name)
{
value_so_addr.Dump (&ss,
target,
Address::DumpStyleNoFunctionName,
Address::DumpStyleSectionNameOffset);
}
else
{
value_so_addr.Dump (&ss,
target,
Address::DumpStyleResolvedDescriptionNoFunctionArguments,
Address::DumpStyleSectionNameOffset);
}
if (!ss.GetString().empty())
{
// If Address::Dump returned a multi-line description, most commonly seen when we
// have multiple levels of inlined functions at an address, only show the first line.
std::string &str(ss.GetString());
size_t first_eol_char = str.find_first_of ("\r\n");
if (first_eol_char != std::string::npos)
{
str.erase (first_eol_char);
}
m_inst->AppendComment(ss.GetString());
}
}
}
}
*type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
*name = NULL;
return NULL;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
ConstString
DisassemblerLLVMC::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
DisassemblerLLVMC::GetPluginVersion()
{
return 1;
}