Files
clang-p2996/mlir/lib/Target/LLVMIR/ConvertToLLVMIR.cpp
Alex Zinenko e7f43c8361 LLVM IR lowering: support 'dim' operation.
Add support for translating 'dim' opreation on MemRefs to LLVM IR.  For a
static size, this operation merely defines an LLVM IR constant value that may
not appear in the output IR if not used (and had not been removed before by
DCE).  For a dynamic size, this operation is translated into an access to the
MemRef descriptor that contains the dynamic size.

PiperOrigin-RevId: 223160774
2019-03-29 14:11:10 -07:00

764 lines
30 KiB
C++

//===- ConvertToLLVMIR.cpp - MLIR to LLVM IR conversion ---------*- C++ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass that converts CFG function to LLVM IR. No ML
// functions must be presented in MLIR.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/CFGFunction.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/StandardOps/StandardOps.h"
#include "mlir/Support/FileUtilities.h"
#include "mlir/Support/Functional.h"
#include "mlir/Target/LLVMIR.h"
#include "mlir/Translation.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
using namespace mlir;
namespace {
class ModuleLowerer {
public:
explicit ModuleLowerer(llvm::LLVMContext &llvmContext)
: llvmContext(llvmContext), builder(llvmContext) {}
bool runOnModule(Module &m, llvm::Module &llvmModule);
private:
bool convertBasicBlock(const BasicBlock &bb, bool ignoreArguments = false);
bool convertCFGFunction(const CFGFunction &cfgFunc, llvm::Function &llvmFunc);
bool convertFunctions(const Module &mlirModule, llvm::Module &llvmModule);
bool convertInstruction(const Instruction &inst);
void connectPHINodes(const CFGFunction &cfgFunc);
/// Type conversion functions. If any conversion fails, report errors to the
/// context of the MLIR type and return nullptr.
/// \{
llvm::FunctionType *convertFunctionType(FunctionType type);
llvm::IntegerType *convertIndexType(IndexType type);
llvm::IntegerType *convertIntegerType(IntegerType type);
llvm::Type *convertFloatType(FloatType type);
llvm::Type *convertType(Type type);
/// Convert a MemRefType `type` into an LLVM aggregate structure type. Each
/// structure type starts with a pointer to the elemental type of the MemRef
/// and continues with as many lowered to LLVM index types as MemRef has
/// dynamic dimensions. An instance of this type is called a MemRef decriptor
/// and replaces the MemRef everywhere it is used so that any instruction has
/// access to its dynamic sizes.
/// For example, given that `index` is converted to `i64`, `memref<?x?xf32>`
/// is converted to `{float*, i64, i64}` (two dynamic sizes, in order);
/// `memref<42x?x42xi32>` is converted to `{i32*, i64}` (only one size is
/// dynamic); `memref<2x3x4xf64>` is converted to `{double*}`.
llvm::StructType *convertMemRefType(MemRefType type);
/// \}
/// Get an a constant value of `indexType`.
inline llvm::Constant *getIndexConstant(int64_t value);
/// Given subscript indices and array sizes in row-major order,
/// i_n, i_{n-1}, ..., i_1
/// s_n, s_{n-1}, ..., s_1
/// obtain a value that corresponds to the linearized subscript
/// i_n * s_{n-1} * s_{n-2} * ... * s_1 +
/// + i_{n-1} * s_{n-2} * s_{n_3} * ... * s_1 +
/// + ... +
/// + i_2 * s_1 +
/// + i_1.
llvm::Value *linearizeSubscripts(ArrayRef<llvm::Value *> indices,
ArrayRef<llvm::Value *> allocSizes);
/// Emit LLVM IR instructions necessary to obtain a pointer to the element of
/// `memRef` accessed by `op` with indices `opIndices`. In particular, extract
/// any dynamic allocation sizes from the MemRef descriptor, linearize the
/// access subscript given the sizes, extract the data pointer from the MemRef
/// descriptor and get the pointer to the element indexed by the linearized
/// subscript. Return nullptr on errors.
llvm::Value *emitMemRefElementAccess(
const SSAValue *memRef, const Operation &op,
llvm::iterator_range<Operation::const_operand_iterator> opIndices);
/// Emit LLVM IR corresponding to the given Alloc `op`. In particular, create
/// a Value for the MemRef descriptor, store any dynamic sizes passed to
/// the alloc operation in the descriptor, allocate the buffer for the data
/// using `allocFunc` and also store it in the descriptor. Return the MemRef
/// descriptor. This function returns `nullptr` in case of errors.
llvm::Value *emitMemRefAlloc(ConstOpPointer<AllocOp> allocOp);
/// Emit LLVM IR corresponding to the given Dealloc `op`. In particular,
/// use `freeFunc` to free the memory allocated for the MemRef's buffer. The
/// MemRef descriptor allocated on stack will cease to exist when the current
/// function returns without any extra action. Returns an LLVM Value (call
/// instruction) on success and nullptr on error.
llvm::Value *emitMemRefDealloc(ConstOpPointer<DeallocOp> deallocOp);
llvm::DenseMap<const Function *, llvm::Function *> functionMapping;
llvm::DenseMap<const SSAValue *, llvm::Value *> valueMapping;
llvm::DenseMap<const BasicBlock *, llvm::BasicBlock *> blockMapping;
llvm::LLVMContext &llvmContext;
llvm::IRBuilder<llvm::ConstantFolder, llvm::IRBuilderDefaultInserter> builder;
llvm::IntegerType *indexType;
/// Allocation function : (index) -> i8*, declaration only.
llvm::Constant *allocFunc;
/// Deallocation function : (i8*) -> void, declaration only.
llvm::Constant *freeFunc;
};
llvm::IntegerType *ModuleLowerer::convertIndexType(IndexType type) {
return indexType;
}
llvm::IntegerType *ModuleLowerer::convertIntegerType(IntegerType type) {
return builder.getIntNTy(type.getBitWidth());
}
llvm::Type *ModuleLowerer::convertFloatType(FloatType type) {
MLIRContext *context = type.getContext();
switch (type.getKind()) {
case Type::Kind::F32:
return builder.getFloatTy();
case Type::Kind::F64:
return builder.getDoubleTy();
case Type::Kind::F16:
return builder.getHalfTy();
case Type::Kind::BF16:
return context->emitError(UnknownLoc::get(context),
"Unsupported type: BF16"),
nullptr;
default:
llvm_unreachable("non-float type in convertFloatType");
}
}
llvm::FunctionType *ModuleLowerer::convertFunctionType(FunctionType type) {
// TODO(zinenko): convert tuple to LLVM structure types
assert(type.getNumResults() <= 1 && "NYI: tuple returns");
auto resultType = type.getNumResults() == 0
? llvm::Type::getVoidTy(llvmContext)
: convertType(type.getResult(0));
if (!resultType)
return nullptr;
auto argTypes =
functional::map([this](Type inputType) { return convertType(inputType); },
type.getInputs());
if (std::any_of(argTypes.begin(), argTypes.end(),
[](const llvm::Type *t) { return t == nullptr; }))
return nullptr;
return llvm::FunctionType::get(resultType, argTypes, /*isVarArg=*/false);
}
// MemRefs are converted into LLVM structure types to accomodate dynamic sizes.
// The first element of a structure is a pointer to the elemental type of the
// MemRef. The following N elements are values of the Index type, one for each
// of N dynamic dimensions of the MemRef.
llvm::StructType *ModuleLowerer::convertMemRefType(MemRefType type) {
llvm::Type *elementType = convertType(type.getElementType());
if (!elementType)
return nullptr;
elementType = elementType->getPointerTo();
// Extra value for the memory space.
unsigned numDynamicSizes = type.getNumDynamicDims();
SmallVector<llvm::Type *, 8> types(numDynamicSizes + 1, indexType);
types.front() = elementType;
return llvm::StructType::get(llvmContext, types);
}
llvm::Type *ModuleLowerer::convertType(Type type) {
if (auto funcType = type.dyn_cast<FunctionType>())
return convertFunctionType(funcType);
if (auto intType = type.dyn_cast<IntegerType>())
return convertIntegerType(intType);
if (auto floatType = type.dyn_cast<FloatType>())
return convertFloatType(floatType);
if (auto indexType = type.dyn_cast<IndexType>())
return convertIndexType(indexType);
if (auto memRefType = type.dyn_cast<MemRefType>())
return convertMemRefType(memRefType);
MLIRContext *context = type.getContext();
std::string message;
llvm::raw_string_ostream os(message);
os << "unsupported type: ";
type.print(os);
context->emitError(UnknownLoc::get(context), os.str());
return nullptr;
}
llvm::Constant *ModuleLowerer::getIndexConstant(int64_t value) {
return llvm::Constant::getIntegerValue(
indexType, llvm::APInt(indexType->getBitWidth(), value));
}
// Given subscript indices and array sizes in row-major order,
// i_n, i_{n-1}, ..., i_1
// s_n, s_{n-1}, ..., s_1
// obtain a value that corresponds to the linearized subscript
// \sum_k i_k * \prod_{j=1}^{k-1} s_j
// by accumulating the running linearized value.
llvm::Value *
ModuleLowerer::linearizeSubscripts(ArrayRef<llvm::Value *> indices,
ArrayRef<llvm::Value *> allocSizes) {
assert(indices.size() == allocSizes.size() &&
"mismatching number of indices and allocation sizes");
assert(!indices.empty() && "cannot linearize a 0-dimensional access");
llvm::Value *linearized = indices.front();
for (unsigned i = 1, nSizes = allocSizes.size(); i < nSizes; ++i) {
linearized = builder.CreateMul(linearized, allocSizes[i]);
linearized = builder.CreateAdd(linearized, indices[i]);
}
return linearized;
}
// Check if the MemRefType `type` is supported by the lowering. Emit errors at
// the location of `op` and return true. Return false if the type is supported.
// TODO(zinenko): this function should disappear when the conversion fully
// supports MemRefs.
static bool checkSupportedMemRefType(MemRefType type, const Operation &op) {
if (!type.getAffineMaps().empty()) {
op.emitError("NYI: memrefs with affine maps");
return true;
}
if (type.getMemorySpace() != 0) {
op.emitError("NYI: non-default memory space");
return true;
}
return false;
}
llvm::Value *ModuleLowerer::emitMemRefElementAccess(
const SSAValue *memRef, const Operation &op,
llvm::iterator_range<Operation::const_operand_iterator> opIndices) {
auto type = memRef->getType().dyn_cast<MemRefType>();
assert(type && "expected memRef value to have a MemRef type");
if (checkSupportedMemRefType(type, op))
return nullptr;
// A MemRef-typed value is remapped to its descriptor.
llvm::Value *memRefDescriptor = valueMapping.lookup(memRef);
// Get the list of MemRef sizes. Static sizes are defined as values. Dynamic
// sizes are extracted from the MemRef descriptor.
llvm::SmallVector<llvm::Value *, 4> sizes;
unsigned dynanmicSizeIdx = 0;
for (int64_t s : type.getShape()) {
llvm::Value *size = (s == -1) ? builder.CreateExtractValue(
memRefDescriptor, 1 + dynanmicSizeIdx++)
: getIndexConstant(s);
sizes.push_back(size);
}
// Obtain the list of access subscripts as values and linearize it given the
// list of sizes.
auto indices = functional::map(
[this](const SSAValue *value) { return valueMapping.lookup(value); },
opIndices);
auto subscript = linearizeSubscripts(indices, sizes);
// Extract the pointer to the data buffer and use LLVM's getelementptr to
// repoint it to the element indexed by the subscript.
llvm::Value *data = builder.CreateExtractValue(memRefDescriptor, 0);
return builder.CreateGEP(data, subscript);
}
llvm::Value *ModuleLowerer::emitMemRefAlloc(ConstOpPointer<AllocOp> allocOp) {
MemRefType type = allocOp->getType();
if (checkSupportedMemRefType(type, *allocOp->getOperation()))
return nullptr;
// Get actual sizes of the memref as values: static sizes are constant
// values and dynamic sizes are passed to 'alloc' as operands.
SmallVector<llvm::Value *, 4> sizes;
sizes.reserve(allocOp->getNumOperands());
unsigned i = 0;
for (int s : type.getShape()) {
llvm::Value *value = (s == -1)
? valueMapping.lookup(allocOp->getOperand(i++))
: getIndexConstant(s);
sizes.push_back(value);
}
assert(!sizes.empty() && "zero-dimensional allocation");
// Compute the total numer of memref elements as Value.
llvm::Value *cumulativeSize = sizes.front();
for (unsigned i = 1, e = sizes.size(); i < e; ++i) {
cumulativeSize = builder.CreateMul(cumulativeSize, sizes[i]);
}
// Allocate the MemRef descriptor on stack and load it.
llvm::StructType *structType = convertMemRefType(type);
llvm::Type *elementType = convertType(type.getElementType());
if (!structType || !elementType)
return nullptr;
llvm::Value *memRefDescriptor = llvm::UndefValue::get(structType);
// Take into account the size of the elemental type before allocation.
// Elemental types can be scalars or vectors only.
unsigned byteWidth = elementType->getScalarSizeInBits() / 8;
assert(byteWidth > 0 && "could not determine size of a MemRef element");
if (elementType->isVectorTy()) {
byteWidth *= elementType->getVectorNumElements();
}
llvm::Value *byteWidthValue = getIndexConstant(byteWidth);
cumulativeSize = builder.CreateMul(cumulativeSize, byteWidthValue);
// Allocate the buffer for theMemRef and store a pointer to it in the MemRef
// descriptor.
llvm::Value *allocated = builder.CreateCall(allocFunc, cumulativeSize);
allocated = builder.CreateBitCast(allocated, elementType->getPointerTo());
memRefDescriptor = builder.CreateInsertValue(memRefDescriptor, allocated, 0);
// Store dynamically allocated sizes in the descriptor.
i = 0;
for (auto indexedSize : llvm::enumerate(sizes)) {
if (type.getShape()[indexedSize.index()] != -1)
continue;
memRefDescriptor = builder.CreateInsertValue(memRefDescriptor,
indexedSize.value(), 1 + i++);
}
// Return the final value of the descriptor (each insert returns a new,
// updated value, the old is still accessible but has old data).
return memRefDescriptor;
}
llvm::Value *
ModuleLowerer::emitMemRefDealloc(ConstOpPointer<DeallocOp> deallocOp) {
// Extract the pointer to the MemRef buffer from its descriptor and call
// `freeFunc` on it.
llvm::Value *memRefDescriptor = valueMapping.lookup(deallocOp->getMemRef());
llvm::Value *data = builder.CreateExtractValue(memRefDescriptor, 0);
data = builder.CreateBitCast(data, builder.getInt8PtrTy());
return builder.CreateCall(freeFunc, data);
}
static llvm::CmpInst::Predicate getLLVMCmpPredicate(CmpIPredicate p) {
switch (p) {
case CmpIPredicate::EQ:
return llvm::CmpInst::Predicate::ICMP_EQ;
case CmpIPredicate::NE:
return llvm::CmpInst::Predicate::ICMP_NE;
case CmpIPredicate::SLT:
return llvm::CmpInst::Predicate::ICMP_SLT;
case CmpIPredicate::SLE:
return llvm::CmpInst::Predicate::ICMP_SLE;
case CmpIPredicate::SGT:
return llvm::CmpInst::Predicate::ICMP_SGT;
case CmpIPredicate::SGE:
return llvm::CmpInst::Predicate::ICMP_SGE;
case CmpIPredicate::ULT:
return llvm::CmpInst::Predicate::ICMP_ULT;
case CmpIPredicate::ULE:
return llvm::CmpInst::Predicate::ICMP_ULE;
case CmpIPredicate::UGT:
return llvm::CmpInst::Predicate::ICMP_UGT;
case CmpIPredicate::UGE:
return llvm::CmpInst::Predicate::ICMP_UGE;
default:
llvm_unreachable("incorrect comparison predicate");
}
}
// Convert specific operation instruction types LLVM instructions.
// FIXME(zinenko): this should eventually become a separate MLIR pass that
// converts MLIR standard operations into LLVM IR dialect; the translation in
// that case would become a simple 1:1 instruction and value remapping.
bool ModuleLowerer::convertInstruction(const Instruction &inst) {
if (auto op = inst.dyn_cast<AddIOp>())
return valueMapping[op->getResult()] =
builder.CreateAdd(valueMapping[op->getOperand(0)],
valueMapping[op->getOperand(1)]),
false;
if (auto op = inst.dyn_cast<MulIOp>())
return valueMapping[op->getResult()] =
builder.CreateMul(valueMapping[op->getOperand(0)],
valueMapping[op->getOperand(1)]),
false;
if (auto op = inst.dyn_cast<CmpIOp>())
return valueMapping[op->getResult()] =
builder.CreateICmp(getLLVMCmpPredicate(op->getPredicate()),
valueMapping[op->getOperand(0)],
valueMapping[op->getOperand(1)]),
false;
if (auto op = inst.dyn_cast<AddFOp>())
return valueMapping[op->getResult()] =
builder.CreateFAdd(valueMapping.lookup(op->getOperand(0)),
valueMapping.lookup(op->getOperand(1))),
false;
if (auto op = inst.dyn_cast<MulFOp>())
return valueMapping[op->getResult()] =
builder.CreateFMul(valueMapping.lookup(op->getOperand(0)),
valueMapping.lookup(op->getOperand(1))),
false;
if (auto constantOp = inst.dyn_cast<ConstantIndexOp>()) {
auto attr = constantOp->getValue();
valueMapping[constantOp->getResult()] = getIndexConstant(attr);
return false;
}
if (auto constantOp = inst.dyn_cast<ConstantFloatOp>()) {
llvm::Type *type = convertType(constantOp->getType());
if (!type)
return true;
// TODO(somebody): float attributes have "double" semantics whatever the
// type of the constant. This should be fixed at the parser level.
if (!type->isFloatTy()) {
inst.emitError("NYI: only floats are currently supported");
return true;
}
bool unused;
auto APvalue = constantOp->getValue();
APFloat::opStatus status = APvalue.convert(
llvm::APFloat::IEEEsingle(), llvm::APFloat::rmTowardZero, &unused);
if (status == APFloat::opInexact) {
inst.emitWarning(
"Lossy conversion of a float constant to the float type");
// No return intended.
}
if (status != APFloat::opOK) {
inst.emitError("Failed to convert a floating point constant");
return true;
}
auto value = APvalue.convertToFloat();
valueMapping[constantOp->getResult()] =
llvm::ConstantFP::get(type->getContext(), llvm::APFloat(value));
return false;
}
if (auto constantOp = inst.dyn_cast<ConstantOp>()) {
llvm::Type *type = convertType(constantOp->getType());
if (!type)
return true;
if (!isa<llvm::IntegerType>(type)) {
inst.emitError("only integer types are supported");
return true;
}
auto attr = (constantOp->getValue()).cast<IntegerAttr>();
// Create a new APInt even if we can extract one from the attribute, because
// attributes are currently hardcoded to be 64-bit APInts and LLVM will
// create an i64 constant from those.
valueMapping[constantOp->getResult()] = llvm::Constant::getIntegerValue(
type, llvm::APInt(type->getIntegerBitWidth(), attr.getInt()));
return false;
}
if (auto allocOp = inst.dyn_cast<AllocOp>()) {
llvm::Value *memRefDescriptor = emitMemRefAlloc(allocOp);
if (!memRefDescriptor)
return true;
valueMapping[allocOp->getResult()] = memRefDescriptor;
return false;
}
if (auto deallocOp = inst.dyn_cast<DeallocOp>()) {
return !emitMemRefDealloc(deallocOp);
}
if (auto loadOp = inst.dyn_cast<LoadOp>()) {
llvm::Value *element = emitMemRefElementAccess(
loadOp->getMemRef(), *loadOp->getOperation(), loadOp->getIndices());
if (!element)
return true;
valueMapping[loadOp->getResult()] = builder.CreateLoad(element);
return false;
}
if (auto storeOp = inst.dyn_cast<StoreOp>()) {
llvm::Value *element = emitMemRefElementAccess(
storeOp->getMemRef(), *storeOp->getOperation(), storeOp->getIndices());
if (!element)
return true;
builder.CreateStore(valueMapping.lookup(storeOp->getValueToStore()),
element);
return false;
}
if (auto dimOp = inst.dyn_cast<DimOp>()) {
const SSAValue *container = dimOp->getOperand();
MemRefType type = container->getType().dyn_cast<MemRefType>();
if (!type)
return dimOp->emitError("only memref types are supported"), true;
auto shape = type.getShape();
auto index = dimOp->getIndex();
assert(index < shape.size() && "out-of-bounds 'dim' operation");
// If the size is a constant, just define that constant.
if (shape[index] != -1) {
valueMapping[dimOp->getResult()] = getIndexConstant(shape[index]);
return false;
}
// Otherwise, compute the position of the requested index in the list of
// dynamic sizes stored in the MemRef descriptor and extract it from there.
unsigned numLeadingDynamicSizes = 0;
for (unsigned i = 0; i < index; ++i) {
if (shape[i] == -1)
++numLeadingDynamicSizes;
}
llvm::Value *memRefDescriptor = valueMapping.lookup(container);
llvm::Value *dynamicSize = builder.CreateExtractValue(
memRefDescriptor, 1 + numLeadingDynamicSizes);
valueMapping[dimOp->getResult()] = dynamicSize;
return false;
}
if (auto callOp = inst.dyn_cast<CallOp>()) {
auto operands = functional::map(
[this](const SSAValue *value) { return valueMapping.lookup(value); },
callOp->getOperands());
auto numResults = callOp->getNumResults();
// TODO(zinenko): support tuple returns
assert(numResults <= 1 && "NYI: tuple returns");
llvm::Value *result =
builder.CreateCall(functionMapping[callOp->getCallee()], operands);
if (numResults == 1)
valueMapping[callOp->getResult(0)] = result;
return false;
}
// Terminators.
if (auto returnInst = inst.dyn_cast<ReturnOp>()) {
unsigned numOperands = returnInst->getNumOperands();
// TODO(zinenko): support tuple returns
assert(numOperands <= 1u && "NYI: tuple returns");
if (numOperands == 0)
builder.CreateRetVoid();
else
builder.CreateRet(valueMapping[returnInst->getOperand(0)]);
return false;
}
if (auto branchInst = inst.dyn_cast<BranchOp>()) {
builder.CreateBr(blockMapping[branchInst->getDest()]);
return false;
}
if (auto condBranchInst = inst.dyn_cast<CondBranchOp>()) {
builder.CreateCondBr(valueMapping[condBranchInst->getCondition()],
blockMapping[condBranchInst->getTrueDest()],
blockMapping[condBranchInst->getFalseDest()]);
return false;
}
inst.emitError("unsupported operation");
return true;
}
bool ModuleLowerer::convertBasicBlock(const BasicBlock &bb,
bool ignoreArguments) {
builder.SetInsertPoint(blockMapping[&bb]);
// Before traversing instructions, make block arguments available through
// value remapping and PHI nodes, but do not add incoming edges for the PHI
// nodes just yet: those values may be defined by this or following blocks.
// This step is omitted if "ignoreArguments" is set. The arguments of the
// first basic block have been already made available through the remapping of
// LLVM function arguments.
if (!ignoreArguments) {
auto predecessors = bb.getPredecessors();
unsigned numPredecessors =
std::distance(predecessors.begin(), predecessors.end());
for (const auto *arg : bb.getArguments()) {
llvm::Type *type = convertType(arg->getType());
if (!type)
return true;
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
valueMapping[arg] = phi;
}
}
// Traverse instructions.
for (const auto &inst : bb) {
if (convertInstruction(inst))
return true;
}
return false;
}
// Get the SSA value passed to the current block from the terminator instruction
// of its predecessor.
static const SSAValue *getPHISourceValue(const BasicBlock *current,
const BasicBlock *pred,
unsigned numArguments,
unsigned index) {
const Instruction &terminator = *pred->getTerminator();
if (terminator.isa<BranchOp>()) {
return terminator.getOperand(index);
}
// For conditional branches, we need to check if the current block is reached
// through the "true" or the "false" branch and take the relevant operands.
auto condBranchOp = terminator.dyn_cast<CondBranchOp>();
assert(condBranchOp &&
"only branch instructions can be terminators of a basic block that "
"has successors");
condBranchOp->emitError("NYI: conditional branches with arguments");
return nullptr;
}
void ModuleLowerer::connectPHINodes(const CFGFunction &cfgFunc) {
// Skip the first block, it cannot be branched to and its arguments correspond
// to the arguments of the LLVM function.
for (auto it = std::next(cfgFunc.begin()), eit = cfgFunc.end(); it != eit;
++it) {
const BasicBlock *bb = &*it;
llvm::BasicBlock *llvmBB = blockMapping[bb];
auto phis = llvmBB->phis();
auto numArguments = bb->getNumArguments();
assert(numArguments == std::distance(phis.begin(), phis.end()));
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
auto &phiNode = numberedPhiNode.value();
unsigned index = numberedPhiNode.index();
for (const auto *pred : bb->getPredecessors()) {
phiNode.addIncoming(
valueMapping[getPHISourceValue(bb, pred, numArguments, index)],
blockMapping[pred]);
}
}
}
}
bool ModuleLowerer::convertCFGFunction(const CFGFunction &cfgFunc,
llvm::Function &llvmFunc) {
// Clear the block mapping. Blocks belong to a function, no need to keep
// blocks from the previous functions around. Furthermore, we use this
// mapping to connect PHI nodes inside the function later.
blockMapping.clear();
// First, create all blocks so we can jump to them.
for (const auto &bb : cfgFunc) {
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
llvmBB->insertInto(&llvmFunc);
blockMapping[&bb] = llvmBB;
}
// Then, convert blocks one by one.
for (auto indexedBB : llvm::enumerate(cfgFunc)) {
const auto &bb = indexedBB.value();
if (convertBasicBlock(bb, /*ignoreArguments=*/indexedBB.index() == 0))
return true;
}
// Finally, after all blocks have been traversed and values mapped, connect
// the PHI nodes to the results of preceding blocks.
connectPHINodes(cfgFunc);
return false;
}
bool ModuleLowerer::convertFunctions(const Module &mlirModule,
llvm::Module &llvmModule) {
// Declare all functions first because there may be function calls that form a
// call graph with cycles. We don't expect MLFunctions here.
for (const Function &function : mlirModule) {
const Function *functionPtr = &function;
if (!isa<ExtFunction>(functionPtr) && !isa<CFGFunction>(functionPtr))
continue;
llvm::Constant *llvmFuncCst = llvmModule.getOrInsertFunction(
function.getName(), convertFunctionType(function.getType()));
assert(isa<llvm::Function>(llvmFuncCst));
functionMapping[functionPtr] = cast<llvm::Function>(llvmFuncCst);
}
// Convert CFG functions.
for (const Function &function : mlirModule) {
const Function *functionPtr = &function;
auto cfgFunction = dyn_cast<CFGFunction>(functionPtr);
if (!cfgFunction)
continue;
llvm::Function *llvmFunc = functionMapping[cfgFunction];
// Add function arguments to the value remapping table. In CFGFunction,
// arguments of the first block are those of the function.
assert(!cfgFunction->getBlocks().empty() &&
"expected at least one basic block in a CFGFunction");
const BasicBlock &firstBlock = *cfgFunction->begin();
for (auto arg : llvm::enumerate(llvmFunc->args())) {
valueMapping[firstBlock.getArgument(arg.index())] = &arg.value();
}
if (convertCFGFunction(*cfgFunction, *functionMapping[cfgFunction]))
return true;
}
return false;
}
bool ModuleLowerer::runOnModule(Module &m, llvm::Module &llvmModule) {
// Create index type once for the entire module, it needs module info that is
// not available in the convert*Type calls.
indexType =
builder.getIntNTy(llvmModule.getDataLayout().getPointerSizeInBits());
// Declare or obtain (de)allocation functions.
allocFunc = llvmModule.getOrInsertFunction("__mlir_alloc",
builder.getInt8PtrTy(), indexType);
freeFunc = llvmModule.getOrInsertFunction("__mlir_free", builder.getVoidTy(),
builder.getInt8PtrTy());
return convertFunctions(m, llvmModule);
}
} // namespace
// Entry point for the lowering procedure.
std::unique_ptr<llvm::Module>
mlir::convertModuleToLLVMIR(Module &module, llvm::LLVMContext &llvmContext) {
auto llvmModule = llvm::make_unique<llvm::Module>("FIXME_name", llvmContext);
if (ModuleLowerer(llvmContext).runOnModule(module, *llvmModule))
return nullptr;
return llvmModule;
}
// MLIR to LLVM IR translation registration.
static TranslateFromMLIRRegistration MLIRToLLVMIRTranslate(
"mlir-to-llvmir", [](Module *module, llvm::StringRef outputFilename) {
if (!module)
return true;
llvm::LLVMContext llvmContext;
auto llvmModule = convertModuleToLLVMIR(*module, llvmContext);
if (!llvmModule)
return true;
auto file = openOutputFile(outputFilename);
if (!file)
return true;
llvmModule->print(file->os(), nullptr);
file->keep();
return false;
});