Files
clang-p2996/flang/include/flang/Evaluate/tools.h
jeanPerier e816817bbb [flang] add option to generate runtime type info as external (#145901)
So far flang generates runtime derived type info global definitions (as
opposed to declarations) for all the types used in the current
compilation unit even when the derived types are defined in other
compilation units. It is using linkonce_odr to achieve derived type
descriptor address "uniqueness" aspect needed to match two derived type
inside the runtime.

This comes at a big compile time cost because of all the extra globals
and their definitions in apps with many and complex derived types.

This patch adds and experimental option to only generate the rtti
definition for the types defined in the current compilation unit and to
only generate external declaration for the derived type descriptor
object of types defined elsewhere.

Note that objects compiled with this option are not compatible with
object files compiled without because files compiled without it may drop
the rtti for type they defined if it is not used in the compilation unit
because of the linkonce_odr aspect.

I am adding the option so that we can better measure the extra cost of
the current approach on apps and allow speeding up some compilation
where devirtualization does not matter (and the build config links to
all module file object anyway).
2025-06-27 13:00:29 +02:00

1650 lines
58 KiB
C++

//===-- include/flang/Evaluate/tools.h --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_EVALUATE_TOOLS_H_
#define FORTRAN_EVALUATE_TOOLS_H_
#include "traverse.h"
#include "flang/Common/idioms.h"
#include "flang/Common/template.h"
#include "flang/Common/unwrap.h"
#include "flang/Evaluate/constant.h"
#include "flang/Evaluate/expression.h"
#include "flang/Evaluate/shape.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/attr.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/symbol.h"
#include <array>
#include <optional>
#include <set>
#include <type_traits>
#include <utility>
namespace Fortran::evaluate {
// Some expression predicates and extractors.
// Predicate: true when an expression is a variable reference, not an
// operation. Be advised: a call to a function that returns an object
// pointer is a "variable" in Fortran (it can be the left-hand side of
// an assignment).
struct IsVariableHelper
: public AnyTraverse<IsVariableHelper, std::optional<bool>> {
using Result = std::optional<bool>; // effectively tri-state
using Base = AnyTraverse<IsVariableHelper, Result>;
IsVariableHelper() : Base{*this} {}
using Base::operator();
Result operator()(const StaticDataObject &) const { return false; }
Result operator()(const Symbol &) const;
Result operator()(const Component &) const;
Result operator()(const ArrayRef &) const;
Result operator()(const Substring &) const;
Result operator()(const CoarrayRef &) const { return true; }
Result operator()(const ComplexPart &) const { return true; }
Result operator()(const ProcedureDesignator &) const;
template <typename T> Result operator()(const Expr<T> &x) const {
if constexpr (common::HasMember<T, AllIntrinsicTypes> ||
std::is_same_v<T, SomeDerived>) {
// Expression with a specific type
if (std::holds_alternative<Designator<T>>(x.u) ||
std::holds_alternative<FunctionRef<T>>(x.u)) {
if (auto known{(*this)(x.u)}) {
return known;
}
}
return false;
} else if constexpr (std::is_same_v<T, SomeType>) {
if (std::holds_alternative<ProcedureDesignator>(x.u) ||
std::holds_alternative<ProcedureRef>(x.u)) {
return false; // procedure pointer
} else {
return (*this)(x.u);
}
} else {
return (*this)(x.u);
}
}
};
template <typename A> bool IsVariable(const A &x) {
if (auto known{IsVariableHelper{}(x)}) {
return *known;
} else {
return false;
}
}
// Predicate: true when an expression is assumed-rank
bool IsAssumedRank(const Symbol &);
bool IsAssumedRank(const ActualArgument &);
template <typename A> bool IsAssumedRank(const A &) { return false; }
template <typename A> bool IsAssumedRank(const Designator<A> &designator) {
if (const auto *symbol{std::get_if<SymbolRef>(&designator.u)}) {
return IsAssumedRank(symbol->get());
} else {
return false;
}
}
template <typename T> bool IsAssumedRank(const Expr<T> &expr) {
return common::visit([](const auto &x) { return IsAssumedRank(x); }, expr.u);
}
template <typename A> bool IsAssumedRank(const std::optional<A> &x) {
return x && IsAssumedRank(*x);
}
template <typename A> bool IsAssumedRank(const A *x) {
return x && IsAssumedRank(*x);
}
// Finds the corank of an entity, possibly packaged in various ways.
// Unlike rank, only data references have corank > 0.
int GetCorank(const ActualArgument &);
static inline int GetCorank(const Symbol &symbol) { return symbol.Corank(); }
template <typename A> int GetCorank(const A &) { return 0; }
template <typename T> int GetCorank(const Designator<T> &designator) {
return designator.Corank();
}
template <typename T> int GetCorank(const Expr<T> &expr) {
return common::visit([](const auto &x) { return GetCorank(x); }, expr.u);
}
template <typename A> int GetCorank(const std::optional<A> &x) {
return x ? GetCorank(*x) : 0;
}
template <typename A> int GetCorank(const A *x) {
return x ? GetCorank(*x) : 0;
}
// Predicate: true when an expression is a coarray (corank > 0)
template <typename A> bool IsCoarray(const A &x) { return GetCorank(x) > 0; }
// Generalizing packagers: these take operations and expressions of more
// specific types and wrap them in Expr<> containers of more abstract types.
template <typename A> common::IfNoLvalue<Expr<ResultType<A>>, A> AsExpr(A &&x) {
return Expr<ResultType<A>>{std::move(x)};
}
template <typename T, typename U = typename Relational<T>::Result>
Expr<U> AsExpr(Relational<T> &&x) {
// The variant in Expr<Type<TypeCategory::Logical, KIND>> only contains
// Relational<SomeType>, not other Relational<T>s. Wrap the Relational<T>
// in Relational<SomeType> before creating Expr<>.
return Expr<U>(Relational<SomeType>{std::move(x)});
}
template <typename T> Expr<T> AsExpr(Expr<T> &&x) {
static_assert(IsSpecificIntrinsicType<T>);
return std::move(x);
}
template <TypeCategory CATEGORY>
Expr<SomeKind<CATEGORY>> AsCategoryExpr(Expr<SomeKind<CATEGORY>> &&x) {
return std::move(x);
}
template <typename A>
common::IfNoLvalue<Expr<SomeType>, A> AsGenericExpr(A &&x) {
if constexpr (common::HasMember<A, TypelessExpression>) {
return Expr<SomeType>{std::move(x)};
} else {
return Expr<SomeType>{AsCategoryExpr(std::move(x))};
}
}
inline Expr<SomeType> AsGenericExpr(Expr<SomeType> &&x) { return std::move(x); }
// These overloads wrap DataRefs and simple whole variables up into
// generic expressions if they have a known type.
std::optional<Expr<SomeType>> AsGenericExpr(DataRef &&);
std::optional<Expr<SomeType>> AsGenericExpr(const Symbol &);
// Propagate std::optional from input to output.
template <typename A>
std::optional<Expr<SomeType>> AsGenericExpr(std::optional<A> &&x) {
if (x) {
return AsGenericExpr(std::move(*x));
} else {
return std::nullopt;
}
}
template <typename A>
common::IfNoLvalue<Expr<SomeKind<ResultType<A>::category>>, A> AsCategoryExpr(
A &&x) {
return Expr<SomeKind<ResultType<A>::category>>{AsExpr(std::move(x))};
}
Expr<SomeType> Parenthesize(Expr<SomeType> &&);
template <typename A> constexpr bool IsNumericCategoryExpr() {
if constexpr (common::HasMember<A, TypelessExpression>) {
return false;
} else {
return common::HasMember<ResultType<A>, NumericCategoryTypes>;
}
}
// Specializing extractor. If an Expr wraps some type of object, perhaps
// in several layers, return a pointer to it; otherwise null. Also works
// with expressions contained in ActualArgument.
template <typename A, typename B>
auto UnwrapExpr(B &x) -> common::Constify<A, B> * {
using Ty = std::decay_t<B>;
if constexpr (std::is_same_v<A, Ty>) {
return &x;
} else if constexpr (std::is_same_v<Ty, ActualArgument>) {
if (auto *expr{x.UnwrapExpr()}) {
return UnwrapExpr<A>(*expr);
}
} else if constexpr (std::is_same_v<Ty, Expr<SomeType>>) {
return common::visit([](auto &x) { return UnwrapExpr<A>(x); }, x.u);
} else if constexpr (!common::HasMember<A, TypelessExpression>) {
if constexpr (std::is_same_v<Ty, Expr<ResultType<A>>> ||
std::is_same_v<Ty, Expr<SomeKind<ResultType<A>::category>>>) {
return common::visit([](auto &x) { return UnwrapExpr<A>(x); }, x.u);
}
}
return nullptr;
}
template <typename A, typename B>
const A *UnwrapExpr(const std::optional<B> &x) {
if (x) {
return UnwrapExpr<A>(*x);
} else {
return nullptr;
}
}
template <typename A, typename B> A *UnwrapExpr(std::optional<B> &x) {
if (x) {
return UnwrapExpr<A>(*x);
} else {
return nullptr;
}
}
template <typename A, typename B> const A *UnwrapExpr(const B *x) {
if (x) {
return UnwrapExpr<A>(*x);
} else {
return nullptr;
}
}
template <typename A, typename B> A *UnwrapExpr(B *x) {
if (x) {
return UnwrapExpr<A>(*x);
} else {
return nullptr;
}
}
// A variant of UnwrapExpr above that also skips through (parentheses)
// and conversions of kinds within a category. Useful for extracting LEN
// type parameter inquiries, at least.
template <typename A, typename B>
auto UnwrapConvertedExpr(B &x) -> common::Constify<A, B> * {
using Ty = std::decay_t<B>;
if constexpr (std::is_same_v<A, Ty>) {
return &x;
} else if constexpr (std::is_same_v<Ty, ActualArgument>) {
if (auto *expr{x.UnwrapExpr()}) {
return UnwrapConvertedExpr<A>(*expr);
}
} else if constexpr (std::is_same_v<Ty, Expr<SomeType>>) {
return common::visit(
[](auto &x) { return UnwrapConvertedExpr<A>(x); }, x.u);
} else {
using DesiredResult = ResultType<A>;
if constexpr (std::is_same_v<Ty, Expr<DesiredResult>> ||
std::is_same_v<Ty, Expr<SomeKind<DesiredResult::category>>>) {
return common::visit(
[](auto &x) { return UnwrapConvertedExpr<A>(x); }, x.u);
} else {
using ThisResult = ResultType<B>;
if constexpr (std::is_same_v<Ty, Expr<ThisResult>>) {
return common::visit(
[](auto &x) { return UnwrapConvertedExpr<A>(x); }, x.u);
} else if constexpr (std::is_same_v<Ty, Parentheses<ThisResult>> ||
std::is_same_v<Ty, Convert<ThisResult, DesiredResult::category>>) {
return common::visit(
[](auto &x) { return UnwrapConvertedExpr<A>(x); }, x.left().u);
}
}
}
return nullptr;
}
// UnwrapProcedureRef() returns a pointer to a ProcedureRef when the whole
// expression is a reference to a procedure.
template <typename A> inline const ProcedureRef *UnwrapProcedureRef(const A &) {
return nullptr;
}
inline const ProcedureRef *UnwrapProcedureRef(const ProcedureRef &proc) {
// Reference to subroutine or to a function that returns
// an object pointer or procedure pointer
return &proc;
}
template <typename T>
inline const ProcedureRef *UnwrapProcedureRef(const FunctionRef<T> &func) {
return &func; // reference to a function returning a non-pointer
}
template <typename T>
inline const ProcedureRef *UnwrapProcedureRef(const Expr<T> &expr) {
return common::visit(
[](const auto &x) { return UnwrapProcedureRef(x); }, expr.u);
}
// When an expression is a "bare" LEN= derived type parameter inquiry,
// possibly wrapped in integer kind conversions &/or parentheses, return
// a pointer to the Symbol with TypeParamDetails.
template <typename A> const Symbol *ExtractBareLenParameter(const A &expr) {
if (const auto *typeParam{
UnwrapConvertedExpr<evaluate::TypeParamInquiry>(expr)}) {
if (!typeParam->base()) {
const Symbol &symbol{typeParam->parameter()};
if (const auto *tpd{symbol.detailsIf<semantics::TypeParamDetails>()}) {
if (tpd->attr() == common::TypeParamAttr::Len) {
return &symbol;
}
}
}
}
return nullptr;
}
// If an expression simply wraps a DataRef, extract and return it.
// The Boolean arguments control the handling of Substring and ComplexPart
// references: when true (not default), it extracts the base DataRef
// of a substring or complex part.
template <typename A>
common::IfNoLvalue<std::optional<DataRef>, A> ExtractDataRef(
const A &x, bool intoSubstring, bool intoComplexPart) {
if constexpr (common::HasMember<decltype(x), decltype(DataRef::u)>) {
return DataRef{x};
} else {
return std::nullopt; // default base case
}
}
std::optional<DataRef> ExtractSubstringBase(const Substring &);
inline std::optional<DataRef> ExtractDataRef(const Substring &x,
bool intoSubstring = false, bool intoComplexPart = false) {
if (intoSubstring) {
return ExtractSubstringBase(x);
} else {
return std::nullopt;
}
}
inline std::optional<DataRef> ExtractDataRef(const ComplexPart &x,
bool intoSubstring = false, bool intoComplexPart = false) {
if (intoComplexPart) {
return x.complex();
} else {
return std::nullopt;
}
}
template <typename T>
std::optional<DataRef> ExtractDataRef(const Designator<T> &d,
bool intoSubstring = false, bool intoComplexPart = false) {
return common::visit(
[=](const auto &x) -> std::optional<DataRef> {
return ExtractDataRef(x, intoSubstring, intoComplexPart);
},
d.u);
}
template <typename T>
std::optional<DataRef> ExtractDataRef(const Expr<T> &expr,
bool intoSubstring = false, bool intoComplexPart = false) {
return common::visit(
[=](const auto &x) {
return ExtractDataRef(x, intoSubstring, intoComplexPart);
},
expr.u);
}
template <typename A>
std::optional<DataRef> ExtractDataRef(const std::optional<A> &x,
bool intoSubstring = false, bool intoComplexPart = false) {
if (x) {
return ExtractDataRef(*x, intoSubstring, intoComplexPart);
} else {
return std::nullopt;
}
}
template <typename A>
std::optional<DataRef> ExtractDataRef(
A *p, bool intoSubstring = false, bool intoComplexPart = false) {
if (p) {
return ExtractDataRef(std::as_const(*p), intoSubstring, intoComplexPart);
} else {
return std::nullopt;
}
}
std::optional<DataRef> ExtractDataRef(const ActualArgument &,
bool intoSubstring = false, bool intoComplexPart = false);
// Predicate: is an expression is an array element reference?
template <typename T>
const Symbol *IsArrayElement(const Expr<T> &expr, bool intoSubstring = true,
bool skipComponents = false) {
if (auto dataRef{ExtractDataRef(expr, intoSubstring)}) {
for (const DataRef *ref{&*dataRef}; ref;) {
if (const Component * component{std::get_if<Component>(&ref->u)}) {
ref = skipComponents ? &component->base() : nullptr;
} else if (const auto *coarrayRef{std::get_if<CoarrayRef>(&ref->u)}) {
ref = &coarrayRef->base();
} else if (const auto *arrayRef{std::get_if<ArrayRef>(&ref->u)}) {
return &arrayRef->GetLastSymbol();
} else {
break;
}
}
}
return nullptr;
}
template <typename T>
bool isStructureComponent(const Fortran::evaluate::Expr<T> &expr) {
if (auto dataRef{ExtractDataRef(expr, /*intoSubstring=*/false)}) {
const Fortran::evaluate::DataRef *ref{&*dataRef};
return std::holds_alternative<Fortran::evaluate::Component>(ref->u);
}
return false;
}
template <typename A>
std::optional<NamedEntity> ExtractNamedEntity(const A &x) {
if (auto dataRef{ExtractDataRef(x)}) {
return common::visit(
common::visitors{
[](SymbolRef &&symbol) -> std::optional<NamedEntity> {
return NamedEntity{symbol};
},
[](Component &&component) -> std::optional<NamedEntity> {
return NamedEntity{std::move(component)};
},
[](auto &&) { return std::optional<NamedEntity>{}; },
},
std::move(dataRef->u));
} else {
return std::nullopt;
}
}
struct ExtractCoindexedObjectHelper {
template <typename A> std::optional<CoarrayRef> operator()(const A &) const {
return std::nullopt;
}
std::optional<CoarrayRef> operator()(const CoarrayRef &x) const { return x; }
template <typename A>
std::optional<CoarrayRef> operator()(const Expr<A> &expr) const {
return common::visit(*this, expr.u);
}
std::optional<CoarrayRef> operator()(const DataRef &dataRef) const {
return common::visit(*this, dataRef.u);
}
std::optional<CoarrayRef> operator()(const NamedEntity &named) const {
if (const Component * component{named.UnwrapComponent()}) {
return (*this)(*component);
} else {
return std::nullopt;
}
}
std::optional<CoarrayRef> operator()(const ProcedureDesignator &des) const {
if (const auto *component{
std::get_if<common::CopyableIndirection<Component>>(&des.u)}) {
return (*this)(component->value());
} else {
return std::nullopt;
}
}
std::optional<CoarrayRef> operator()(const Component &component) const {
return (*this)(component.base());
}
std::optional<CoarrayRef> operator()(const ArrayRef &arrayRef) const {
return (*this)(arrayRef.base());
}
};
static inline std::optional<CoarrayRef> ExtractCoarrayRef(const DataRef &x) {
return ExtractCoindexedObjectHelper{}(x);
}
template <typename A> std::optional<CoarrayRef> ExtractCoarrayRef(const A &x) {
if (auto dataRef{ExtractDataRef(x, true)}) {
return ExtractCoarrayRef(*dataRef);
} else {
return ExtractCoindexedObjectHelper{}(x);
}
}
template <typename TARGET> struct ExtractFromExprDesignatorHelper {
template <typename T> static std::optional<TARGET> visit(T &&) {
return std::nullopt;
}
static std::optional<TARGET> visit(const TARGET &t) { return t; }
template <typename T>
static std::optional<TARGET> visit(const Designator<T> &e) {
return common::visit([](auto &&s) { return visit(s); }, e.u);
}
template <typename T> static std::optional<TARGET> visit(const Expr<T> &e) {
return common::visit([](auto &&s) { return visit(s); }, e.u);
}
};
template <typename A> std::optional<Substring> ExtractSubstring(const A &x) {
return ExtractFromExprDesignatorHelper<Substring>::visit(x);
}
template <typename A>
std::optional<ComplexPart> ExtractComplexPart(const A &x) {
return ExtractFromExprDesignatorHelper<ComplexPart>::visit(x);
}
// If an expression is simply a whole symbol data designator,
// extract and return that symbol, else null.
const Symbol *UnwrapWholeSymbolDataRef(const DataRef &);
const Symbol *UnwrapWholeSymbolDataRef(const std::optional<DataRef> &);
template <typename A> const Symbol *UnwrapWholeSymbolDataRef(const A &x) {
return UnwrapWholeSymbolDataRef(ExtractDataRef(x));
}
// If an expression is a whole symbol or a whole component desginator,
// extract and return that symbol, else null.
const Symbol *UnwrapWholeSymbolOrComponentDataRef(const DataRef &);
const Symbol *UnwrapWholeSymbolOrComponentDataRef(
const std::optional<DataRef> &);
template <typename A>
const Symbol *UnwrapWholeSymbolOrComponentDataRef(const A &x) {
return UnwrapWholeSymbolOrComponentDataRef(ExtractDataRef(x));
}
// If an expression is a whole symbol or a whole component designator,
// potentially followed by an image selector, extract and return that symbol,
// else null.
const Symbol *UnwrapWholeSymbolOrComponentOrCoarrayRef(const DataRef &);
const Symbol *UnwrapWholeSymbolOrComponentOrCoarrayRef(
const std::optional<DataRef> &);
template <typename A>
const Symbol *UnwrapWholeSymbolOrComponentOrCoarrayRef(const A &x) {
return UnwrapWholeSymbolOrComponentOrCoarrayRef(ExtractDataRef(x));
}
// GetFirstSymbol(A%B%C[I]%D) -> A
template <typename A> const Symbol *GetFirstSymbol(const A &x) {
if (auto dataRef{ExtractDataRef(x, true)}) {
return &dataRef->GetFirstSymbol();
} else {
return nullptr;
}
}
// GetLastPointerSymbol(A%PTR1%B%PTR2%C) -> PTR2
const Symbol *GetLastPointerSymbol(const evaluate::DataRef &);
// Creation of conversion expressions can be done to either a known
// specific intrinsic type with ConvertToType<T>(x) or by converting
// one arbitrary expression to the type of another with ConvertTo(to, from).
template <typename TO, TypeCategory FROMCAT>
Expr<TO> ConvertToType(Expr<SomeKind<FROMCAT>> &&x) {
static_assert(IsSpecificIntrinsicType<TO>);
if constexpr (FROMCAT == TO::category) {
if (auto *already{std::get_if<Expr<TO>>(&x.u)}) {
return std::move(*already);
} else {
return Expr<TO>{Convert<TO, FROMCAT>{std::move(x)}};
}
} else if constexpr (TO::category == TypeCategory::Complex) {
using Part = typename TO::Part;
Scalar<Part> zero;
return Expr<TO>{ComplexConstructor<TO::kind>{
ConvertToType<Part>(std::move(x)), Expr<Part>{Constant<Part>{zero}}}};
} else if constexpr (FROMCAT == TypeCategory::Complex) {
// Extract and convert the real component of a complex value
return common::visit(
[&](auto &&z) {
using ZType = ResultType<decltype(z)>;
using Part = typename ZType::Part;
return ConvertToType<TO, TypeCategory::Real>(Expr<SomeReal>{
Expr<Part>{ComplexComponent<Part::kind>{false, std::move(z)}}});
},
std::move(x.u));
} else {
return Expr<TO>{Convert<TO, FROMCAT>{std::move(x)}};
}
}
template <typename TO, TypeCategory FROMCAT, int FROMKIND>
Expr<TO> ConvertToType(Expr<Type<FROMCAT, FROMKIND>> &&x) {
return ConvertToType<TO, FROMCAT>(Expr<SomeKind<FROMCAT>>{std::move(x)});
}
template <typename TO> Expr<TO> ConvertToType(BOZLiteralConstant &&x) {
static_assert(IsSpecificIntrinsicType<TO>);
if constexpr (TO::category == TypeCategory::Integer ||
TO::category == TypeCategory::Unsigned) {
return Expr<TO>{
Constant<TO>{Scalar<TO>::ConvertUnsigned(std::move(x)).value}};
} else {
static_assert(TO::category == TypeCategory::Real);
using Word = typename Scalar<TO>::Word;
return Expr<TO>{
Constant<TO>{Scalar<TO>{Word::ConvertUnsigned(std::move(x)).value}}};
}
}
template <typename T> bool IsBOZLiteral(const Expr<T> &expr) {
return std::holds_alternative<BOZLiteralConstant>(expr.u);
}
// Conversions to dynamic types
std::optional<Expr<SomeType>> ConvertToType(
const DynamicType &, Expr<SomeType> &&);
std::optional<Expr<SomeType>> ConvertToType(
const DynamicType &, std::optional<Expr<SomeType>> &&);
std::optional<Expr<SomeType>> ConvertToType(const Symbol &, Expr<SomeType> &&);
std::optional<Expr<SomeType>> ConvertToType(
const Symbol &, std::optional<Expr<SomeType>> &&);
// Conversions to the type of another expression
template <TypeCategory TC, int TK, typename FROM>
common::IfNoLvalue<Expr<Type<TC, TK>>, FROM> ConvertTo(
const Expr<Type<TC, TK>> &, FROM &&x) {
return ConvertToType<Type<TC, TK>>(std::move(x));
}
template <TypeCategory TC, typename FROM>
common::IfNoLvalue<Expr<SomeKind<TC>>, FROM> ConvertTo(
const Expr<SomeKind<TC>> &to, FROM &&from) {
return common::visit(
[&](const auto &toKindExpr) {
using KindExpr = std::decay_t<decltype(toKindExpr)>;
return AsCategoryExpr(
ConvertToType<ResultType<KindExpr>>(std::move(from)));
},
to.u);
}
template <typename FROM>
common::IfNoLvalue<Expr<SomeType>, FROM> ConvertTo(
const Expr<SomeType> &to, FROM &&from) {
return common::visit(
[&](const auto &toCatExpr) {
return AsGenericExpr(ConvertTo(toCatExpr, std::move(from)));
},
to.u);
}
// Convert an expression of some known category to a dynamically chosen
// kind of some category (usually but not necessarily distinct).
template <TypeCategory TOCAT, typename VALUE> struct ConvertToKindHelper {
using Result = std::optional<Expr<SomeKind<TOCAT>>>;
using Types = CategoryTypes<TOCAT>;
ConvertToKindHelper(int k, VALUE &&x) : kind{k}, value{std::move(x)} {}
template <typename T> Result Test() {
if (kind == T::kind) {
return std::make_optional(
AsCategoryExpr(ConvertToType<T>(std::move(value))));
}
return std::nullopt;
}
int kind;
VALUE value;
};
template <TypeCategory TOCAT, typename VALUE>
common::IfNoLvalue<Expr<SomeKind<TOCAT>>, VALUE> ConvertToKind(
int kind, VALUE &&x) {
auto result{common::SearchTypes(
ConvertToKindHelper<TOCAT, VALUE>{kind, std::move(x)})};
CHECK(result.has_value());
return *result;
}
// Given a type category CAT, SameKindExprs<CAT, N> is a variant that
// holds an arrays of expressions of the same supported kind in that
// category.
template <typename A, int N = 2> using SameExprs = std::array<Expr<A>, N>;
template <int N = 2> struct SameKindExprsHelper {
template <typename A> using SameExprs = std::array<Expr<A>, N>;
};
template <TypeCategory CAT, int N = 2>
using SameKindExprs =
common::MapTemplate<SameKindExprsHelper<N>::template SameExprs,
CategoryTypes<CAT>>;
// Given references to two expressions of arbitrary kind in the same type
// category, convert one to the kind of the other when it has the smaller kind,
// then return them in a type-safe package.
template <TypeCategory CAT>
SameKindExprs<CAT, 2> AsSameKindExprs(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return common::visit(
[&](auto &&kx, auto &&ky) -> SameKindExprs<CAT, 2> {
using XTy = ResultType<decltype(kx)>;
using YTy = ResultType<decltype(ky)>;
if constexpr (std::is_same_v<XTy, YTy>) {
return {SameExprs<XTy>{std::move(kx), std::move(ky)}};
} else if constexpr (XTy::kind < YTy::kind) {
return {SameExprs<YTy>{ConvertTo(ky, std::move(kx)), std::move(ky)}};
} else {
return {SameExprs<XTy>{std::move(kx), ConvertTo(kx, std::move(ky))}};
}
#if !__clang__ && 100 * __GNUC__ + __GNUC_MINOR__ == 801
// Silence a bogus warning about a missing return with G++ 8.1.0.
// Doesn't execute, but must be correctly typed.
CHECK(!"can't happen");
return {SameExprs<XTy>{std::move(kx), std::move(kx)}};
#endif
},
std::move(x.u), std::move(y.u));
}
// Ensure that both operands of an intrinsic REAL operation (or CMPLX()
// constructor) are INTEGER or REAL, then convert them as necessary to the
// same kind of REAL.
using ConvertRealOperandsResult =
std::optional<SameKindExprs<TypeCategory::Real, 2>>;
ConvertRealOperandsResult ConvertRealOperands(parser::ContextualMessages &,
Expr<SomeType> &&, Expr<SomeType> &&, int defaultRealKind);
// Per F'2018 R718, if both components are INTEGER, they are both converted
// to default REAL and the result is default COMPLEX. Otherwise, the
// kind of the result is the kind of most precise REAL component, and the other
// component is converted if necessary to its type.
std::optional<Expr<SomeComplex>> ConstructComplex(parser::ContextualMessages &,
Expr<SomeType> &&, Expr<SomeType> &&, int defaultRealKind);
std::optional<Expr<SomeComplex>> ConstructComplex(parser::ContextualMessages &,
std::optional<Expr<SomeType>> &&, std::optional<Expr<SomeType>> &&,
int defaultRealKind);
template <typename A> Expr<TypeOf<A>> ScalarConstantToExpr(const A &x) {
using Ty = TypeOf<A>;
static_assert(
std::is_same_v<Scalar<Ty>, std::decay_t<A>>, "TypeOf<> is broken");
return Expr<TypeOf<A>>{Constant<Ty>{x}};
}
// Combine two expressions of the same specific numeric type with an operation
// to produce a new expression.
template <template <typename> class OPR, typename SPECIFIC>
Expr<SPECIFIC> Combine(Expr<SPECIFIC> &&x, Expr<SPECIFIC> &&y) {
static_assert(IsSpecificIntrinsicType<SPECIFIC>);
return AsExpr(OPR<SPECIFIC>{std::move(x), std::move(y)});
}
// Given two expressions of arbitrary kind in the same intrinsic type
// category, convert one of them if necessary to the larger kind of the
// other, then combine the resulting homogenized operands with a given
// operation, returning a new expression in the same type category.
template <template <typename> class OPR, TypeCategory CAT>
Expr<SomeKind<CAT>> PromoteAndCombine(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return common::visit(
[](auto &&xy) {
using Ty = ResultType<decltype(xy[0])>;
return AsCategoryExpr(
Combine<OPR, Ty>(std::move(xy[0]), std::move(xy[1])));
},
AsSameKindExprs(std::move(x), std::move(y)));
}
// Given two expressions of arbitrary type, try to combine them with a
// binary numeric operation (e.g., Add), possibly with data type conversion of
// one of the operands to the type of the other. Handles special cases with
// typeless literal operands and with REAL/COMPLEX exponentiation to INTEGER
// powers.
template <template <typename> class OPR, bool CAN_BE_UNSIGNED = true>
std::optional<Expr<SomeType>> NumericOperation(parser::ContextualMessages &,
Expr<SomeType> &&, Expr<SomeType> &&, int defaultRealKind);
extern template std::optional<Expr<SomeType>> NumericOperation<Power, false>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
extern template std::optional<Expr<SomeType>> NumericOperation<Multiply>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
extern template std::optional<Expr<SomeType>> NumericOperation<Divide>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
extern template std::optional<Expr<SomeType>> NumericOperation<Add>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
extern template std::optional<Expr<SomeType>> NumericOperation<Subtract>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
std::optional<Expr<SomeType>> Negation(
parser::ContextualMessages &, Expr<SomeType> &&);
// Given two expressions of arbitrary type, try to combine them with a
// relational operator (e.g., .LT.), possibly with data type conversion.
std::optional<Expr<LogicalResult>> Relate(parser::ContextualMessages &,
RelationalOperator, Expr<SomeType> &&, Expr<SomeType> &&);
// Create a relational operation between two identically-typed operands
// and wrap it up in an Expr<LogicalResult>.
template <typename T>
Expr<LogicalResult> PackageRelation(
RelationalOperator opr, Expr<T> &&x, Expr<T> &&y) {
static_assert(IsSpecificIntrinsicType<T>);
return Expr<LogicalResult>{
Relational<SomeType>{Relational<T>{opr, std::move(x), std::move(y)}}};
}
template <int K>
Expr<Type<TypeCategory::Logical, K>> LogicalNegation(
Expr<Type<TypeCategory::Logical, K>> &&x) {
return AsExpr(Not<K>{std::move(x)});
}
Expr<SomeLogical> LogicalNegation(Expr<SomeLogical> &&);
template <int K>
Expr<Type<TypeCategory::Logical, K>> BinaryLogicalOperation(LogicalOperator opr,
Expr<Type<TypeCategory::Logical, K>> &&x,
Expr<Type<TypeCategory::Logical, K>> &&y) {
return AsExpr(LogicalOperation<K>{opr, std::move(x), std::move(y)});
}
Expr<SomeLogical> BinaryLogicalOperation(
LogicalOperator, Expr<SomeLogical> &&, Expr<SomeLogical> &&);
// Convenience functions and operator overloadings for expression construction.
// These interfaces are defined only for those situations that can never
// emit any message. Use the more general templates (above) in other
// situations.
template <TypeCategory C, int K>
Expr<Type<C, K>> operator-(Expr<Type<C, K>> &&x) {
return AsExpr(Negate<Type<C, K>>{std::move(x)});
}
template <TypeCategory C, int K>
Expr<Type<C, K>> operator+(Expr<Type<C, K>> &&x, Expr<Type<C, K>> &&y) {
return AsExpr(Combine<Add, Type<C, K>>(std::move(x), std::move(y)));
}
template <TypeCategory C, int K>
Expr<Type<C, K>> operator-(Expr<Type<C, K>> &&x, Expr<Type<C, K>> &&y) {
return AsExpr(Combine<Subtract, Type<C, K>>(std::move(x), std::move(y)));
}
template <TypeCategory C, int K>
Expr<Type<C, K>> operator*(Expr<Type<C, K>> &&x, Expr<Type<C, K>> &&y) {
return AsExpr(Combine<Multiply, Type<C, K>>(std::move(x), std::move(y)));
}
template <TypeCategory C, int K>
Expr<Type<C, K>> operator/(Expr<Type<C, K>> &&x, Expr<Type<C, K>> &&y) {
return AsExpr(Combine<Divide, Type<C, K>>(std::move(x), std::move(y)));
}
template <TypeCategory C> Expr<SomeKind<C>> operator-(Expr<SomeKind<C>> &&x) {
return common::visit(
[](auto &xk) { return Expr<SomeKind<C>>{-std::move(xk)}; }, x.u);
}
template <TypeCategory CAT>
Expr<SomeKind<CAT>> operator+(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return PromoteAndCombine<Add, CAT>(std::move(x), std::move(y));
}
template <TypeCategory CAT>
Expr<SomeKind<CAT>> operator-(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return PromoteAndCombine<Subtract, CAT>(std::move(x), std::move(y));
}
template <TypeCategory CAT>
Expr<SomeKind<CAT>> operator*(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return PromoteAndCombine<Multiply, CAT>(std::move(x), std::move(y));
}
template <TypeCategory CAT>
Expr<SomeKind<CAT>> operator/(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return PromoteAndCombine<Divide, CAT>(std::move(x), std::move(y));
}
// A utility for use with common::SearchTypes to create generic expressions
// when an intrinsic type category for (say) a variable is known
// but the kind parameter value is not.
template <TypeCategory CAT, template <typename> class TEMPLATE, typename VALUE>
struct TypeKindVisitor {
using Result = std::optional<Expr<SomeType>>;
using Types = CategoryTypes<CAT>;
TypeKindVisitor(int k, VALUE &&x) : kind{k}, value{std::move(x)} {}
TypeKindVisitor(int k, const VALUE &x) : kind{k}, value{x} {}
template <typename T> Result Test() {
if (kind == T::kind) {
return AsGenericExpr(TEMPLATE<T>{std::move(value)});
}
return std::nullopt;
}
int kind;
VALUE value;
};
// TypedWrapper() wraps a object in an explicitly typed representation
// (e.g., Designator<> or FunctionRef<>) that has been instantiated on
// a dynamically chosen Fortran type.
template <TypeCategory CATEGORY, template <typename> typename WRAPPER,
typename WRAPPED>
common::IfNoLvalue<std::optional<Expr<SomeType>>, WRAPPED> WrapperHelper(
int kind, WRAPPED &&x) {
return common::SearchTypes(
TypeKindVisitor<CATEGORY, WRAPPER, WRAPPED>{kind, std::move(x)});
}
template <template <typename> typename WRAPPER, typename WRAPPED>
common::IfNoLvalue<std::optional<Expr<SomeType>>, WRAPPED> TypedWrapper(
const DynamicType &dyType, WRAPPED &&x) {
switch (dyType.category()) {
SWITCH_COVERS_ALL_CASES
case TypeCategory::Integer:
return WrapperHelper<TypeCategory::Integer, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Unsigned:
return WrapperHelper<TypeCategory::Unsigned, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Real:
return WrapperHelper<TypeCategory::Real, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Complex:
return WrapperHelper<TypeCategory::Complex, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Character:
return WrapperHelper<TypeCategory::Character, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Logical:
return WrapperHelper<TypeCategory::Logical, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Derived:
return AsGenericExpr(Expr<SomeDerived>{WRAPPER<SomeDerived>{std::move(x)}});
}
}
// GetLastSymbol() returns the rightmost symbol in an object or procedure
// designator (which has perhaps been wrapped in an Expr<>), or a null pointer
// when none is found. It will return an ASSOCIATE construct entity's symbol
// rather than descending into its expression.
struct GetLastSymbolHelper
: public AnyTraverse<GetLastSymbolHelper, std::optional<const Symbol *>> {
using Result = std::optional<const Symbol *>;
using Base = AnyTraverse<GetLastSymbolHelper, Result>;
GetLastSymbolHelper() : Base{*this} {}
using Base::operator();
Result operator()(const Symbol &x) const { return &x; }
Result operator()(const Component &x) const { return &x.GetLastSymbol(); }
Result operator()(const NamedEntity &x) const { return &x.GetLastSymbol(); }
Result operator()(const ProcedureDesignator &x) const {
return x.GetSymbol();
}
template <typename T> Result operator()(const Expr<T> &x) const {
if constexpr (common::HasMember<T, AllIntrinsicTypes> ||
std::is_same_v<T, SomeDerived>) {
if (const auto *designator{std::get_if<Designator<T>>(&x.u)}) {
if (auto known{(*this)(*designator)}) {
return known;
}
}
return nullptr;
} else {
return (*this)(x.u);
}
}
};
template <typename A> const Symbol *GetLastSymbol(const A &x) {
if (auto known{GetLastSymbolHelper{}(x)}) {
return *known;
} else {
return nullptr;
}
}
// For everyday variables: if GetLastSymbol() succeeds on the argument, return
// its set of attributes, otherwise the empty set. Also works on variables that
// are pointer results of functions.
template <typename A> semantics::Attrs GetAttrs(const A &x) {
if (const Symbol * symbol{GetLastSymbol(x)}) {
return symbol->attrs();
} else {
return {};
}
}
template <>
inline semantics::Attrs GetAttrs<Expr<SomeType>>(const Expr<SomeType> &x) {
if (IsVariable(x)) {
if (const auto *procRef{UnwrapProcedureRef(x)}) {
if (const Symbol * interface{procRef->proc().GetInterfaceSymbol()}) {
if (const auto *details{
interface->detailsIf<semantics::SubprogramDetails>()}) {
if (details->isFunction() &&
details->result().attrs().test(semantics::Attr::POINTER)) {
// N.B.: POINTER becomes TARGET in SetAttrsFromAssociation()
return details->result().attrs();
}
}
}
}
}
if (const Symbol * symbol{GetLastSymbol(x)}) {
return symbol->attrs();
} else {
return {};
}
}
template <typename A> semantics::Attrs GetAttrs(const std::optional<A> &x) {
if (x) {
return GetAttrs(*x);
} else {
return {};
}
}
// GetBaseObject()
template <typename A> std::optional<BaseObject> GetBaseObject(const A &) {
return std::nullopt;
}
template <typename T>
std::optional<BaseObject> GetBaseObject(const Designator<T> &x) {
return x.GetBaseObject();
}
template <typename T>
std::optional<BaseObject> GetBaseObject(const Expr<T> &x) {
return common::visit([](const auto &y) { return GetBaseObject(y); }, x.u);
}
template <typename A>
std::optional<BaseObject> GetBaseObject(const std::optional<A> &x) {
if (x) {
return GetBaseObject(*x);
} else {
return std::nullopt;
}
}
// Like IsAllocatableOrPointer, but accepts pointer function results as being
// pointers too.
bool IsAllocatableOrPointerObject(const Expr<SomeType> &);
bool IsAllocatableDesignator(const Expr<SomeType> &);
// Procedure and pointer detection predicates
bool IsProcedureDesignator(const Expr<SomeType> &);
bool IsFunctionDesignator(const Expr<SomeType> &);
bool IsPointer(const Expr<SomeType> &);
bool IsProcedurePointer(const Expr<SomeType> &);
bool IsProcedure(const Expr<SomeType> &);
bool IsProcedurePointerTarget(const Expr<SomeType> &);
bool IsBareNullPointer(const Expr<SomeType> *); // NULL() w/o MOLD= or type
bool IsNullObjectPointer(const Expr<SomeType> *); // NULL() or NULL(objptr)
bool IsNullProcedurePointer(const Expr<SomeType> *); // NULL() or NULL(procptr)
bool IsNullPointer(const Expr<SomeType> *); // NULL() or NULL(pointer)
bool IsNullAllocatable(const Expr<SomeType> *); // NULL(allocatable)
bool IsNullPointerOrAllocatable(const Expr<SomeType> *); // NULL of any form
bool IsObjectPointer(const Expr<SomeType> &);
// Can Expr be passed as absent to an optional dummy argument.
// See 15.5.2.12 point 1 for more details.
bool MayBePassedAsAbsentOptional(const Expr<SomeType> &);
// Extracts the chain of symbols from a designator, which has perhaps been
// wrapped in an Expr<>, removing all of the (co)subscripts. The
// base object will be the first symbol in the result vector.
struct GetSymbolVectorHelper
: public Traverse<GetSymbolVectorHelper, SymbolVector> {
using Result = SymbolVector;
using Base = Traverse<GetSymbolVectorHelper, Result>;
using Base::operator();
GetSymbolVectorHelper() : Base{*this} {}
Result Default() { return {}; }
Result Combine(Result &&a, Result &&b) {
a.insert(a.end(), b.begin(), b.end());
return std::move(a);
}
Result operator()(const Symbol &) const;
Result operator()(const Component &) const;
Result operator()(const ArrayRef &) const;
Result operator()(const CoarrayRef &) const;
};
template <typename A> SymbolVector GetSymbolVector(const A &x) {
return GetSymbolVectorHelper{}(x);
}
// GetLastTarget() returns the rightmost symbol in an object designator's
// SymbolVector that has the POINTER or TARGET attribute, or a null pointer
// when none is found.
const Symbol *GetLastTarget(const SymbolVector &);
// Collects all of the Symbols in an expression
template <typename A> semantics::UnorderedSymbolSet CollectSymbols(const A &);
extern template semantics::UnorderedSymbolSet CollectSymbols(
const Expr<SomeType> &);
extern template semantics::UnorderedSymbolSet CollectSymbols(
const Expr<SomeInteger> &);
extern template semantics::UnorderedSymbolSet CollectSymbols(
const Expr<SubscriptInteger> &);
// Collects Symbols of interest for the CUDA data transfer in an expression
template <typename A>
semantics::UnorderedSymbolSet CollectCudaSymbols(const A &);
extern template semantics::UnorderedSymbolSet CollectCudaSymbols(
const Expr<SomeType> &);
extern template semantics::UnorderedSymbolSet CollectCudaSymbols(
const Expr<SomeInteger> &);
extern template semantics::UnorderedSymbolSet CollectCudaSymbols(
const Expr<SubscriptInteger> &);
// Predicate: does a variable contain a vector-valued subscript (not a triplet)?
bool HasVectorSubscript(const Expr<SomeType> &);
// Predicate: does an expression contain constant?
bool HasConstant(const Expr<SomeType> &);
// Utilities for attaching the location of the declaration of a symbol
// of interest to a message. Handles the case of USE association gracefully.
parser::Message *AttachDeclaration(parser::Message &, const Symbol &);
parser::Message *AttachDeclaration(parser::Message *, const Symbol &);
template <typename MESSAGES, typename... A>
parser::Message *SayWithDeclaration(
MESSAGES &messages, const Symbol &symbol, A &&...x) {
return AttachDeclaration(messages.Say(std::forward<A>(x)...), symbol);
}
// Check for references to impure procedures; returns the name
// of one to complain about, if any exist.
std::optional<std::string> FindImpureCall(
FoldingContext &, const Expr<SomeType> &);
std::optional<std::string> FindImpureCall(
FoldingContext &, const ProcedureRef &);
// Predicate: is a scalar expression suitable for naive scalar expansion
// in the flattening of an array expression?
// TODO: capture such scalar expansions in temporaries, flatten everything
class UnexpandabilityFindingVisitor
: public AnyTraverse<UnexpandabilityFindingVisitor> {
public:
using Base = AnyTraverse<UnexpandabilityFindingVisitor>;
using Base::operator();
explicit UnexpandabilityFindingVisitor(bool admitPureCall)
: Base{*this}, admitPureCall_{admitPureCall} {}
template <typename T> bool operator()(const FunctionRef<T> &procRef) {
return !admitPureCall_ || !procRef.proc().IsPure();
}
bool operator()(const CoarrayRef &) { return true; }
private:
bool admitPureCall_{false};
};
template <typename T>
bool IsExpandableScalar(const Expr<T> &expr, FoldingContext &context,
const Shape &shape, bool admitPureCall = false) {
if (UnexpandabilityFindingVisitor{admitPureCall}(expr)) {
auto extents{AsConstantExtents(context, shape)};
return extents && !HasNegativeExtent(*extents) && GetSize(*extents) == 1;
} else {
return true;
}
}
// Common handling for procedure pointer compatibility of left- and right-hand
// sides. Returns nullopt if they're compatible. Otherwise, it returns a
// message that needs to be augmented by the names of the left and right sides.
std::optional<parser::MessageFixedText> CheckProcCompatibility(bool isCall,
const std::optional<characteristics::Procedure> &lhsProcedure,
const characteristics::Procedure *rhsProcedure,
const SpecificIntrinsic *specificIntrinsic, std::string &whyNotCompatible,
std::optional<std::string> &warning, bool ignoreImplicitVsExplicit);
// Scalar constant expansion
class ScalarConstantExpander {
public:
explicit ScalarConstantExpander(ConstantSubscripts &&extents)
: extents_{std::move(extents)} {}
ScalarConstantExpander(
ConstantSubscripts &&extents, std::optional<ConstantSubscripts> &&lbounds)
: extents_{std::move(extents)}, lbounds_{std::move(lbounds)} {}
ScalarConstantExpander(
ConstantSubscripts &&extents, ConstantSubscripts &&lbounds)
: extents_{std::move(extents)}, lbounds_{std::move(lbounds)} {}
template <typename A> A Expand(A &&x) const {
return std::move(x); // default case
}
template <typename T> Constant<T> Expand(Constant<T> &&x) {
auto expanded{x.Reshape(std::move(extents_))};
if (lbounds_) {
expanded.set_lbounds(std::move(*lbounds_));
}
return expanded;
}
template <typename T> Expr<T> Expand(Parentheses<T> &&x) {
return Expand(std::move(x.left())); // Constant<> can be parenthesized
}
template <typename T> Expr<T> Expand(Expr<T> &&x) {
return common::visit(
[&](auto &&x) { return Expr<T>{Expand(std::move(x))}; },
std::move(x.u));
}
private:
ConstantSubscripts extents_;
std::optional<ConstantSubscripts> lbounds_;
};
// Given a collection of element values, package them as a Constant.
// If the type is Character or a derived type, take the length or type
// (resp.) from a another Constant.
template <typename T>
Constant<T> PackageConstant(std::vector<Scalar<T>> &&elements,
const Constant<T> &reference, const ConstantSubscripts &shape) {
if constexpr (T::category == TypeCategory::Character) {
return Constant<T>{
reference.LEN(), std::move(elements), ConstantSubscripts{shape}};
} else if constexpr (T::category == TypeCategory::Derived) {
return Constant<T>{reference.GetType().GetDerivedTypeSpec(),
std::move(elements), ConstantSubscripts{shape}};
} else {
return Constant<T>{std::move(elements), ConstantSubscripts{shape}};
}
}
// Nonstandard conversions of constants (integer->logical, logical->integer)
// that can appear in DATA statements as an extension.
std::optional<Expr<SomeType>> DataConstantConversionExtension(
FoldingContext &, const DynamicType &, const Expr<SomeType> &);
// Convert Hollerith or short character to a another type as if the
// Hollerith data had been BOZ.
std::optional<Expr<SomeType>> HollerithToBOZ(
FoldingContext &, const Expr<SomeType> &, const DynamicType &);
// Set explicit lower bounds on a constant array.
class ArrayConstantBoundChanger {
public:
explicit ArrayConstantBoundChanger(ConstantSubscripts &&lbounds)
: lbounds_{std::move(lbounds)} {}
template <typename A> A ChangeLbounds(A &&x) const {
return std::move(x); // default case
}
template <typename T> Constant<T> ChangeLbounds(Constant<T> &&x) {
x.set_lbounds(std::move(lbounds_));
return std::move(x);
}
template <typename T> Expr<T> ChangeLbounds(Parentheses<T> &&x) {
return ChangeLbounds(
std::move(x.left())); // Constant<> can be parenthesized
}
template <typename T> Expr<T> ChangeLbounds(Expr<T> &&x) {
return common::visit(
[&](auto &&x) { return Expr<T>{ChangeLbounds(std::move(x))}; },
std::move(x.u)); // recurse until we hit a constant
}
private:
ConstantSubscripts &&lbounds_;
};
// Predicate: should two expressions be considered identical for the purposes
// of determining whether two procedure interfaces are compatible, modulo
// naming of corresponding dummy arguments?
template <typename T>
std::optional<bool> AreEquivalentInInterface(const Expr<T> &, const Expr<T> &);
extern template std::optional<bool> AreEquivalentInInterface<SubscriptInteger>(
const Expr<SubscriptInteger> &, const Expr<SubscriptInteger> &);
extern template std::optional<bool> AreEquivalentInInterface<SomeInteger>(
const Expr<SomeInteger> &, const Expr<SomeInteger> &);
bool CheckForCoindexedObject(parser::ContextualMessages &,
const std::optional<ActualArgument> &, const std::string &procName,
const std::string &argName);
inline bool CanCUDASymbolHaveSaveAttr(const Symbol &sym) {
if (const auto *details =
sym.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()) {
if (details->cudaDataAttr() &&
*details->cudaDataAttr() != common::CUDADataAttr::Unified) {
return false;
}
}
return true;
}
inline bool IsCUDADeviceSymbol(const Symbol &sym) {
if (const auto *details =
sym.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()) {
if (details->cudaDataAttr() &&
*details->cudaDataAttr() != common::CUDADataAttr::Pinned) {
return true;
}
}
return false;
}
inline bool IsCUDAManagedOrUnifiedSymbol(const Symbol &sym) {
if (const auto *details =
sym.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()) {
if (details->cudaDataAttr() &&
(*details->cudaDataAttr() == common::CUDADataAttr::Managed ||
*details->cudaDataAttr() == common::CUDADataAttr::Unified)) {
return true;
}
}
return false;
}
// Get the number of distinct symbols with CUDA device
// attribute in the expression.
template <typename A> inline int GetNbOfCUDADeviceSymbols(const A &expr) {
semantics::UnorderedSymbolSet symbols;
for (const Symbol &sym : CollectCudaSymbols(expr)) {
if (IsCUDADeviceSymbol(sym)) {
symbols.insert(sym);
}
}
return symbols.size();
}
// Get the number of distinct symbols with CUDA managed or unified
// attribute in the expression.
template <typename A>
inline int GetNbOfCUDAManagedOrUnifiedSymbols(const A &expr) {
semantics::UnorderedSymbolSet symbols;
for (const Symbol &sym : CollectCudaSymbols(expr)) {
if (IsCUDAManagedOrUnifiedSymbol(sym)) {
symbols.insert(sym);
}
}
return symbols.size();
}
// Check if any of the symbols part of the expression has a CUDA device
// attribute.
template <typename A> inline bool HasCUDADeviceAttrs(const A &expr) {
return GetNbOfCUDADeviceSymbols(expr) > 0;
}
// Check if any of the symbols part of the lhs or rhs expression has a CUDA
// device attribute.
template <typename A, typename B>
inline bool IsCUDADataTransfer(const A &lhs, const B &rhs) {
int lhsNbManagedSymbols = {GetNbOfCUDAManagedOrUnifiedSymbols(lhs)};
int rhsNbManagedSymbols = {GetNbOfCUDAManagedOrUnifiedSymbols(rhs)};
int rhsNbSymbols{GetNbOfCUDADeviceSymbols(rhs)};
// Special case where only managed or unifed symbols are involved. This is
// performed on the host.
if (lhsNbManagedSymbols == 1 && rhsNbManagedSymbols == 1 &&
rhsNbSymbols == 1) {
return false;
}
return HasCUDADeviceAttrs(lhs) || rhsNbSymbols > 0;
}
/// Check if the expression is a mix of host and device variables that require
/// implicit data transfer.
inline bool HasCUDAImplicitTransfer(const Expr<SomeType> &expr) {
unsigned hostSymbols{0};
unsigned deviceSymbols{0};
for (const Symbol &sym : CollectCudaSymbols(expr)) {
if (IsCUDADeviceSymbol(sym)) {
++deviceSymbols;
} else {
if (sym.owner().IsDerivedType()) {
if (IsCUDADeviceSymbol(sym.owner().GetSymbol()->GetUltimate())) {
++deviceSymbols;
}
}
++hostSymbols;
}
}
bool hasConstant{HasConstant(expr)};
return (hasConstant || (hostSymbols > 0)) && deviceSymbols > 0;
}
// Checks whether the symbol on the LHS is present in the RHS expression.
bool CheckForSymbolMatch(const Expr<SomeType> *lhs, const Expr<SomeType> *rhs);
namespace operation {
enum class Operator {
Unknown,
Add,
And,
Associated,
Call,
Constant,
Convert,
Div,
Eq,
Eqv,
False,
Ge,
Gt,
Identity,
Intrinsic,
Le,
Lt,
Max,
Min,
Mul,
Ne,
Neqv,
Not,
Or,
Pow,
Resize, // Convert within the same TypeCategory
Sub,
True,
};
std::string ToString(Operator op);
template <typename... Ts, int Kind>
Operator OperationCode(
const evaluate::Operation<evaluate::LogicalOperation<Kind>, Ts...> &op) {
switch (op.derived().logicalOperator) {
case common::LogicalOperator::And:
return Operator::And;
case common::LogicalOperator::Or:
return Operator::Or;
case common::LogicalOperator::Eqv:
return Operator::Eqv;
case common::LogicalOperator::Neqv:
return Operator::Neqv;
case common::LogicalOperator::Not:
return Operator::Not;
}
return Operator::Unknown;
}
template <typename T, typename... Ts>
Operator OperationCode(
const evaluate::Operation<evaluate::Relational<T>, Ts...> &op) {
switch (op.derived().opr) {
case common::RelationalOperator::LT:
return Operator::Lt;
case common::RelationalOperator::LE:
return Operator::Le;
case common::RelationalOperator::EQ:
return Operator::Eq;
case common::RelationalOperator::NE:
return Operator::Ne;
case common::RelationalOperator::GE:
return Operator::Ge;
case common::RelationalOperator::GT:
return Operator::Gt;
}
return Operator::Unknown;
}
template <typename T, typename... Ts>
Operator OperationCode(const evaluate::Operation<evaluate::Add<T>, Ts...> &op) {
return Operator::Add;
}
template <typename T, typename... Ts>
Operator OperationCode(
const evaluate::Operation<evaluate::Subtract<T>, Ts...> &op) {
return Operator::Sub;
}
template <typename T, typename... Ts>
Operator OperationCode(
const evaluate::Operation<evaluate::Multiply<T>, Ts...> &op) {
return Operator::Mul;
}
template <typename T, typename... Ts>
Operator OperationCode(
const evaluate::Operation<evaluate::Divide<T>, Ts...> &op) {
return Operator::Div;
}
template <typename T, typename... Ts>
Operator OperationCode(
const evaluate::Operation<evaluate::Power<T>, Ts...> &op) {
return Operator::Pow;
}
template <typename T, typename... Ts>
Operator OperationCode(
const evaluate::Operation<evaluate::RealToIntPower<T>, Ts...> &op) {
return Operator::Pow;
}
template <typename T, common::TypeCategory C, typename... Ts>
Operator OperationCode(
const evaluate::Operation<evaluate::Convert<T, C>, Ts...> &op) {
if constexpr (C == T::category) {
return Operator::Resize;
} else {
return Operator::Convert;
}
}
template <typename T, typename... Ts>
Operator OperationCode(
const evaluate::Operation<evaluate::Extremum<T>, Ts...> &op) {
if (op.derived().ordering == evaluate::Ordering::Greater) {
return Operator::Max;
} else {
return Operator::Min;
}
}
template <typename T> Operator OperationCode(const evaluate::Constant<T> &x) {
return Operator::Constant;
}
template <typename T> Operator OperationCode(const T &) {
return Operator::Unknown;
}
Operator OperationCode(const evaluate::ProcedureDesignator &proc);
} // namespace operation
// Return information about the top-level operation (ignoring parentheses):
// the operation code and the list of arguments.
std::pair<operation::Operator, std::vector<Expr<SomeType>>>
GetTopLevelOperation(const Expr<SomeType> &expr);
// Check if expr is same as x, or a sequence of Convert operations on x.
bool IsSameOrConvertOf(const Expr<SomeType> &expr, const Expr<SomeType> &x);
// Strip away any top-level Convert operations (if any exist) and return
// the input value. A ComplexConstructor(x, 0) is also considered as a
// convert operation.
// If the input is not Operation, Designator, FunctionRef or Constant,
// it returns std::nullopt.
std::optional<Expr<SomeType>> GetConvertInput(const Expr<SomeType> &x);
} // namespace Fortran::evaluate
namespace Fortran::semantics {
class Scope;
// If a symbol represents an ENTRY, return the symbol of the main entry
// point to its subprogram.
const Symbol *GetMainEntry(const Symbol *);
// These functions are used in Evaluate so they are defined here rather than in
// Semantics to avoid a link-time dependency on Semantics.
// All of these apply GetUltimate() or ResolveAssociations() to their arguments.
bool IsVariableName(const Symbol &);
bool IsPureProcedure(const Symbol &);
bool IsPureProcedure(const Scope &);
bool IsExplicitlyImpureProcedure(const Symbol &);
bool IsElementalProcedure(const Symbol &);
bool IsFunction(const Symbol &);
bool IsFunction(const Scope &);
bool IsProcedure(const Symbol &);
bool IsProcedure(const Scope &);
bool IsProcedurePointer(const Symbol *);
bool IsProcedurePointer(const Symbol &);
bool IsObjectPointer(const Symbol *);
bool IsAllocatableOrObjectPointer(const Symbol *);
bool IsAutomatic(const Symbol &);
bool IsSaved(const Symbol &); // saved implicitly or explicitly
bool IsDummy(const Symbol &);
bool IsAssumedShape(const Symbol &);
bool IsDeferredShape(const Symbol &);
bool IsFunctionResult(const Symbol &);
bool IsKindTypeParameter(const Symbol &);
bool IsLenTypeParameter(const Symbol &);
bool IsExtensibleType(const DerivedTypeSpec *);
bool IsSequenceOrBindCType(const DerivedTypeSpec *);
bool IsBuiltinDerivedType(const DerivedTypeSpec *derived, const char *name);
bool IsBuiltinCPtr(const Symbol &);
bool IsFromBuiltinModule(const Symbol &);
bool IsEventType(const DerivedTypeSpec *);
bool IsLockType(const DerivedTypeSpec *);
bool IsNotifyType(const DerivedTypeSpec *);
// Is this derived type IEEE_FLAG_TYPE from module ISO_IEEE_EXCEPTIONS?
bool IsIeeeFlagType(const DerivedTypeSpec *);
// Is this derived type IEEE_ROUND_TYPE from module ISO_IEEE_ARITHMETIC?
bool IsIeeeRoundType(const DerivedTypeSpec *);
// Is this derived type TEAM_TYPE from module ISO_FORTRAN_ENV?
bool IsTeamType(const DerivedTypeSpec *);
// Is this derived type TEAM_TYPE, C_PTR, or C_FUNPTR?
bool IsBadCoarrayType(const DerivedTypeSpec *);
// Is this derived type either C_PTR or C_FUNPTR from module ISO_C_BINDING
bool IsIsoCType(const DerivedTypeSpec *);
bool IsEventTypeOrLockType(const DerivedTypeSpec *);
inline bool IsAssumedSizeArray(const Symbol &symbol) {
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
return (object->isDummy() || symbol.test(Symbol::Flag::CrayPointee)) &&
object->shape().CanBeAssumedSize();
} else if (const auto *assoc{symbol.detailsIf<AssocEntityDetails>()}) {
return assoc->IsAssumedSize();
} else {
return false;
}
}
// ResolveAssociations() traverses use associations and host associations
// like GetUltimate(), but also resolves through whole variable associations
// with ASSOCIATE(x => y) and related constructs. GetAssociationRoot()
// applies ResolveAssociations() and then, in the case of resolution to
// a construct association with part of a variable that does not involve a
// vector subscript, returns the first symbol of that variable instead
// of the construct entity.
// (E.g., for ASSOCIATE(x => y%z), ResolveAssociations(x) returns x,
// while GetAssociationRoot(x) returns y.)
// In a SELECT RANK construct, ResolveAssociations() stops at a
// RANK(n) or RANK(*) case symbol, but traverses the selector for
// RANK DEFAULT.
const Symbol &ResolveAssociations(const Symbol &, bool stopAtTypeGuard = false);
const Symbol &GetAssociationRoot(const Symbol &, bool stopAtTypeGuard = false);
const Symbol *FindCommonBlockContaining(const Symbol &);
int CountLenParameters(const DerivedTypeSpec &);
int CountNonConstantLenParameters(const DerivedTypeSpec &);
const Symbol &GetUsedModule(const UseDetails &);
const Symbol *FindFunctionResult(const Symbol &);
// Type compatibility predicate: are x and y effectively the same type?
// Uses DynamicType::IsTkCompatible(), which handles the case of distinct
// but identical derived types.
bool AreTkCompatibleTypes(const DeclTypeSpec *x, const DeclTypeSpec *y);
common::IgnoreTKRSet GetIgnoreTKR(const Symbol &);
std::optional<int> GetDummyArgumentNumber(const Symbol *);
const Symbol *FindAncestorModuleProcedure(const Symbol *symInSubmodule);
} // namespace Fortran::semantics
#endif // FORTRAN_EVALUATE_TOOLS_H_