This simplifies the return value of addRuntimeCheck from a pair of instructions to a single `Value *`. The existing users of addRuntimeChecks were ignoring the first element of the pair, hence there is not reason to track FirstInst and return it. Additionally all users of addRuntimeChecks use the second returned `Instruction *` just as `Value *`, so there is no need to return an `Instruction *`. Therefore there is no need to create a redundant dummy `and X, true` instruction any longer. Effectively this change should not impact the generated code because the redundant AND will be folded by later optimizations. But it is easy to avoid creating it in the first place and it allows more accurately estimating the cost of the runtime checks.
289 lines
8.7 KiB
LLVM
289 lines
8.7 KiB
LLVM
; RUN: opt -aa-pipeline=basic-aa -passes=loop-distribute -enable-loop-distribute -verify-loop-info -verify-dom-info -S \
|
|
; RUN: < %s | FileCheck %s
|
|
|
|
; RUN: opt -aa-pipeline=basic-aa -passes='loop-distribute,loop-vectorize' -enable-loop-distribute -force-vector-width=4 \
|
|
; RUN: -verify-loop-info -verify-dom-info -S < %s | \
|
|
; RUN: FileCheck --check-prefix=VECTORIZE %s
|
|
|
|
; RUN: opt -aa-pipeline=basic-aa -passes='loop-distribute,print-access-info' -enable-loop-distribute \
|
|
; RUN: -verify-loop-info -verify-dom-info -disable-output < %s 2>&1 | FileCheck %s --check-prefix=ANALYSIS
|
|
|
|
; The memcheck version of basic.ll. We should distribute and vectorize the
|
|
; second part of this loop with 5 memchecks (A+1 x {C, D, E} + C x {A, B})
|
|
;
|
|
; for (i = 0; i < n; i++) {
|
|
; A[i + 1] = A[i] * B[i];
|
|
; -------------------------------
|
|
; C[i] = D[i] * E[i];
|
|
; }
|
|
|
|
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
|
|
target triple = "x86_64-apple-macosx10.10.0"
|
|
|
|
@B = common global i32* null, align 8
|
|
@A = common global i32* null, align 8
|
|
@C = common global i32* null, align 8
|
|
@D = common global i32* null, align 8
|
|
@E = common global i32* null, align 8
|
|
|
|
; CHECK-LABEL: @f(
|
|
define void @f() {
|
|
entry:
|
|
%a = load i32*, i32** @A, align 8
|
|
%b = load i32*, i32** @B, align 8
|
|
%c = load i32*, i32** @C, align 8
|
|
%d = load i32*, i32** @D, align 8
|
|
%e = load i32*, i32** @E, align 8
|
|
br label %for.body
|
|
|
|
; We have two compares for each array overlap check.
|
|
; Since the checks to A and A + 4 get merged, this will give us a
|
|
; total of 8 compares.
|
|
;
|
|
; CHECK: for.body.lver.check:
|
|
; CHECK: = icmp
|
|
; CHECK: = icmp
|
|
|
|
; CHECK: = icmp
|
|
; CHECK: = icmp
|
|
|
|
; CHECK: = icmp
|
|
; CHECK: = icmp
|
|
|
|
; CHECK: = icmp
|
|
; CHECK: = icmp
|
|
|
|
; CHECK-NOT: = icmp
|
|
; CHECK: br i1 %conflict.rdx25, label %for.body.ph.lver.orig, label %for.body.ph.ldist1
|
|
|
|
; The non-distributed loop that the memchecks fall back on.
|
|
|
|
; CHECK: for.body.ph.lver.orig:
|
|
; CHECK: br label %for.body.lver.orig
|
|
; CHECK: for.body.lver.orig:
|
|
; CHECK: br i1 %exitcond.lver.orig, label %for.end.loopexit, label %for.body.lver.orig
|
|
|
|
; Verify the two distributed loops.
|
|
|
|
; CHECK: for.body.ph.ldist1:
|
|
; CHECK: br label %for.body.ldist1
|
|
; CHECK: for.body.ldist1:
|
|
; CHECK: %mulA.ldist1 = mul i32 %loadB.ldist1, %loadA.ldist1
|
|
; CHECK: br i1 %exitcond.ldist1, label %for.body.ph, label %for.body.ldist1
|
|
|
|
; CHECK: for.body.ph:
|
|
; CHECK: br label %for.body
|
|
; CHECK: for.body:
|
|
; CHECK: %mulC = mul i32 %loadD, %loadE
|
|
; CHECK: for.end:
|
|
|
|
|
|
; VECTORIZE: mul <4 x i32>
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
|
|
|
|
%arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind
|
|
%loadA = load i32, i32* %arrayidxA, align 4
|
|
|
|
%arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind
|
|
%loadB = load i32, i32* %arrayidxB, align 4
|
|
|
|
%mulA = mul i32 %loadB, %loadA
|
|
|
|
%add = add nuw nsw i64 %ind, 1
|
|
%arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add
|
|
store i32 %mulA, i32* %arrayidxA_plus_4, align 4
|
|
|
|
%arrayidxD = getelementptr inbounds i32, i32* %d, i64 %ind
|
|
%loadD = load i32, i32* %arrayidxD, align 4
|
|
|
|
%arrayidxE = getelementptr inbounds i32, i32* %e, i64 %ind
|
|
%loadE = load i32, i32* %arrayidxE, align 4
|
|
|
|
%mulC = mul i32 %loadD, %loadE
|
|
|
|
%arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind
|
|
store i32 %mulC, i32* %arrayidxC, align 4
|
|
|
|
%exitcond = icmp eq i64 %add, 20
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; Make sure there's no "Multiple reports generated" assert with a
|
|
; volatile load, and no distribution
|
|
|
|
; TODO: Distribution of volatile may be possible under some
|
|
; circumstance, but the current implementation does not touch them.
|
|
|
|
; CHECK-LABEL: @f_volatile_load(
|
|
; CHECK: br label %for.body{{$}}
|
|
|
|
; CHECK-NOT: load
|
|
|
|
; CHECK: {{^}}for.body:
|
|
; CHECK: load i32
|
|
; CHECK: load i32
|
|
; CHECK: load volatile i32
|
|
; CHECK: load i32
|
|
; CHECK: br i1 %exitcond, label %for.end, label %for.body{{$}}
|
|
|
|
; CHECK-NOT: load
|
|
|
|
; VECTORIZE-NOT: load <4 x i32>
|
|
; VECTORIZE-NOT: mul <4 x i32>
|
|
define void @f_volatile_load() {
|
|
entry:
|
|
%a = load i32*, i32** @A, align 8
|
|
%b = load i32*, i32** @B, align 8
|
|
%c = load i32*, i32** @C, align 8
|
|
%d = load i32*, i32** @D, align 8
|
|
%e = load i32*, i32** @E, align 8
|
|
br label %for.body
|
|
|
|
for.body:
|
|
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
|
|
|
|
%arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind
|
|
%loadA = load i32, i32* %arrayidxA, align 4
|
|
|
|
%arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind
|
|
%loadB = load i32, i32* %arrayidxB, align 4
|
|
|
|
%mulA = mul i32 %loadB, %loadA
|
|
|
|
%add = add nuw nsw i64 %ind, 1
|
|
%arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add
|
|
store i32 %mulA, i32* %arrayidxA_plus_4, align 4
|
|
|
|
%arrayidxD = getelementptr inbounds i32, i32* %d, i64 %ind
|
|
%loadD = load volatile i32, i32* %arrayidxD, align 4
|
|
|
|
%arrayidxE = getelementptr inbounds i32, i32* %e, i64 %ind
|
|
%loadE = load i32, i32* %arrayidxE, align 4
|
|
|
|
%mulC = mul i32 %loadD, %loadE
|
|
|
|
%arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind
|
|
store i32 %mulC, i32* %arrayidxC, align 4
|
|
|
|
%exitcond = icmp eq i64 %add, 20
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end:
|
|
ret void
|
|
}
|
|
|
|
declare i32 @llvm.convergent(i32) #0
|
|
|
|
; This is the same as f, and would require the same bounds
|
|
; check. However, it is not OK to introduce new control dependencies
|
|
; on the convergent call.
|
|
|
|
; CHECK-LABEL: @f_with_convergent(
|
|
; CHECK: call i32 @llvm.convergent
|
|
; CHECK-NOT: call i32 @llvm.convergent
|
|
|
|
; ANALYSIS: for.body:
|
|
; ANALYSIS: Report: cannot add control dependency to convergent operation
|
|
define void @f_with_convergent() #1 {
|
|
entry:
|
|
%a = load i32*, i32** @A, align 8
|
|
%b = load i32*, i32** @B, align 8
|
|
%c = load i32*, i32** @C, align 8
|
|
%d = load i32*, i32** @D, align 8
|
|
%e = load i32*, i32** @E, align 8
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
|
|
|
|
%arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind
|
|
%loadA = load i32, i32* %arrayidxA, align 4
|
|
|
|
%arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind
|
|
%loadB = load i32, i32* %arrayidxB, align 4
|
|
|
|
%mulA = mul i32 %loadB, %loadA
|
|
|
|
%add = add nuw nsw i64 %ind, 1
|
|
%arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add
|
|
store i32 %mulA, i32* %arrayidxA_plus_4, align 4
|
|
|
|
%arrayidxD = getelementptr inbounds i32, i32* %d, i64 %ind
|
|
%loadD = load i32, i32* %arrayidxD, align 4
|
|
|
|
%arrayidxE = getelementptr inbounds i32, i32* %e, i64 %ind
|
|
%loadE = load i32, i32* %arrayidxE, align 4
|
|
|
|
%convergentD = call i32 @llvm.convergent(i32 %loadD)
|
|
%mulC = mul i32 %convergentD, %loadE
|
|
|
|
%arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind
|
|
store i32 %mulC, i32* %arrayidxC, align 4
|
|
|
|
%exitcond = icmp eq i64 %add, 20
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; Make sure an explicit request for distribution is ignored if it
|
|
; requires possibly illegal checks.
|
|
|
|
; CHECK-LABEL: @f_with_convergent_forced_distribute(
|
|
; CHECK: call i32 @llvm.convergent
|
|
; CHECK-NOT: call i32 @llvm.convergent
|
|
define void @f_with_convergent_forced_distribute() #1 {
|
|
entry:
|
|
%a = load i32*, i32** @A, align 8
|
|
%b = load i32*, i32** @B, align 8
|
|
%c = load i32*, i32** @C, align 8
|
|
%d = load i32*, i32** @D, align 8
|
|
%e = load i32*, i32** @E, align 8
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
|
|
|
|
%arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind
|
|
%loadA = load i32, i32* %arrayidxA, align 4
|
|
|
|
%arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind
|
|
%loadB = load i32, i32* %arrayidxB, align 4
|
|
|
|
%mulA = mul i32 %loadB, %loadA
|
|
|
|
%add = add nuw nsw i64 %ind, 1
|
|
%arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add
|
|
store i32 %mulA, i32* %arrayidxA_plus_4, align 4
|
|
|
|
%arrayidxD = getelementptr inbounds i32, i32* %d, i64 %ind
|
|
%loadD = load i32, i32* %arrayidxD, align 4
|
|
|
|
%arrayidxE = getelementptr inbounds i32, i32* %e, i64 %ind
|
|
%loadE = load i32, i32* %arrayidxE, align 4
|
|
|
|
%convergentD = call i32 @llvm.convergent(i32 %loadD)
|
|
%mulC = mul i32 %convergentD, %loadE
|
|
|
|
%arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind
|
|
store i32 %mulC, i32* %arrayidxC, align 4
|
|
|
|
%exitcond = icmp eq i64 %add, 20
|
|
br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
attributes #0 = { nounwind readnone convergent }
|
|
attributes #1 = { nounwind convergent }
|
|
|
|
!0 = distinct !{!0, !1}
|
|
!1 = !{!"llvm.loop.distribute.enable", i1 true}
|