Files
clang-p2996/lldb/source/Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.cpp
2016-01-04 19:17:14 +00:00

3923 lines
142 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "RenderScriptRuntime.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/DataFormatters/DumpValueObjectOptions.h"
#include "lldb/Host/StringConvert.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Interpreter/Args.h"
#include "lldb/Interpreter/Options.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/CommandObjectMultiword.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Expression/UserExpression.h"
#include "lldb/Symbol/VariableList.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_renderscript;
namespace {
// The empirical_type adds a basic level of validation to arbitrary data
// allowing us to track if data has been discovered and stored or not.
// An empirical_type will be marked as valid only if it has been explicitly assigned to.
template <typename type_t>
class empirical_type
{
public:
// Ctor. Contents is invalid when constructed.
empirical_type()
: valid(false)
{}
// Return true and copy contents to out if valid, else return false.
bool get(type_t& out) const
{
if (valid)
out = data;
return valid;
}
// Return a pointer to the contents or nullptr if it was not valid.
const type_t* get() const
{
return valid ? &data : nullptr;
}
// Assign data explicitly.
void set(const type_t in)
{
data = in;
valid = true;
}
// Mark contents as invalid.
void invalidate()
{
valid = false;
}
// Returns true if this type contains valid data.
bool isValid() const
{
return valid;
}
// Assignment operator.
empirical_type<type_t>& operator = (const type_t in)
{
set(in);
return *this;
}
// Dereference operator returns contents.
// Warning: Will assert if not valid so use only when you know data is valid.
const type_t& operator * () const
{
assert(valid);
return data;
}
protected:
bool valid;
type_t data;
};
} // anonymous namespace
// The ScriptDetails class collects data associated with a single script instance.
struct RenderScriptRuntime::ScriptDetails
{
~ScriptDetails() = default;
enum ScriptType
{
eScript,
eScriptC
};
// The derived type of the script.
empirical_type<ScriptType> type;
// The name of the original source file.
empirical_type<std::string> resName;
// Path to script .so file on the device.
empirical_type<std::string> scriptDyLib;
// Directory where kernel objects are cached on device.
empirical_type<std::string> cacheDir;
// Pointer to the context which owns this script.
empirical_type<lldb::addr_t> context;
// Pointer to the script object itself.
empirical_type<lldb::addr_t> script;
};
// This Element class represents the Element object in RS,
// defining the type associated with an Allocation.
struct RenderScriptRuntime::Element
{
// Taken from rsDefines.h
enum DataKind
{
RS_KIND_USER,
RS_KIND_PIXEL_L = 7,
RS_KIND_PIXEL_A,
RS_KIND_PIXEL_LA,
RS_KIND_PIXEL_RGB,
RS_KIND_PIXEL_RGBA,
RS_KIND_PIXEL_DEPTH,
RS_KIND_PIXEL_YUV,
RS_KIND_INVALID = 100
};
// Taken from rsDefines.h
enum DataType
{
RS_TYPE_NONE = 0,
RS_TYPE_FLOAT_16,
RS_TYPE_FLOAT_32,
RS_TYPE_FLOAT_64,
RS_TYPE_SIGNED_8,
RS_TYPE_SIGNED_16,
RS_TYPE_SIGNED_32,
RS_TYPE_SIGNED_64,
RS_TYPE_UNSIGNED_8,
RS_TYPE_UNSIGNED_16,
RS_TYPE_UNSIGNED_32,
RS_TYPE_UNSIGNED_64,
RS_TYPE_BOOLEAN,
RS_TYPE_UNSIGNED_5_6_5,
RS_TYPE_UNSIGNED_5_5_5_1,
RS_TYPE_UNSIGNED_4_4_4_4,
RS_TYPE_MATRIX_4X4,
RS_TYPE_MATRIX_3X3,
RS_TYPE_MATRIX_2X2,
RS_TYPE_ELEMENT = 1000,
RS_TYPE_TYPE,
RS_TYPE_ALLOCATION,
RS_TYPE_SAMPLER,
RS_TYPE_SCRIPT,
RS_TYPE_MESH,
RS_TYPE_PROGRAM_FRAGMENT,
RS_TYPE_PROGRAM_VERTEX,
RS_TYPE_PROGRAM_RASTER,
RS_TYPE_PROGRAM_STORE,
RS_TYPE_FONT,
RS_TYPE_INVALID = 10000
};
std::vector<Element> children; // Child Element fields for structs
empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type
empirical_type<DataType> type; // Type of each data pointer stored by the allocation
empirical_type<DataKind> type_kind; // Defines pixel type if Allocation is created from an image
empirical_type<uint32_t> type_vec_size; // Vector size of each data point, e.g '4' for uchar4
empirical_type<uint32_t> field_count; // Number of Subelements
empirical_type<uint32_t> datum_size; // Size of a single Element with padding
empirical_type<uint32_t> padding; // Number of padding bytes
empirical_type<uint32_t> array_size; // Number of items in array, only needed for strucrs
ConstString type_name; // Name of type, only needed for structs
static const ConstString &GetFallbackStructName(); // Print this as the type name of a struct Element
// If we can't resolve the actual struct name
bool shouldRefresh() const
{
const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid();
return !valid_ptr || !valid_type || !datum_size.isValid();
}
};
// This AllocationDetails class collects data associated with a single
// allocation instance.
struct RenderScriptRuntime::AllocationDetails
{
struct Dimension
{
uint32_t dim_1;
uint32_t dim_2;
uint32_t dim_3;
uint32_t cubeMap;
Dimension()
{
dim_1 = 0;
dim_2 = 0;
dim_3 = 0;
cubeMap = 0;
}
};
// Header for reading and writing allocation contents
// to a binary file.
struct FileHeader
{
uint8_t ident[4]; // ASCII 'RSAD' identifying the file
uint16_t hdr_size; // Header size in bytes, for backwards compatability
uint16_t type; // DataType enum
uint32_t kind; // DataKind enum
uint32_t dims[3]; // Dimensions
uint32_t element_size; // Size of a single element, including padding
};
// Monotonically increasing from 1
static unsigned int ID;
// Maps Allocation DataType enum and vector size to printable strings
// using mapping from RenderScript numerical types summary documentation
static const char* RsDataTypeToString[][4];
// Maps Allocation DataKind enum to printable strings
static const char* RsDataKindToString[];
// Maps allocation types to format sizes for printing.
static const unsigned int RSTypeToFormat[][3];
// Give each allocation an ID as a way
// for commands to reference it.
const unsigned int id;
RenderScriptRuntime::Element element; // Allocation Element type
empirical_type<Dimension> dimension; // Dimensions of the Allocation
empirical_type<lldb::addr_t> address; // Pointer to address of the RS Allocation
empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation
empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation
empirical_type<lldb::addr_t> context; // Pointer to the RS Context of the Allocation
empirical_type<uint32_t> size; // Size of the allocation
empirical_type<uint32_t> stride; // Stride between rows of the allocation
// Give each allocation an id, so we can reference it in user commands.
AllocationDetails(): id(ID++)
{
}
bool shouldRefresh() const
{
bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh();
}
};
const ConstString &
RenderScriptRuntime::Element::GetFallbackStructName()
{
static const ConstString FallbackStructName("struct");
return FallbackStructName;
}
unsigned int RenderScriptRuntime::AllocationDetails::ID = 1;
const char* RenderScriptRuntime::AllocationDetails::RsDataKindToString[] =
{
"User",
"Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7
"Undefined", "Undefined", "Undefined",
"L Pixel",
"A Pixel",
"LA Pixel",
"RGB Pixel",
"RGBA Pixel",
"Pixel Depth",
"YUV Pixel"
};
const char* RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] =
{
{"None", "None", "None", "None"},
{"half", "half2", "half3", "half4"},
{"float", "float2", "float3", "float4"},
{"double", "double2", "double3", "double4"},
{"char", "char2", "char3", "char4"},
{"short", "short2", "short3", "short4"},
{"int", "int2", "int3", "int4"},
{"long", "long2", "long3", "long4"},
{"uchar", "uchar2", "uchar3", "uchar4"},
{"ushort", "ushort2", "ushort3", "ushort4"},
{"uint", "uint2", "uint3", "uint4"},
{"ulong", "ulong2", "ulong3", "ulong4"},
{"bool", "bool2", "bool3", "bool4"},
{"packed_565", "packed_565", "packed_565", "packed_565"},
{"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
{"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
{"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
{"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
{"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
// Handlers
{"RS Element", "RS Element", "RS Element", "RS Element"},
{"RS Type", "RS Type", "RS Type", "RS Type"},
{"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
{"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
{"RS Script", "RS Script", "RS Script", "RS Script"},
// Deprecated
{"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
{"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"},
{"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"},
{"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"},
{"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"},
{"RS Font", "RS Font", "RS Font", "RS Font"}
};
// Used as an index into the RSTypeToFormat array elements
enum TypeToFormatIndex {
eFormatSingle = 0,
eFormatVector,
eElementSize
};
// { format enum of single element, format enum of element vector, size of element}
const unsigned int RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] =
{
{eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE
{eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16
{eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32
{eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64
{eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8
{eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16
{eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32
{eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64
{eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8
{eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16
{eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32
{eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64
{eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL
{eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5
{eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1
{eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4
{eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4
{eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3
{eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4} // RS_TYPE_MATRIX_2X2
};
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
LanguageRuntime *
RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
{
if (language == eLanguageTypeExtRenderScript)
return new RenderScriptRuntime(process);
else
return NULL;
}
// Callback with a module to search for matching symbols.
// We first check that the module contains RS kernels.
// Then look for a symbol which matches our kernel name.
// The breakpoint address is finally set using the address of this symbol.
Searcher::CallbackReturn
RSBreakpointResolver::SearchCallback(SearchFilter &filter,
SymbolContext &context,
Address*,
bool)
{
ModuleSP module = context.module_sp;
if (!module)
return Searcher::eCallbackReturnContinue;
// Is this a module containing renderscript kernels?
if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
return Searcher::eCallbackReturnContinue;
// Attempt to set a breakpoint on the kernel name symbol within the module library.
// If it's not found, it's likely debug info is unavailable - try to set a
// breakpoint on <name>.expand.
const Symbol* kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
if (!kernel_sym)
{
std::string kernel_name_expanded(m_kernel_name.AsCString());
kernel_name_expanded.append(".expand");
kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
}
if (kernel_sym)
{
Address bp_addr = kernel_sym->GetAddress();
if (filter.AddressPasses(bp_addr))
m_breakpoint->AddLocation(bp_addr);
}
return Searcher::eCallbackReturnContinue;
}
void
RenderScriptRuntime::Initialize()
{
PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, GetCommandObject);
}
void
RenderScriptRuntime::Terminate()
{
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString
RenderScriptRuntime::GetPluginNameStatic()
{
static ConstString g_name("renderscript");
return g_name;
}
RenderScriptRuntime::ModuleKind
RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
{
if (module_sp)
{
// Is this a module containing renderscript kernels?
const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
if (info_sym)
{
return eModuleKindKernelObj;
}
// Is this the main RS runtime library
const ConstString rs_lib("libRS.so");
if (module_sp->GetFileSpec().GetFilename() == rs_lib)
{
return eModuleKindLibRS;
}
const ConstString rs_driverlib("libRSDriver.so");
if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
{
return eModuleKindDriver;
}
const ConstString rs_cpureflib("libRSCpuRef.so");
if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
{
return eModuleKindImpl;
}
}
return eModuleKindIgnored;
}
bool
RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
{
return GetModuleKind(module_sp) != eModuleKindIgnored;
}
void
RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list )
{
Mutex::Locker locker (module_list.GetMutex ());
size_t num_modules = module_list.GetSize();
for (size_t i = 0; i < num_modules; i++)
{
auto mod = module_list.GetModuleAtIndex (i);
if (IsRenderScriptModule (mod))
{
LoadModule(mod);
}
}
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString
RenderScriptRuntime::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
RenderScriptRuntime::GetPluginVersion()
{
return 1;
}
bool
RenderScriptRuntime::IsVTableName(const char *name)
{
return false;
}
bool
RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic,
TypeAndOrName &class_type_or_name, Address &address,
Value::ValueType &value_type)
{
return false;
}
TypeAndOrName
RenderScriptRuntime::FixUpDynamicType (const TypeAndOrName& type_and_or_name,
ValueObject& static_value)
{
return type_and_or_name;
}
bool
RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
{
return false;
}
lldb::BreakpointResolverSP
RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
{
BreakpointResolverSP resolver_sp;
return resolver_sp;
}
const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
{
//rsdScript
{
"rsdScriptInit", //name
"_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", // symbol name 32 bit
"_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", // symbol name 64 bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
&lldb_private::RenderScriptRuntime::CaptureScriptInit1 // handler
},
{
"rsdScriptInvokeForEach", // name
"_Z22rsdScriptInvokeForEachPKN7android12renderscript7ContextEPNS0_6ScriptEjPKNS0_10AllocationEPS6_PKvjPK12RsScriptCall", // symbol name 32bit
"_Z22rsdScriptInvokeForEachPKN7android12renderscript7ContextEPNS0_6ScriptEjPKNS0_10AllocationEPS6_PKvmPK12RsScriptCall", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
nullptr // handler
},
{
"rsdScriptInvokeForEachMulti", // name
"_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", // symbol name 32bit
"_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
nullptr // handler
},
{
"rsdScriptInvokeFunction", // name
"_Z23rsdScriptInvokeFunctionPKN7android12renderscript7ContextEPNS0_6ScriptEjPKvj", // symbol name 32bit
"_Z23rsdScriptInvokeFunctionPKN7android12renderscript7ContextEPNS0_6ScriptEjPKvm", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
nullptr // handler
},
{
"rsdScriptSetGlobalVar", // name
"_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", // symbol name 32bit
"_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
&lldb_private::RenderScriptRuntime::CaptureSetGlobalVar1 // handler
},
//rsdAllocation
{
"rsdAllocationInit", // name
"_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", // symbol name 32bit
"_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
&lldb_private::RenderScriptRuntime::CaptureAllocationInit1 // handler
},
{
"rsdAllocationRead2D", //name
"_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", // symbol name 32bit
"_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
nullptr // handler
},
{
"rsdAllocationDestroy", // name
"_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", // symbol name 32bit
"_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
&lldb_private::RenderScriptRuntime::CaptureAllocationDestroy // handler
},
};
const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns)/sizeof(s_runtimeHookDefns[0]);
bool
RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, lldb::user_id_t break_loc_id)
{
RuntimeHook* hook_info = (RuntimeHook*)baton;
ExecutionContext context(ctx->exe_ctx_ref);
RenderScriptRuntime *lang_rt = (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
lang_rt->HookCallback(hook_info, context);
return false;
}
void
RenderScriptRuntime::HookCallback(RuntimeHook* hook_info, ExecutionContext& context)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log)
log->Printf ("RenderScriptRuntime::HookCallback - '%s' .", hook_info->defn->name);
if (hook_info->defn->grabber)
{
(this->*(hook_info->defn->grabber))(hook_info, context);
}
}
bool
RenderScriptRuntime::GetArgSimple(ExecutionContext &context, uint32_t arg, uint64_t *data)
{
// Get a positional integer argument.
// Given an ExecutionContext, ``context`` which should be a RenderScript
// frame, get the value of the positional argument ``arg`` and save its value
// to the address pointed to by ``data``.
// returns true on success, false otherwise.
// If unsuccessful, the value pointed to by ``data`` is undefined. Otherwise,
// ``data`` will be set to the value of the the given ``arg``.
// NOTE: only natural width integer arguments for the machine are supported.
// Behaviour with non primitive arguments is undefined.
if (!data)
return false;
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
Error error;
RegisterContext* reg_ctx = context.GetRegisterContext();
Process* process = context.GetProcessPtr();
bool success = false; // return value
if (!context.GetTargetPtr())
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - Invalid target");
return false;
}
switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
{
case llvm::Triple::ArchType::x86:
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = (1 + arg) * sizeof(uint32_t);
uint32_t result = 0;
process->ReadMemory(sp + offset, &result, sizeof(uint32_t), error);
if (error.Fail())
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - error reading X86 stack: %s.", error.AsCString());
}
else
{
*data = result;
success = true;
}
break;
}
case llvm::Triple::ArchType::x86_64:
{
// amd64 has 6 integer registers, and 8 XMM registers for parameter passing.
// Surplus args are spilled onto the stack.
// rdi, rsi, rdx, rcx, r8, r9, (zmm0 - 7 for vectors)
// ref: AMD64 ABI Draft 0.99.6 October 7, 2013 10:35; Figure 3.4. Retrieved from
// http://www.x86-64.org/documentation/abi.pdf
if (arg > 5)
{
if (log)
log->Warning("X86_64 register spill is not supported.");
break;
}
const char * regnames[] = {"rdi", "rsi", "rdx", "rcx", "r8", "r9"};
assert((sizeof(regnames) / sizeof(const char *)) > arg);
const RegisterInfo *rArg = reg_ctx->GetRegisterInfoByName(regnames[arg]);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
*data = rVal.GetAsUInt64(0u, &success);
}
else
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - error reading x86_64 register: %d.", arg);
}
break;
}
case llvm::Triple::ArchType::arm:
{
// arm 32 bit
if (arg < 4)
{
const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
(*data) = rVal.GetAsUInt32(0u, &success);
}
else
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - error reading ARM register: %d.", arg);
}
}
else
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = (arg-4) * sizeof(uint32_t);
process->ReadMemory(sp + offset, &data, sizeof(uint32_t), error);
if (error.Fail())
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - error reading ARM stack: %s.", error.AsCString());
}
else
{
success = true;
}
}
break;
}
case llvm::Triple::ArchType::aarch64:
{
// arm 64 bit
// first 8 arguments are in the registers
if (arg < 8)
{
const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
*data = rVal.GetAsUInt64(0u, &success);
}
else
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple() - AARCH64 - Error while reading the argument #%d", arg);
}
}
else
{
// @TODO: need to find the argument in the stack
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - AARCH64 - FOR #ARG >= 8 NOT IMPLEMENTED YET. Argument number: %d", arg);
}
break;
}
case llvm::Triple::ArchType::mipsel:
{
// read from the registers
if (arg < 4){
const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
*data = rVal.GetAsUInt64(0u, &success);
}
else
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple() - Mips - Error while reading the argument #%d", arg);
}
}
// read from the stack
else
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = arg * sizeof(uint32_t);
process->ReadMemory(sp + offset, &data, sizeof(uint32_t), error);
if (error.Fail())
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - error reading Mips stack: %s.", error.AsCString());
}
else
{
success = true;
}
}
break;
}
case llvm::Triple::ArchType::mips64el:
{
// read from the registers
if (arg < 8)
{
const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
(*data) = rVal.GetAsUInt64(0u, &success);
}
else
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - Mips64 - Error reading the argument #%d", arg);
}
}
// read from the stack
else
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = (arg - 8) * sizeof(uint64_t);
process->ReadMemory(sp + offset, &data, sizeof(uint64_t), error);
if (error.Fail())
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - Mips64 - Error reading Mips64 stack: %s.", error.AsCString());
}
else
{
success = true;
}
}
break;
}
default:
{
// invalid architecture
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - Architecture not supported");
}
}
if (!success)
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - failed to get argument at index %" PRIu32, arg);
}
return success;
}
void
RenderScriptRuntime::CaptureSetGlobalVar1(RuntimeHook* hook_info, ExecutionContext& context)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
//Context, Script, int, data, length
uint64_t rs_context_u64 = 0U;
uint64_t rs_script_u64 = 0U;
uint64_t rs_id_u64 = 0U;
uint64_t rs_data_u64 = 0U;
uint64_t rs_length_u64 = 0U;
bool success =
GetArgSimple(context, 0, &rs_context_u64) &&
GetArgSimple(context, 1, &rs_script_u64) &&
GetArgSimple(context, 2, &rs_id_u64) &&
GetArgSimple(context, 3, &rs_data_u64) &&
GetArgSimple(context, 4, &rs_length_u64);
if (!success)
{
if (log)
log->Printf("RenderScriptRuntime::CaptureSetGlobalVar1 - Error while reading the function parameters");
return;
}
if (log)
{
log->Printf ("RenderScriptRuntime::CaptureSetGlobalVar1 - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.",
rs_context_u64, rs_script_u64, rs_id_u64, rs_data_u64, rs_length_u64);
addr_t script_addr = (addr_t)rs_script_u64;
if (m_scriptMappings.find( script_addr ) != m_scriptMappings.end())
{
auto rsm = m_scriptMappings[script_addr];
if (rs_id_u64 < rsm->m_globals.size())
{
auto rsg = rsm->m_globals[rs_id_u64];
log->Printf ("RenderScriptRuntime::CaptureSetGlobalVar1 - Setting of '%s' within '%s' inferred", rsg.m_name.AsCString(),
rsm->m_module->GetFileSpec().GetFilename().AsCString());
}
}
}
}
void
RenderScriptRuntime::CaptureAllocationInit1(RuntimeHook* hook_info, ExecutionContext& context)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
//Context, Alloc, bool
uint64_t rs_context_u64 = 0U;
uint64_t rs_alloc_u64 = 0U;
uint64_t rs_forceZero_u64 = 0U;
bool success =
GetArgSimple(context, 0, &rs_context_u64) &&
GetArgSimple(context, 1, &rs_alloc_u64) &&
GetArgSimple(context, 2, &rs_forceZero_u64);
if (!success) // error case
{
if (log)
log->Printf("RenderScriptRuntime::CaptureAllocationInit1 - Error while reading the function parameters");
return; // abort
}
if (log)
log->Printf ("RenderScriptRuntime::CaptureAllocationInit1 - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
rs_context_u64, rs_alloc_u64, rs_forceZero_u64);
AllocationDetails* alloc = LookUpAllocation(rs_alloc_u64, true);
if (alloc)
alloc->context = rs_context_u64;
}
void
RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook* hook_info, ExecutionContext& context)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Context, Alloc
uint64_t rs_context_u64 = 0U;
uint64_t rs_alloc_u64 = 0U;
bool success = GetArgSimple(context, 0, &rs_context_u64) && GetArgSimple(context, 1, &rs_alloc_u64);
if (!success) // error case
{
if (log)
log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - Error while reading the function parameters");
return; // abort
}
if (log)
log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - 0x%" PRIx64 ", 0x%" PRIx64 ".",
rs_context_u64, rs_alloc_u64);
for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter)
{
auto& allocation_ap = *iter; // get the unique pointer
if (allocation_ap->address.isValid() && *allocation_ap->address.get() == rs_alloc_u64)
{
m_allocations.erase(iter);
if (log)
log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - Deleted allocation entry");
return;
}
}
if (log)
log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - Couldn't find destroyed allocation");
}
void
RenderScriptRuntime::CaptureScriptInit1(RuntimeHook* hook_info, ExecutionContext& context)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
//Context, Script, resname Str, cachedir Str
Error error;
Process* process = context.GetProcessPtr();
uint64_t rs_context_u64 = 0U;
uint64_t rs_script_u64 = 0U;
uint64_t rs_resnameptr_u64 = 0U;
uint64_t rs_cachedirptr_u64 = 0U;
std::string resname;
std::string cachedir;
// read the function parameters
bool success =
GetArgSimple(context, 0, &rs_context_u64) &&
GetArgSimple(context, 1, &rs_script_u64) &&
GetArgSimple(context, 2, &rs_resnameptr_u64) &&
GetArgSimple(context, 3, &rs_cachedirptr_u64);
if (!success)
{
if (log)
log->Printf("RenderScriptRuntime::CaptureScriptInit1 - Error while reading the function parameters");
return;
}
process->ReadCStringFromMemory((lldb::addr_t)rs_resnameptr_u64, resname, error);
if (error.Fail())
{
if (log)
log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - error reading resname: %s.", error.AsCString());
}
process->ReadCStringFromMemory((lldb::addr_t)rs_cachedirptr_u64, cachedir, error);
if (error.Fail())
{
if (log)
log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - error reading cachedir: %s.", error.AsCString());
}
if (log)
log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
rs_context_u64, rs_script_u64, resname.c_str(), cachedir.c_str());
if (resname.size() > 0)
{
StreamString strm;
strm.Printf("librs.%s.so", resname.c_str());
ScriptDetails* script = LookUpScript(rs_script_u64, true);
if (script)
{
script->type = ScriptDetails::eScriptC;
script->cacheDir = cachedir;
script->resName = resname;
script->scriptDyLib = strm.GetData();
script->context = addr_t(rs_context_u64);
}
if (log)
log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".",
strm.GetData(), rs_context_u64, rs_script_u64);
}
else if (log)
{
log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - resource name invalid, Script not tagged");
}
}
void
RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!module)
{
return;
}
Target &target = GetProcess()->GetTarget();
llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
if (targetArchType != llvm::Triple::ArchType::x86
&& targetArchType != llvm::Triple::ArchType::arm
&& targetArchType != llvm::Triple::ArchType::aarch64
&& targetArchType != llvm::Triple::ArchType::mipsel
&& targetArchType != llvm::Triple::ArchType::mips64el
&& targetArchType != llvm::Triple::ArchType::x86_64
)
{
if (log)
log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Unable to hook runtime. Only X86, ARM, Mips supported currently.");
return;
}
uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
{
const HookDefn* hook_defn = &s_runtimeHookDefns[idx];
if (hook_defn->kind != kind) {
continue;
}
const char* symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
if (!sym){
if (log){
log->Printf("RenderScriptRuntime::LoadRuntimeHooks - ERROR: Symbol '%s' related to the function %s not found", symbol_name, hook_defn->name);
}
continue;
}
addr_t addr = sym->GetLoadAddress(&target);
if (addr == LLDB_INVALID_ADDRESS)
{
if (log)
log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Unable to resolve the address of hook function '%s' with symbol '%s'.",
hook_defn->name, symbol_name);
continue;
}
else
{
if (log)
log->Printf("RenderScriptRuntime::LoadRuntimeHooks - Function %s, address resolved at 0x%" PRIx64, hook_defn->name, addr);
}
RuntimeHookSP hook(new RuntimeHook());
hook->address = addr;
hook->defn = hook_defn;
hook->bp_sp = target.CreateBreakpoint(addr, true, false);
hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
m_runtimeHooks[addr] = hook;
if (log)
{
log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), (uint64_t)hook_defn->version, (uint64_t)addr);
}
}
}
void
RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
{
if (!rsmodule_sp)
return;
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const ModuleSP module = rsmodule_sp->m_module;
const FileSpec& file = module->GetPlatformFileSpec();
// Iterate over all of the scripts that we currently know of.
// Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
for (const auto & rs_script : m_scripts)
{
// Extract the expected .so file path for this script.
std::string dylib;
if (!rs_script->scriptDyLib.get(dylib))
continue;
// Only proceed if the module that has loaded corresponds to this script.
if (file.GetFilename() != ConstString(dylib.c_str()))
continue;
// Obtain the script address which we use as a key.
lldb::addr_t script;
if (!rs_script->script.get(script))
continue;
// If we have a script mapping for the current script.
if (m_scriptMappings.find(script) != m_scriptMappings.end())
{
// if the module we have stored is different to the one we just received.
if (m_scriptMappings[script] != rsmodule_sp)
{
if (log)
log->Printf ("RenderScriptRuntime::FixupScriptDetails - Error: script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
(uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
}
}
// We don't have a script mapping for the current script.
else
{
// Obtain the script resource name.
std::string resName;
if (rs_script->resName.get(resName))
// Set the modules resource name.
rsmodule_sp->m_resname = resName;
// Add Script/Module pair to map.
m_scriptMappings[script] = rsmodule_sp;
if (log)
log->Printf ("RenderScriptRuntime::FixupScriptDetails - script %" PRIx64 " associated with rsmodule '%s'.",
(uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
}
}
}
// Uses the Target API to evaluate the expression passed as a parameter to the function
// The result of that expression is returned an unsigned 64 bit int, via the result* paramter.
// Function returns true on success, and false on failure
bool
RenderScriptRuntime::EvalRSExpression(const char* expression, StackFrame* frame_ptr, uint64_t* result)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log)
log->Printf("RenderScriptRuntime::EvalRSExpression(%s)", expression);
ValueObjectSP expr_result;
// Perform the actual expression evaluation
GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result);
if (!expr_result)
{
if (log)
log->Printf("RenderScriptRuntime::EvalRSExpression - Error: Couldn't evaluate expression");
return false;
}
// The result of the expression is invalid
if (!expr_result->GetError().Success())
{
Error err = expr_result->GetError();
if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
{
if (log)
log->Printf("RenderScriptRuntime::EvalRSExpression - Expression returned void");
result = nullptr;
return true;
}
if (log)
log->Printf("RenderScriptRuntime::EvalRSExpression - Error evaluating expression result: %s", err.AsCString());
return false;
}
bool success = false;
*result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an unsigned int.
if (!success)
{
if (log)
log->Printf("RenderScriptRuntime::EvalRSExpression - Error: Couldn't convert expression result to unsigned int");
return false;
}
return true;
}
namespace // anonymous
{
// max length of an expanded expression
const int jit_max_expr_size = 768;
// Format strings containing the expressions we may need to evaluate.
const char runtimeExpressions[][256] =
{
// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
"(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace(0x%lx, %u, %u, %u, 0, 0)",
// Type* rsaAllocationGetType(Context*, Allocation*)
"(void*)rsaAllocationGetType(0x%lx, 0x%lx)",
// rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
// Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
// mHal.state.lodCount; mHal.state.faces; mElement; into typeData
// Need to specify 32 or 64 bit for uint_t since this differs between devices
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[0]", // X dim
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[1]", // Y dim
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[2]", // Z dim
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[5]", // Element ptr
// rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
// Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[0]", // Type
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[1]", // Kind
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[3]", // Vector Size
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[4]", // Field Count
// rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
// size_t *arraySizes, uint32_t dataSize)
// Needed for Allocations of structs to gather details about fields/Subelements
"void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
"(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); ids[%u]", // Element* of field
"void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
"(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); names[%u]", // Name of field
"void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
"(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); arr_size[%u]" // Array size of field
};
// Temporary workaround for MIPS, until the compiler emits the JAL instruction when invoking directly the function.
// At the moment, when evaluating an expression involving a function call, the LLVM codegen for Mips emits a JAL
// instruction, which is able to jump in the range +/- 128MB with respect to the current program counter ($pc). If
// the requested function happens to reside outside the above region, the function address will be truncated and the
// function invocation will fail. This is a problem in the RS plugin as we rely on the RS API to probe the number and
// the nature of allocations. A proper solution in the MIPS compiler is currently being investigated. As temporary
// work around for this context, we'll invoke the RS API through function pointers, which cause the compiler to emit a
// register based JALR instruction.
const char runtimeExpressions_mips[][512] =
{
// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
"int* (*f) (void*, int, int, int, int, int) = (int* (*) (void*, int, int, int, int, int)) "
"_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace; "
"(int*) f((void*) 0x%lx, %u, %u, %u, 0, 0)",
// Type* rsaAllocationGetType(Context*, Allocation*)
"void* (*f) (void*, void*) = (void* (*) (void*, void*)) rsaAllocationGetType; (void*) f((void*) 0x%lx, (void*) 0x%lx)",
// rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
// Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
// mHal.state.lodCount; mHal.state.faces; mElement; into typeData
// Need to specify 32 or 64 bit for uint_t since this differs between devices
"uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
"rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[0]",
"uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
"rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[1]",
"uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
"rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[2]",
"uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
"rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[5]",
// rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
// Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
"uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
"rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[0]", // Type
"uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
"rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[1]", // Kind
"uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
"rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[3]", // Vector size
"uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
"rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[4]", // Field count
// rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
// size_t *arraySizes, uint32_t dataSize)
// Needed for Allocations of structs to gather details about fields/Subelements
"void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
"void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = "
"(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;"
"(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);"
"ids[%u]", // Element* of field
"void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
"void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = "
"(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;"
"(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);"
"names[%u]", // Name of field
"void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
"void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = "
"(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;"
"(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);"
"arr_size[%u]" // Array size of field
};
} // end of the anonymous namespace
// Retrieve the string to JIT for the given expression
const char*
RenderScriptRuntime::JITTemplate(ExpressionStrings e)
{
// be nice to your Mips friend when adding new expression strings
static_assert(sizeof(runtimeExpressions)/sizeof(runtimeExpressions[0]) ==
sizeof(runtimeExpressions_mips)/sizeof(runtimeExpressions_mips[0]),
"#runtimeExpressions != #runtimeExpressions_mips");
assert((e >= eExprGetOffsetPtr && e <= eExprSubelementsArrSize) &&
"Expression string out of bounds");
llvm::Triple::ArchType arch = GetTargetRef().GetArchitecture().GetMachine();
// mips JAL workaround
if(arch == llvm::Triple::ArchType::mips64el || arch == llvm::Triple::ArchType::mipsel)
return runtimeExpressions_mips[e];
else
return runtimeExpressions[e];
}
// JITs the RS runtime for the internal data pointer of an allocation.
// Is passed x,y,z coordinates for the pointer to a specific element.
// Then sets the data_ptr member in Allocation with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITDataPointer(AllocationDetails* allocation, StackFrame* frame_ptr,
unsigned int x, unsigned int y, unsigned int z)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITDataPointer - Failed to find allocation details");
return false;
}
const char* expr_cstr = JITTemplate(eExprGetOffsetPtr);
char buffer[jit_max_expr_size];
int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITDataPointer - Expression too long");
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
allocation->data_ptr = mem_ptr;
return true;
}
// JITs the RS runtime for the internal pointer to the RS Type of an allocation
// Then sets the type_ptr member in Allocation with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITTypePointer(AllocationDetails* allocation, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->context.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITTypePointer - Failed to find allocation details");
return false;
}
const char* expr_cstr = JITTemplate(eExprAllocGetType);
char buffer[jit_max_expr_size];
int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITTypePointer - Expression too long");
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t type_ptr = static_cast<lldb::addr_t>(result);
allocation->type_ptr = type_ptr;
return true;
}
// JITs the RS runtime for information about the dimensions and type of an allocation
// Then sets dimension and element_ptr members in Allocation with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITTypePacked(AllocationDetails* allocation, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITTypePacked - Failed to find allocation details");
return false;
}
// Expression is different depending on if device is 32 or 64 bit
uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
const unsigned int bits = archByteSize == 4 ? 32 : 64;
// We want 4 elements from packed data
const unsigned int num_exprs = 4;
assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
char buffer[num_exprs][jit_max_expr_size];
uint64_t results[num_exprs];
for (unsigned int i = 0; i < num_exprs; ++i)
{
const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprTypeDimX + i));
int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits,
*allocation->context.get(), *allocation->type_ptr.get());
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITTypePacked - Expression too long");
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
return false;
}
// Assign results to allocation members
AllocationDetails::Dimension dims;
dims.dim_1 = static_cast<uint32_t>(results[0]);
dims.dim_2 = static_cast<uint32_t>(results[1]);
dims.dim_3 = static_cast<uint32_t>(results[2]);
allocation->dimension = dims;
addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
allocation->element.element_ptr = elem_ptr;
if (log)
log->Printf("RenderScriptRuntime::JITTypePacked - dims (%u, %u, %u) Element*: 0x%" PRIx64,
dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
return true;
}
// JITs the RS runtime for information about the Element of an allocation
// Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITElementPacked(Element& elem, const lldb::addr_t context, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.element_ptr.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITElementPacked - Failed to find allocation details");
return false;
}
// We want 4 elements from packed data
const unsigned int num_exprs = 4;
assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
char buffer[num_exprs][jit_max_expr_size];
uint64_t results[num_exprs];
for (unsigned int i = 0; i < num_exprs; i++)
{
const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprElementType + i));
int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get());
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITElementPacked - Encoding error in snprintf()");
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITElementPacked - Expression too long");
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
return false;
}
// Assign results to allocation members
elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
elem.type_vec_size = static_cast<uint32_t>(results[2]);
elem.field_count = static_cast<uint32_t>(results[3]);
if (log)
log->Printf("RenderScriptRuntime::JITElementPacked - data type %u, pixel type %u, vector size %u, field count %u",
*elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
// If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
return false;
return true;
}
// JITs the RS runtime for information about the subelements/fields of a struct allocation
// This is necessary for infering the struct type so we can pretty print the allocation's contents.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITSubelements(Element& elem, const lldb::addr_t context, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITSubelements - Failed to find allocation details");
return false;
}
const short num_exprs = 3;
assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
char expr_buffer[jit_max_expr_size];
uint64_t results;
// Iterate over struct fields.
const uint32_t field_count = *elem.field_count.get();
for (unsigned int field_index = 0; field_index < field_count; ++field_index)
{
Element child;
for (unsigned int expr_index = 0; expr_index < num_exprs; ++expr_index)
{
const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprSubelementsId + expr_index));
int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr,
field_count, field_count, field_count,
context, *elem.element_ptr.get(), field_count, field_index);
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITSubelements - Encoding error in snprintf()");
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITSubelements - Expression too long");
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
return false;
if (log)
log->Printf("RenderScriptRuntime::JITSubelements - Expr result 0x%" PRIx64, results);
switch(expr_index)
{
case 0: // Element* of child
child.element_ptr = static_cast<addr_t>(results);
break;
case 1: // Name of child
{
lldb::addr_t address = static_cast<addr_t>(results);
Error err;
std::string name;
GetProcess()->ReadCStringFromMemory(address, name, err);
if (!err.Fail())
child.type_name = ConstString(name);
else
{
if (log)
log->Printf("RenderScriptRuntime::JITSubelements - Warning: Couldn't read field name");
}
break;
}
case 2: // Array size of child
child.array_size = static_cast<uint32_t>(results);
break;
}
}
// We need to recursively JIT each Element field of the struct since
// structs can be nested inside structs.
if (!JITElementPacked(child, context, frame_ptr))
return false;
elem.children.push_back(child);
}
// Try to infer the name of the struct type so we can pretty print the allocation contents.
FindStructTypeName(elem, frame_ptr);
return true;
}
// JITs the RS runtime for the address of the last element in the allocation.
// The `elem_size` paramter represents the size of a single element, including padding.
// Which is needed as an offset from the last element pointer.
// Using this offset minus the starting address we can calculate the size of the allocation.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITAllocationSize(AllocationDetails* allocation, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->dimension.isValid()
|| !allocation->data_ptr.isValid() || !allocation->element.datum_size.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationSize - Failed to find allocation details");
return false;
}
// Find dimensions
unsigned int dim_x = allocation->dimension.get()->dim_1;
unsigned int dim_y = allocation->dimension.get()->dim_2;
unsigned int dim_z = allocation->dimension.get()->dim_3;
// Our plan of jitting the last element address doesn't seem to work for struct Allocations
// Instead try to infer the size ourselves without any inter element padding.
if (allocation->element.children.size() > 0)
{
if (dim_x == 0) dim_x = 1;
if (dim_y == 0) dim_y = 1;
if (dim_z == 0) dim_z = 1;
allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
if (log)
log->Printf("RenderScriptRuntime::JITAllocationSize - Infered size of struct allocation %u", *allocation->size.get());
return true;
}
const char* expr_cstr = JITTemplate(eExprGetOffsetPtr);
char buffer[jit_max_expr_size];
// Calculate last element
dim_x = dim_x == 0 ? 0 : dim_x - 1;
dim_y = dim_y == 0 ? 0 : dim_y - 1;
dim_z = dim_z == 0 ? 0 : dim_z - 1;
int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(),
dim_x, dim_y, dim_z);
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationSize - Encoding error in snprintf()");
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationSize - Expression too long");
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
// Find pointer to last element and add on size of an element
allocation->size = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
return true;
}
// JITs the RS runtime for information about the stride between rows in the allocation.
// This is done to detect padding, since allocated memory is 16-byte aligned.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITAllocationStride(AllocationDetails* allocation, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationStride - Failed to find allocation details");
return false;
}
const char* expr_cstr = JITTemplate(eExprGetOffsetPtr);
char buffer[jit_max_expr_size];
int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(),
0, 1, 0);
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationStride - Encoding error in snprintf()");
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationStride - Expression too long");
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
return true;
}
// JIT all the current runtime info regarding an allocation
bool
RenderScriptRuntime::RefreshAllocation(AllocationDetails* allocation, StackFrame* frame_ptr)
{
// GetOffsetPointer()
if (!JITDataPointer(allocation, frame_ptr))
return false;
// rsaAllocationGetType()
if (!JITTypePointer(allocation, frame_ptr))
return false;
// rsaTypeGetNativeData()
if (!JITTypePacked(allocation, frame_ptr))
return false;
// rsaElementGetNativeData()
if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
return false;
// Sets the datum_size member in Element
SetElementSize(allocation->element);
// Use GetOffsetPointer() to infer size of the allocation
if (!JITAllocationSize(allocation, frame_ptr))
return false;
return true;
}
// Function attempts to set the type_name member of the paramaterised Element object.
// This string should be the name of the struct type the Element represents.
// We need this string for pretty printing the Element to users.
void
RenderScriptRuntime::FindStructTypeName(Element& elem, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.type_name.IsEmpty()) // Name already set
return;
else
elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
// Find all the global variables from the script rs modules
VariableList variable_list;
for (auto module_sp : m_rsmodules)
module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
// Iterate over all the global variables looking for one with a matching type to the Element.
// We make the assumption a match exists since there needs to be a global variable to reflect the
// struct type back into java host code.
for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
{
const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
if (!var_sp)
continue;
ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
if (!valobj_sp)
continue;
// Find the number of variable fields.
// If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
// Don't check for equality since RS can add extra struct members for padding.
size_t num_children = valobj_sp->GetNumChildren();
if (num_children > elem.children.size() || num_children == 0)
continue;
// Iterate over children looking for members with matching field names.
// If all the field names match, this is likely the struct we want.
//
// TODO: This could be made more robust by also checking children data sizes, or array size
bool found = true;
for (size_t child_index = 0; child_index < num_children; ++child_index)
{
ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
if (!child || (child->GetName() != elem.children[child_index].type_name))
{
found = false;
break;
}
}
// RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
if (found && num_children < elem.children.size())
{
const unsigned int size_diff = elem.children.size() - num_children;
if (log)
log->Printf("RenderScriptRuntime::FindStructTypeName - %u padding struct entries", size_diff);
for (unsigned int padding_index = 0; padding_index < size_diff; ++padding_index)
{
const ConstString& name = elem.children[num_children + padding_index].type_name;
if (strcmp(name.AsCString(), "#rs_padding") < 0)
found = false;
}
}
// We've found a global var with matching type
if (found)
{
// Dereference since our Element type isn't a pointer.
if (valobj_sp->IsPointerType())
{
Error err;
ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
if (!err.Fail())
valobj_sp = deref_valobj;
}
// Save name of variable in Element.
elem.type_name = valobj_sp->GetTypeName();
if (log)
log->Printf("RenderScriptRuntime::FindStructTypeName - Element name set to %s", elem.type_name.AsCString());
return;
}
}
}
// Function sets the datum_size member of Element. Representing the size of a single instance including padding.
// Assumes the relevant allocation information has already been jitted.
void
RenderScriptRuntime::SetElementSize(Element& elem)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const Element::DataType type = *elem.type.get();
assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT
&& "Invalid allocation type");
const unsigned int vec_size = *elem.type_vec_size.get();
unsigned int data_size = 0;
unsigned int padding = 0;
// Element is of a struct type, calculate size recursively.
if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
{
for (Element& child : elem.children)
{
SetElementSize(child);
const unsigned int array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
data_size += *child.datum_size.get() * array_size;
}
}
else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
type == Element::RS_TYPE_UNSIGNED_4_4_4_4) // These have been packed already
{
data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
}
else if (type < Element::RS_TYPE_ELEMENT)
{
data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
if (vec_size == 3)
padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
}
else
data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
elem.padding = padding;
elem.datum_size = data_size + padding;
if (log)
log->Printf("RenderScriptRuntime::SetElementSize - element size set to %u", data_size + padding);
}
// Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
// Returning a shared pointer to the buffer containing the data.
std::shared_ptr<uint8_t>
RenderScriptRuntime::GetAllocationData(AllocationDetails* allocation, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// JIT all the allocation details
if (allocation->shouldRefresh())
{
if (log)
log->Printf("RenderScriptRuntime::GetAllocationData - Allocation details not calculated yet, jitting info");
if (!RefreshAllocation(allocation, frame_ptr))
{
if (log)
log->Printf("RenderScriptRuntime::GetAllocationData - Couldn't JIT allocation details");
return nullptr;
}
}
assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && allocation->element.type_vec_size.isValid()
&& allocation->size.isValid() && "Allocation information not available");
// Allocate a buffer to copy data into
const unsigned int size = *allocation->size.get();
std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
if (!buffer)
{
if (log)
log->Printf("RenderScriptRuntime::GetAllocationData - Couldn't allocate a %u byte buffer", size);
return nullptr;
}
// Read the inferior memory
Error error;
lldb::addr_t data_ptr = *allocation->data_ptr.get();
GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
if (error.Fail())
{
if (log)
log->Printf("RenderScriptRuntime::GetAllocationData - '%s' Couldn't read %u bytes of allocation data from 0x%" PRIx64,
error.AsCString(), size, data_ptr);
return nullptr;
}
return buffer;
}
// Function copies data from a binary file into an allocation.
// There is a header at the start of the file, FileHeader, before the data content itself.
// Information from this header is used to display warnings to the user about incompatabilities
bool
RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char* filename, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Find allocation with the given id
AllocationDetails* alloc = FindAllocByID(strm, alloc_id);
if (!alloc)
return false;
if (log)
log->Printf("RenderScriptRuntime::LoadAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
// JIT all the allocation details
if (alloc->shouldRefresh())
{
if (log)
log->Printf("RenderScriptRuntime::LoadAllocation - Allocation details not calculated yet, jitting info");
if (!RefreshAllocation(alloc, frame_ptr))
{
if (log)
log->Printf("RenderScriptRuntime::LoadAllocation - Couldn't JIT allocation details");
return false;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid()
&& alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
// Check we can read from file
FileSpec file(filename, true);
if (!file.Exists())
{
strm.Printf("Error: File %s does not exist", filename);
strm.EOL();
return false;
}
if (!file.Readable())
{
strm.Printf("Error: File %s does not have readable permissions", filename);
strm.EOL();
return false;
}
// Read file into data buffer
DataBufferSP data_sp(file.ReadFileContents());
// Cast start of buffer to FileHeader and use pointer to read metadata
void* file_buffer = data_sp->GetBytes();
const AllocationDetails::FileHeader* head = static_cast<AllocationDetails::FileHeader*>(file_buffer);
// Advance buffer past header
file_buffer = static_cast<uint8_t*>(file_buffer) + head->hdr_size;
if (log)
log->Printf("RenderScriptRuntime::LoadAllocation - header type %u, element size %u",
head->type, head->element_size);
// Check if the target allocation and file both have the same number of bytes for an Element
if (*alloc->element.datum_size.get() != head->element_size)
{
strm.Printf("Warning: Mismatched Element sizes - file %u bytes, allocation %u bytes",
head->element_size, *alloc->element.datum_size.get());
strm.EOL();
}
// Check if the target allocation and file both have the same integral type
const unsigned int type = static_cast<unsigned int>(*alloc->element.type.get());
if (type != head->type)
{
// Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
unsigned int printable_target_type_index = type;
unsigned int printable_head_type_index = head->type;
if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
printable_target_type_index = static_cast<Element::DataType>(
(type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 1);
if (head->type >= Element::RS_TYPE_ELEMENT && head->type <= Element::RS_TYPE_FONT)
printable_head_type_index = static_cast<Element::DataType>(
(head->type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 1);
const char* file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0];
const char* target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0];
strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type",
file_type_cstr, target_type_cstr);
strm.EOL();
}
// Calculate size of allocation data in file
size_t length = data_sp->GetByteSize() - head->hdr_size;
// Check if the target allocation and file both have the same total data size.
const unsigned int alloc_size = *alloc->size.get();
if (alloc_size != length)
{
strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%x bytes",
(uint64_t) length, alloc_size);
strm.EOL();
length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
}
// Copy file data from our buffer into the target allocation.
lldb::addr_t alloc_data = *alloc->data_ptr.get();
Error error;
size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
if (!error.Success() || bytes_written != length)
{
strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
strm.EOL();
return false;
}
strm.Printf("Contents of file '%s' read into allocation %u", filename, alloc->id);
strm.EOL();
return true;
}
// Function copies allocation contents into a binary file.
// This file can then be loaded later into a different allocation.
// There is a header, FileHeader, before the allocation data containing meta-data.
bool
RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char* filename, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Find allocation with the given id
AllocationDetails* alloc = FindAllocByID(strm, alloc_id);
if (!alloc)
return false;
if (log)
log->Printf("RenderScriptRuntime::SaveAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
// JIT all the allocation details
if (alloc->shouldRefresh())
{
if (log)
log->Printf("RenderScriptRuntime::SaveAllocation - Allocation details not calculated yet, jitting info");
if (!RefreshAllocation(alloc, frame_ptr))
{
if (log)
log->Printf("RenderScriptRuntime::SaveAllocation - Couldn't JIT allocation details");
return false;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && alloc->element.datum_size.get()
&& alloc->element.type_kind.isValid() && alloc->dimension.isValid() && "Allocation information not available");
// Check we can create writable file
FileSpec file_spec(filename, true);
File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
if (!file)
{
strm.Printf("Error: Failed to open '%s' for writing", filename);
strm.EOL();
return false;
}
// Read allocation into buffer of heap memory
const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
if (!buffer)
{
strm.Printf("Error: Couldn't read allocation data into buffer");
strm.EOL();
return false;
}
// Create the file header
AllocationDetails::FileHeader head;
head.ident[0] = 'R'; head.ident[1] = 'S'; head.ident[2] = 'A'; head.ident[3] = 'D';
head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader));
head.type = static_cast<uint16_t>(*alloc->element.type.get());
head.kind = static_cast<uint32_t>(*alloc->element.type_kind.get());
head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
head.element_size = static_cast<uint32_t>(*alloc->element.datum_size.get());
// Write the file header
size_t num_bytes = sizeof(AllocationDetails::FileHeader);
Error err = file.Write(static_cast<const void*>(&head), num_bytes);
if (!err.Success())
{
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
strm.EOL();
return false;
}
// Write allocation data to file
num_bytes = static_cast<size_t>(*alloc->size.get());
if (log)
log->Printf("RenderScriptRuntime::SaveAllocation - Writing 0x%" PRIx64 " bytes from %s", (uint64_t) num_bytes, buffer.get());
err = file.Write(buffer.get(), num_bytes);
if (!err.Success())
{
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
strm.EOL();
return false;
}
strm.Printf("Allocation written to file '%s'", filename);
strm.EOL();
return true;
}
bool
RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (module_sp)
{
for (const auto &rs_module : m_rsmodules)
{
if (rs_module->m_module == module_sp)
{
// Check if the user has enabled automatically breaking on
// all RS kernels.
if (m_breakAllKernels)
BreakOnModuleKernels(rs_module);
return false;
}
}
bool module_loaded = false;
switch (GetModuleKind(module_sp))
{
case eModuleKindKernelObj:
{
RSModuleDescriptorSP module_desc;
module_desc.reset(new RSModuleDescriptor(module_sp));
if (module_desc->ParseRSInfo())
{
m_rsmodules.push_back(module_desc);
module_loaded = true;
}
if (module_loaded)
{
FixupScriptDetails(module_desc);
}
break;
}
case eModuleKindDriver:
{
if (!m_libRSDriver)
{
m_libRSDriver = module_sp;
LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
}
break;
}
case eModuleKindImpl:
{
m_libRSCpuRef = module_sp;
break;
}
case eModuleKindLibRS:
{
if (!m_libRS)
{
m_libRS = module_sp;
static ConstString gDbgPresentStr("gDebuggerPresent");
const Symbol* debug_present = m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
if (debug_present)
{
Error error;
uint32_t flag = 0x00000001U;
Target &target = GetProcess()->GetTarget();
addr_t addr = debug_present->GetLoadAddress(&target);
GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
if(error.Success())
{
if (log)
log->Printf ("RenderScriptRuntime::LoadModule - Debugger present flag set on debugee");
m_debuggerPresentFlagged = true;
}
else if (log)
{
log->Printf ("RenderScriptRuntime::LoadModule - Error writing debugger present flags '%s' ", error.AsCString());
}
}
else if (log)
{
log->Printf ("RenderScriptRuntime::LoadModule - Error writing debugger present flags - symbol not found");
}
}
break;
}
default:
break;
}
if (module_loaded)
Update();
return module_loaded;
}
return false;
}
void
RenderScriptRuntime::Update()
{
if (m_rsmodules.size() > 0)
{
if (!m_initiated)
{
Initiate();
}
}
}
// The maximum line length of an .rs.info packet
#define MAXLINE 500
// The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
// The string is basic and is parsed on a line by line basis.
bool
RSModuleDescriptor::ParseRSInfo()
{
const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
if (info_sym)
{
const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
const addr_t size = info_sym->GetByteSize();
const FileSpec fs = m_module->GetFileSpec();
DataBufferSP buffer = fs.ReadFileContents(addr, size);
if (!buffer)
return false;
std::string info((const char *)buffer->GetBytes());
std::vector<std::string> info_lines;
size_t lpos = info.find('\n');
while (lpos != std::string::npos)
{
info_lines.push_back(info.substr(0, lpos));
info = info.substr(lpos + 1);
lpos = info.find('\n');
}
size_t offset = 0;
while (offset < info_lines.size())
{
std::string line = info_lines[offset];
// Parse directives
uint32_t numDefns = 0;
if (sscanf(line.c_str(), "exportVarCount: %u", &numDefns) == 1)
{
while (numDefns--)
m_globals.push_back(RSGlobalDescriptor(this, info_lines[++offset].c_str()));
}
else if (sscanf(line.c_str(), "exportFuncCount: %u", &numDefns) == 1)
{
}
else if (sscanf(line.c_str(), "exportForEachCount: %u", &numDefns) == 1)
{
char name[MAXLINE];
while (numDefns--)
{
uint32_t slot = 0;
name[0] = '\0';
if (sscanf(info_lines[++offset].c_str(), "%u - %s", &slot, &name[0]) == 2)
{
m_kernels.push_back(RSKernelDescriptor(this, name, slot));
}
}
}
else if (sscanf(line.c_str(), "pragmaCount: %u", &numDefns) == 1)
{
char name[MAXLINE];
char value[MAXLINE];
while (numDefns--)
{
name[0] = '\0';
value[0] = '\0';
if (sscanf(info_lines[++offset].c_str(), "%s - %s", &name[0], &value[0]) != 0
&& (name[0] != '\0'))
{
m_pragmas[std::string(name)] = value;
}
}
}
else if (sscanf(line.c_str(), "objectSlotCount: %u", &numDefns) == 1)
{
}
offset++;
}
return m_kernels.size() > 0;
}
return false;
}
bool
RenderScriptRuntime::ProbeModules(const ModuleList module_list)
{
bool rs_found = false;
size_t num_modules = module_list.GetSize();
for (size_t i = 0; i < num_modules; i++)
{
auto module = module_list.GetModuleAtIndex(i);
rs_found |= LoadModule(module);
}
return rs_found;
}
void
RenderScriptRuntime::Status(Stream &strm) const
{
if (m_libRS)
{
strm.Printf("Runtime Library discovered.");
strm.EOL();
}
if (m_libRSDriver)
{
strm.Printf("Runtime Driver discovered.");
strm.EOL();
}
if (m_libRSCpuRef)
{
strm.Printf("CPU Reference Implementation discovered.");
strm.EOL();
}
if (m_runtimeHooks.size())
{
strm.Printf("Runtime functions hooked:");
strm.EOL();
for (auto b : m_runtimeHooks)
{
strm.Indent(b.second->defn->name);
strm.EOL();
}
}
else
{
strm.Printf("Runtime is not hooked.");
strm.EOL();
}
}
void
RenderScriptRuntime::DumpContexts(Stream &strm) const
{
strm.Printf("Inferred RenderScript Contexts:");
strm.EOL();
strm.IndentMore();
std::map<addr_t, uint64_t> contextReferences;
// Iterate over all of the currently discovered scripts.
// Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
for (const auto & script : m_scripts)
{
if (!script->context.isValid())
continue;
lldb::addr_t context = *script->context;
if (contextReferences.find(context) != contextReferences.end())
{
contextReferences[context]++;
}
else
{
contextReferences[context] = 1;
}
}
for (const auto& cRef : contextReferences)
{
strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
strm.EOL();
}
strm.IndentLess();
}
void
RenderScriptRuntime::DumpKernels(Stream &strm) const
{
strm.Printf("RenderScript Kernels:");
strm.EOL();
strm.IndentMore();
for (const auto &module : m_rsmodules)
{
strm.Printf("Resource '%s':",module->m_resname.c_str());
strm.EOL();
for (const auto &kernel : module->m_kernels)
{
strm.Indent(kernel.m_name.AsCString());
strm.EOL();
}
}
strm.IndentLess();
}
RenderScriptRuntime::AllocationDetails*
RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
{
AllocationDetails* alloc = nullptr;
// See if we can find allocation using id as an index;
if (alloc_id <= m_allocations.size() && alloc_id != 0
&& m_allocations[alloc_id-1]->id == alloc_id)
{
alloc = m_allocations[alloc_id-1].get();
return alloc;
}
// Fallback to searching
for (const auto & a : m_allocations)
{
if (a->id == alloc_id)
{
alloc = a.get();
break;
}
}
if (alloc == nullptr)
{
strm.Printf("Error: Couldn't find allocation with id matching %u", alloc_id);
strm.EOL();
}
return alloc;
}
// Prints the contents of an allocation to the output stream, which may be a file
bool
RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame* frame_ptr, const uint32_t id)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Check we can find the desired allocation
AllocationDetails* alloc = FindAllocByID(strm, id);
if (!alloc)
return false; // FindAllocByID() will print error message for us here
if (log)
log->Printf("RenderScriptRuntime::DumpAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
// Check we have information about the allocation, if not calculate it
if (alloc->shouldRefresh())
{
if (log)
log->Printf("RenderScriptRuntime::DumpAllocation - Allocation details not calculated yet, jitting info");
// JIT all the allocation information
if (!RefreshAllocation(alloc, frame_ptr))
{
strm.Printf("Error: Couldn't JIT allocation details");
strm.EOL();
return false;
}
}
// Establish format and size of each data element
const unsigned int vec_size = *alloc->element.type_vec_size.get();
const Element::DataType type = *alloc->element.type.get();
assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT
&& "Invalid allocation type");
lldb::Format format;
if (type >= Element::RS_TYPE_ELEMENT)
format = eFormatHex;
else
format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
: static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
const unsigned int data_size = *alloc->element.datum_size.get();
if (log)
log->Printf("RenderScriptRuntime::DumpAllocation - Element size %u bytes, including padding", data_size);
// Allocate a buffer to copy data into
std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
if (!buffer)
{
strm.Printf("Error: Couldn't read allocation data");
strm.EOL();
return false;
}
// Calculate stride between rows as there may be padding at end of rows since
// allocated memory is 16-byte aligned
if (!alloc->stride.isValid())
{
if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
alloc->stride = 0;
else if (!JITAllocationStride(alloc, frame_ptr))
{
strm.Printf("Error: Couldn't calculate allocation row stride");
strm.EOL();
return false;
}
}
const unsigned int stride = *alloc->stride.get();
const unsigned int size = *alloc->size.get(); // Size of whole allocation
const unsigned int padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
if (log)
log->Printf("RenderScriptRuntime::DumpAllocation - stride %u bytes, size %u bytes, padding %u", stride, size, padding);
// Find dimensions used to index loops, so need to be non-zero
unsigned int dim_x = alloc->dimension.get()->dim_1;
dim_x = dim_x == 0 ? 1 : dim_x;
unsigned int dim_y = alloc->dimension.get()->dim_2;
dim_y = dim_y == 0 ? 1 : dim_y;
unsigned int dim_z = alloc->dimension.get()->dim_3;
dim_z = dim_z == 0 ? 1 : dim_z;
// Use data extractor to format output
const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
unsigned int offset = 0; // Offset in buffer to next element to be printed
unsigned int prev_row = 0; // Offset to the start of the previous row
// Iterate over allocation dimensions, printing results to user
strm.Printf("Data (X, Y, Z):");
for (unsigned int z = 0; z < dim_z; ++z)
{
for (unsigned int y = 0; y < dim_y; ++y)
{
// Use stride to index start of next row.
if (!(y==0 && z==0))
offset = prev_row + stride;
prev_row = offset;
// Print each element in the row individually
for (unsigned int x = 0; x < dim_x; ++x)
{
strm.Printf("\n(%u, %u, %u) = ", x, y, z);
if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
(alloc->element.type_name != Element::GetFallbackStructName()))
{
// Here we are dumping an Element of struct type.
// This is done using expression evaluation with the name of the struct type and pointer to element.
// Don't print the name of the resulting expression, since this will be '$[0-9]+'
DumpValueObjectOptions expr_options;
expr_options.SetHideName(true);
// Setup expression as derefrencing a pointer cast to element address.
char expr_char_buffer[jit_max_expr_size];
int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
if (chars_written < 0 || chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::DumpAllocation- Error in snprintf()");
continue;
}
// Evaluate expression
ValueObjectSP expr_result;
GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
// Print the results to our stream.
expr_result->Dump(strm, expr_options);
}
else
{
alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
}
offset += data_size;
}
}
}
strm.EOL();
return true;
}
// Prints infomation regarding all the currently loaded allocations.
// These details are gathered by jitting the runtime, which has as latency.
void
RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame* frame_ptr, bool recompute)
{
strm.Printf("RenderScript Allocations:");
strm.EOL();
strm.IndentMore();
for (auto &alloc : m_allocations)
{
// JIT the allocation info if we haven't done it, or the user forces us to.
bool do_refresh = alloc->shouldRefresh() || recompute;
// JIT current allocation information
if (do_refresh && !RefreshAllocation(alloc.get(), frame_ptr))
{
strm.Printf("Error: Couldn't evaluate details for allocation %u\n", alloc->id);
continue;
}
strm.Printf("%u:\n",alloc->id);
strm.IndentMore();
strm.Indent("Context: ");
if (!alloc->context.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
strm.Indent("Address: ");
if (!alloc->address.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
strm.Indent("Data pointer: ");
if (!alloc->data_ptr.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
strm.Indent("Dimensions: ");
if (!alloc->dimension.isValid())
strm.Printf("unknown\n");
else
strm.Printf("(%d, %d, %d)\n", alloc->dimension.get()->dim_1,
alloc->dimension.get()->dim_2,
alloc->dimension.get()->dim_3);
strm.Indent("Data Type: ");
if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
strm.Printf("unknown\n");
else
{
const int vector_size = *alloc->element.type_vec_size.get();
Element::DataType type = *alloc->element.type.get();
if (!alloc->element.type_name.IsEmpty())
strm.Printf("%s\n", alloc->element.type_name.AsCString());
else
{
// Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 1);
if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / sizeof(AllocationDetails::RsDataTypeToString[0]))
|| vector_size > 4 || vector_size < 1)
strm.Printf("invalid type\n");
else
strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<unsigned int>(type)][vector_size-1]);
}
}
strm.Indent("Data Kind: ");
if (!alloc->element.type_kind.isValid())
strm.Printf("unknown\n");
else
{
const Element::DataKind kind = *alloc->element.type_kind.get();
if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
strm.Printf("invalid kind\n");
else
strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<unsigned int>(kind)]);
}
strm.EOL();
strm.IndentLess();
}
strm.IndentLess();
}
// Set breakpoints on every kernel found in RS module
void
RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
{
for (const auto &kernel : rsmodule_sp->m_kernels)
{
// Don't set breakpoint on 'root' kernel
if (strcmp(kernel.m_name.AsCString(), "root") == 0)
continue;
CreateKernelBreakpoint(kernel.m_name);
}
}
// Method is internally called by the 'kernel breakpoint all' command to
// enable or disable breaking on all kernels.
//
// When do_break is true we want to enable this functionality.
// When do_break is false we want to disable it.
void
RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
{
Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
InitSearchFilter(target);
// Set breakpoints on all the kernels
if (do_break && !m_breakAllKernels)
{
m_breakAllKernels = true;
for (const auto &module : m_rsmodules)
BreakOnModuleKernels(module);
if (log)
log->Printf("RenderScriptRuntime::SetBreakAllKernels(True)"
"- breakpoints set on all currently loaded kernels");
}
else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
{
m_breakAllKernels = false;
if (log)
log->Printf("RenderScriptRuntime::SetBreakAllKernels(False) - breakpoints no longer automatically set");
}
}
// Given the name of a kernel this function creates a breakpoint using our
// own breakpoint resolver, and returns the Breakpoint shared pointer.
BreakpointSP
RenderScriptRuntime::CreateKernelBreakpoint(const ConstString& name)
{
Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
if (!m_filtersp)
{
if (log)
log->Printf("RenderScriptRuntime::CreateKernelBreakpoint - Error: No breakpoint search filter set");
return nullptr;
}
BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
// Give RS breakpoints a specific name, so the user can manipulate them as a group.
Error err;
if (!bp->AddName("RenderScriptKernel", err) && log)
log->Printf("RenderScriptRuntime::CreateKernelBreakpoint: Error setting break name, %s", err.AsCString());
return bp;
}
// Given an expression for a variable this function tries to calculate the variable's value.
// If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
// Otherwise function returns false.
bool
RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char* var_name, uint64_t& val)
{
Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
Error error;
VariableSP var_sp;
// Find variable in stack frame
ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(var_name,
eNoDynamicValues,
StackFrame::eExpressionPathOptionCheckPtrVsMember |
StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
var_sp,
error));
if (!error.Success())
{
if (log)
log->Printf("RenderScriptRuntime::GetFrameVarAsUnsigned - Error, couldn't find '%s' in frame", var_name);
return false;
}
// Find the unsigned int value for the variable
bool success = false;
val = value_sp->GetValueAsUnsigned(0, &success);
if (!success)
{
if (log)
log->Printf("RenderScriptRuntime::GetFrameVarAsUnsigned - Error, couldn't parse '%s' as an unsigned int", var_name);
return false;
}
return true;
}
// Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
// Baton parameter contains a pointer to the target coordinate we want to break on.
// Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
// Parameter 'break_id' is the id of the Breakpoint which made the callback.
// Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
// a single logical breakpoint can have multiple addresses.
bool
RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx,
user_id_t break_id, user_id_t break_loc_id)
{
Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
assert(baton && "Error: null baton in conditional kernel breakpoint callback");
// Coordinate we want to stop on
const int* target_coord = static_cast<const int*>(baton);
if (log)
log->Printf("RenderScriptRuntime::KernelBreakpointHit - Break ID %" PRIu64 ", target coord (%d, %d, %d)",
break_id, target_coord[0], target_coord[1], target_coord[2]);
// Go up one stack frame to .expand kernel
ExecutionContext context(ctx->exe_ctx_ref);
ThreadSP thread_sp = context.GetThreadSP();
if (!thread_sp->SetSelectedFrameByIndex(1))
{
if (log)
log->Printf("RenderScriptRuntime::KernelBreakpointHit - Error, couldn't go up stack frame");
return false;
}
StackFrameSP frame_sp = thread_sp->GetSelectedFrame();
if (!frame_sp)
{
if (log)
log->Printf("RenderScriptRuntime::KernelBreakpointHit - Error, couldn't select .expand stack frame");
return false;
}
// Get values for variables in .expand frame that tell us the current kernel invocation
const char* coord_expressions[] = {"rsIndex", "p->current.y", "p->current.z"};
uint64_t current_coord[3] = {0, 0, 0};
for(int i = 0; i < 3; ++i)
{
if (!GetFrameVarAsUnsigned(frame_sp, coord_expressions[i], current_coord[i]))
return false;
if (log)
log->Printf("RenderScriptRuntime::KernelBreakpointHit, %s = %" PRIu64, coord_expressions[i], current_coord[i]);
}
// Check if the current kernel invocation coordinate matches our target coordinate
if (current_coord[0] == static_cast<uint64_t>(target_coord[0]) &&
current_coord[1] == static_cast<uint64_t>(target_coord[1]) &&
current_coord[2] == static_cast<uint64_t>(target_coord[2]))
{
if (log)
log->Printf("RenderScriptRuntime::KernelBreakpointHit, BREAKING %" PRIu64 ", %" PRIu64 ", %" PRIu64,
current_coord[0], current_coord[1], current_coord[2]);
BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
return true;
}
// No match on coordinate
return false;
}
// Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
// Argument 'coords', represents a three dimensional coordinate which can be used to specify
// a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
void
RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char* name, const std::array<int,3> coords,
Error& error, TargetSP target)
{
if (!name)
{
error.SetErrorString("invalid kernel name");
return;
}
InitSearchFilter(target);
ConstString kernel_name(name);
BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
// We have a conditional breakpoint on a specific coordinate
if (coords[0] != -1)
{
strm.Printf("Conditional kernel breakpoint on coordinate %d, %d, %d", coords[0], coords[1], coords[2]);
strm.EOL();
// Allocate memory for the baton, and copy over coordinate
int* baton = new int[3];
baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
// Create a callback that will be invoked everytime the breakpoint is hit.
// The baton object passed to the handler is the target coordinate we want to break on.
bp->SetCallback(KernelBreakpointHit, baton, true);
// Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
m_conditional_breaks[bp->GetID()] = std::shared_ptr<int>(baton);
}
if (bp)
bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
}
void
RenderScriptRuntime::DumpModules(Stream &strm) const
{
strm.Printf("RenderScript Modules:");
strm.EOL();
strm.IndentMore();
for (const auto &module : m_rsmodules)
{
module->Dump(strm);
}
strm.IndentLess();
}
RenderScriptRuntime::ScriptDetails*
RenderScriptRuntime::LookUpScript(addr_t address, bool create)
{
for (const auto & s : m_scripts)
{
if (s->script.isValid())
if (*s->script == address)
return s.get();
}
if (create)
{
std::unique_ptr<ScriptDetails> s(new ScriptDetails);
s->script = address;
m_scripts.push_back(std::move(s));
return m_scripts.back().get();
}
return nullptr;
}
RenderScriptRuntime::AllocationDetails*
RenderScriptRuntime::LookUpAllocation(addr_t address, bool create)
{
for (const auto & a : m_allocations)
{
if (a->address.isValid())
if (*a->address == address)
return a.get();
}
if (create)
{
std::unique_ptr<AllocationDetails> a(new AllocationDetails);
a->address = address;
m_allocations.push_back(std::move(a));
return m_allocations.back().get();
}
return nullptr;
}
void
RSModuleDescriptor::Dump(Stream &strm) const
{
strm.Indent();
m_module->GetFileSpec().Dump(&strm);
if(m_module->GetNumCompileUnits())
{
strm.Indent("Debug info loaded.");
}
else
{
strm.Indent("Debug info does not exist.");
}
strm.EOL();
strm.IndentMore();
strm.Indent();
strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
strm.EOL();
strm.IndentMore();
for (const auto &global : m_globals)
{
global.Dump(strm);
}
strm.IndentLess();
strm.Indent();
strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
strm.EOL();
strm.IndentMore();
for (const auto &kernel : m_kernels)
{
kernel.Dump(strm);
}
strm.Printf("Pragmas: %" PRIu64 , static_cast<uint64_t>(m_pragmas.size()));
strm.EOL();
strm.IndentMore();
for (const auto &key_val : m_pragmas)
{
strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
strm.EOL();
}
strm.IndentLess(4);
}
void
RSGlobalDescriptor::Dump(Stream &strm) const
{
strm.Indent(m_name.AsCString());
VariableList var_list;
m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
if (var_list.GetSize() == 1)
{
auto var = var_list.GetVariableAtIndex(0);
auto type = var->GetType();
if(type)
{
strm.Printf(" - ");
type->DumpTypeName(&strm);
}
else
{
strm.Printf(" - Unknown Type");
}
}
else
{
strm.Printf(" - variable identified, but not found in binary");
const Symbol* s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
if (s)
{
strm.Printf(" (symbol exists) ");
}
}
strm.EOL();
}
void
RSKernelDescriptor::Dump(Stream &strm) const
{
strm.Indent(m_name.AsCString());
strm.EOL();
}
class CommandObjectRenderScriptRuntimeModuleProbe : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeModuleProbe(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript module probe",
"Initiates a Probe of all loaded modules for kernels and other renderscript objects.",
"renderscript module probe",
eCommandRequiresTarget | eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeModuleProbe() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc == 0)
{
Target *target = m_exe_ctx.GetTargetPtr();
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
auto module_list = target->GetImages();
bool new_rs_details = runtime->ProbeModules(module_list);
if (new_rs_details)
{
result.AppendMessage("New renderscript modules added to runtime model.");
}
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
result.AppendErrorWithFormat("'%s' takes no arguments", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
};
class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript module dump",
"Dumps renderscript specific information for all modules.", "renderscript module dump",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeModuleDump() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->DumpModules(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.",
NULL)
{
LoadSubCommand("probe", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleProbe(interpreter)));
LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
}
~CommandObjectRenderScriptRuntimeModule() override = default;
};
class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript kernel list",
"Lists renderscript kernel names and associated script resources.", "renderscript kernel list",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeKernelList() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->DumpKernels(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
"Sets a breakpoint on a renderscript kernel.", "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), m_options(interpreter)
{
}
~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
Options*
GetOptions() override
{
return &m_options;
}
class CommandOptions : public Options
{
public:
CommandOptions(CommandInterpreter &interpreter) : Options(interpreter)
{
}
~CommandOptions() override = default;
Error
SetOptionValue(uint32_t option_idx, const char *option_arg) override
{
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option)
{
case 'c':
if (!ParseCoordinate(option_arg))
error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", option_arg);
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return error;
}
// -c takes an argument of the form 'num[,num][,num]'.
// Where 'id_cstr' is this argument with the whitespace trimmed.
// Missing coordinates are defaulted to zero.
bool
ParseCoordinate(const char* id_cstr)
{
RegularExpression regex;
RegularExpression::Match regex_match(3);
bool matched = false;
if(regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
matched = true;
else if(regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
matched = true;
else if(regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
matched = true;
for(uint32_t i = 0; i < 3; i++)
{
std::string group;
if(regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
m_coord[i] = (uint32_t)strtoul(group.c_str(), NULL, 0);
else
m_coord[i] = 0;
}
return matched;
}
void
OptionParsingStarting() override
{
// -1 means the -c option hasn't been set
m_coord[0] = -1;
m_coord[1] = -1;
m_coord[2] = -1;
}
const OptionDefinition*
GetDefinitions() override
{
return g_option_table;
}
static OptionDefinition g_option_table[];
std::array<int,3> m_coord;
};
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc < 1)
{
result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
Error error;
runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
error, m_exe_ctx.GetTargetSP());
if (error.Success())
{
result.AppendMessage("Breakpoint(s) created");
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
result.SetStatus(eReturnStatusFailed);
result.AppendErrorWithFormat("Error: %s", error.AsCString());
return false;
}
private:
CommandOptions m_options;
};
OptionDefinition
CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] =
{
{ LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeValue,
"Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
"Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
"Any unset dimensions will be defaulted to zero."},
{ 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
};
class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript kernel breakpoint all",
"Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
"Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
"but does not remove currently set breakpoints.",
"renderscript kernel breakpoint all <enable/disable>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
{
}
~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc != 1)
{
result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
bool do_break = false;
const char* argument = command.GetArgumentAtIndex(0);
if (strcmp(argument, "enable") == 0)
{
do_break = true;
result.AppendMessage("Breakpoints will be set on all kernels.");
}
else if (strcmp(argument, "disable") == 0)
{
do_break = false;
result.AppendMessage("Breakpoints will not be set on any new kernels.");
}
else
{
result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
result.SetStatus(eReturnStatusFailed);
return false;
}
runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that generate breakpoints on renderscript kernels.",
nullptr)
{
LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
}
~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
};
class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.",
NULL)
{
LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
LoadSubCommand("breakpoint", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
}
~CommandObjectRenderScriptRuntimeKernel() override = default;
};
class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript context dump",
"Dumps renderscript context information.", "renderscript context dump",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeContextDump() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->DumpContexts(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.",
NULL)
{
LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
}
~CommandObjectRenderScriptRuntimeContext() override = default;
};
class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation dump",
"Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options(interpreter)
{
}
~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
Options*
GetOptions() override
{
return &m_options;
}
class CommandOptions : public Options
{
public:
CommandOptions(CommandInterpreter &interpreter) : Options(interpreter)
{
}
~CommandOptions() override = default;
Error
SetOptionValue(uint32_t option_idx, const char *option_arg) override
{
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option)
{
case 'f':
m_outfile.SetFile(option_arg, true);
if (m_outfile.Exists())
{
m_outfile.Clear();
error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
}
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return error;
}
void
OptionParsingStarting() override
{
m_outfile.Clear();
}
const OptionDefinition*
GetDefinitions() override
{
return g_option_table;
}
static OptionDefinition g_option_table[];
FileSpec m_outfile;
};
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc < 1)
{
result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
const char* id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete)
{
result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
Stream* output_strm = nullptr;
StreamFile outfile_stream;
const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
if (outfile_spec)
{
// Open output file
char path[256];
outfile_spec.GetPath(path, sizeof(path));
if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
{
output_strm = &outfile_stream;
result.GetOutputStream().Printf("Results written to '%s'", path);
result.GetOutputStream().EOL();
}
else
{
result.AppendErrorWithFormat("Couldn't open file '%s'", path);
result.SetStatus(eReturnStatusFailed);
return false;
}
}
else
output_strm = &result.GetOutputStream();
assert(output_strm != nullptr);
bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
private:
CommandOptions m_options;
};
OptionDefinition
CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] =
{
{ LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeFilename,
"Print results to specified file instead of command line."},
{ 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
};
class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation list",
"List renderscript allocations and their information.", "renderscript allocation list",
eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options(interpreter)
{
}
~CommandObjectRenderScriptRuntimeAllocationList() override = default;
Options*
GetOptions() override
{
return &m_options;
}
class CommandOptions : public Options
{
public:
CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_refresh(false)
{
}
~CommandOptions() override = default;
Error
SetOptionValue(uint32_t option_idx, const char *option_arg) override
{
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option)
{
case 'r':
m_refresh = true;
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return error;
}
void
OptionParsingStarting() override
{
m_refresh = false;
}
const OptionDefinition*
GetDefinitions() override
{
return g_option_table;
}
static OptionDefinition g_option_table[];
bool m_refresh;
};
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_refresh);
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
private:
CommandOptions m_options;
};
OptionDefinition
CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] =
{
{ LLDB_OPT_SET_1, false, "refresh", 'r', OptionParser::eNoArgument, NULL, NULL, 0, eArgTypeNone,
"Recompute allocation details."},
{ 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
};
class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation load",
"Loads renderscript allocation contents from a file.", "renderscript allocation load <ID> <filename>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc != 2)
{
result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
const char* id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete)
{
result.AppendErrorWithFormat ("invalid allocation id argument '%s'", id_cstr);
result.SetStatus (eReturnStatusFailed);
return false;
}
const char* filename = command.GetArgumentAtIndex(1);
bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
};
class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation save",
"Write renderscript allocation contents to a file.", "renderscript allocation save <ID> <filename>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc != 2)
{
result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
const char* id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete)
{
result.AppendErrorWithFormat ("invalid allocation id argument '%s'", id_cstr);
result.SetStatus (eReturnStatusFailed);
return false;
}
const char* filename = command.GetArgumentAtIndex(1);
bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
};
class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript allocation", "Commands that deal with renderscript allocations.",
NULL)
{
LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
}
~CommandObjectRenderScriptRuntimeAllocation() override = default;
};
class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript status",
"Displays current renderscript runtime status.", "renderscript status",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeStatus() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->Status(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.",
"renderscript <subcommand> [<subcommand-options>]")
{
LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
}
~CommandObjectRenderScriptRuntime() override = default;
};
void
RenderScriptRuntime::Initiate()
{
assert(!m_initiated);
}
RenderScriptRuntime::RenderScriptRuntime(Process *process)
: lldb_private::CPPLanguageRuntime(process), m_initiated(false), m_debuggerPresentFlagged(false),
m_breakAllKernels(false)
{
ModulesDidLoad(process->GetTarget().GetImages());
}
lldb::CommandObjectSP
RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter& interpreter)
{
static CommandObjectSP command_object;
if(!command_object)
{
command_object.reset(new CommandObjectRenderScriptRuntime(interpreter));
}
return command_object;
}
RenderScriptRuntime::~RenderScriptRuntime() = default;