Files
clang-p2996/lldb/source/Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.cpp
Ewan Crawford ea0636b554 [RenderScript] Refactor allocation expressions
Patch refractors RS plugin code specifying how format strings are used to JIT the runtime.

Author: Dean De Leo <dean@codeplay.com>
llvm-svn: 260372
2016-02-10 11:23:27 +00:00

4182 lines
148 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "RenderScriptRuntime.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/DataFormatters/DumpValueObjectOptions.h"
#include "lldb/Expression/UserExpression.h"
#include "lldb/Host/StringConvert.h"
#include "lldb/Interpreter/Args.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandObjectMultiword.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/Options.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_renderscript;
namespace
{
// The empirical_type adds a basic level of validation to arbitrary data
// allowing us to track if data has been discovered and stored or not.
// An empirical_type will be marked as valid only if it has been explicitly assigned to.
template <typename type_t> class empirical_type
{
public:
// Ctor. Contents is invalid when constructed.
empirical_type() : valid(false) {}
// Return true and copy contents to out if valid, else return false.
bool
get(type_t &out) const
{
if (valid)
out = data;
return valid;
}
// Return a pointer to the contents or nullptr if it was not valid.
const type_t *
get() const
{
return valid ? &data : nullptr;
}
// Assign data explicitly.
void
set(const type_t in)
{
data = in;
valid = true;
}
// Mark contents as invalid.
void
invalidate()
{
valid = false;
}
// Returns true if this type contains valid data.
bool
isValid() const
{
return valid;
}
// Assignment operator.
empirical_type<type_t> &
operator=(const type_t in)
{
set(in);
return *this;
}
// Dereference operator returns contents.
// Warning: Will assert if not valid so use only when you know data is valid.
const type_t &operator*() const
{
assert(valid);
return data;
}
protected:
bool valid;
type_t data;
};
} // anonymous namespace
// The ScriptDetails class collects data associated with a single script instance.
struct RenderScriptRuntime::ScriptDetails
{
~ScriptDetails() = default;
enum ScriptType
{
eScript,
eScriptC
};
// The derived type of the script.
empirical_type<ScriptType> type;
// The name of the original source file.
empirical_type<std::string> resName;
// Path to script .so file on the device.
empirical_type<std::string> scriptDyLib;
// Directory where kernel objects are cached on device.
empirical_type<std::string> cacheDir;
// Pointer to the context which owns this script.
empirical_type<lldb::addr_t> context;
// Pointer to the script object itself.
empirical_type<lldb::addr_t> script;
};
// This Element class represents the Element object in RS,
// defining the type associated with an Allocation.
struct RenderScriptRuntime::Element
{
// Taken from rsDefines.h
enum DataKind
{
RS_KIND_USER,
RS_KIND_PIXEL_L = 7,
RS_KIND_PIXEL_A,
RS_KIND_PIXEL_LA,
RS_KIND_PIXEL_RGB,
RS_KIND_PIXEL_RGBA,
RS_KIND_PIXEL_DEPTH,
RS_KIND_PIXEL_YUV,
RS_KIND_INVALID = 100
};
// Taken from rsDefines.h
enum DataType
{
RS_TYPE_NONE = 0,
RS_TYPE_FLOAT_16,
RS_TYPE_FLOAT_32,
RS_TYPE_FLOAT_64,
RS_TYPE_SIGNED_8,
RS_TYPE_SIGNED_16,
RS_TYPE_SIGNED_32,
RS_TYPE_SIGNED_64,
RS_TYPE_UNSIGNED_8,
RS_TYPE_UNSIGNED_16,
RS_TYPE_UNSIGNED_32,
RS_TYPE_UNSIGNED_64,
RS_TYPE_BOOLEAN,
RS_TYPE_UNSIGNED_5_6_5,
RS_TYPE_UNSIGNED_5_5_5_1,
RS_TYPE_UNSIGNED_4_4_4_4,
RS_TYPE_MATRIX_4X4,
RS_TYPE_MATRIX_3X3,
RS_TYPE_MATRIX_2X2,
RS_TYPE_ELEMENT = 1000,
RS_TYPE_TYPE,
RS_TYPE_ALLOCATION,
RS_TYPE_SAMPLER,
RS_TYPE_SCRIPT,
RS_TYPE_MESH,
RS_TYPE_PROGRAM_FRAGMENT,
RS_TYPE_PROGRAM_VERTEX,
RS_TYPE_PROGRAM_RASTER,
RS_TYPE_PROGRAM_STORE,
RS_TYPE_FONT,
RS_TYPE_INVALID = 10000
};
std::vector<Element> children; // Child Element fields for structs
empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type
empirical_type<DataType> type; // Type of each data pointer stored by the allocation
empirical_type<DataKind> type_kind; // Defines pixel type if Allocation is created from an image
empirical_type<uint32_t> type_vec_size; // Vector size of each data point, e.g '4' for uchar4
empirical_type<uint32_t> field_count; // Number of Subelements
empirical_type<uint32_t> datum_size; // Size of a single Element with padding
empirical_type<uint32_t> padding; // Number of padding bytes
empirical_type<uint32_t> array_size; // Number of items in array, only needed for strucrs
ConstString type_name; // Name of type, only needed for structs
static const ConstString &
GetFallbackStructName(); // Print this as the type name of a struct Element
// If we can't resolve the actual struct name
bool
shouldRefresh() const
{
const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid();
return !valid_ptr || !valid_type || !datum_size.isValid();
}
};
// This AllocationDetails class collects data associated with a single
// allocation instance.
struct RenderScriptRuntime::AllocationDetails
{
struct Dimension
{
uint32_t dim_1;
uint32_t dim_2;
uint32_t dim_3;
uint32_t cubeMap;
Dimension()
{
dim_1 = 0;
dim_2 = 0;
dim_3 = 0;
cubeMap = 0;
}
};
// The FileHeader struct specifies the header we use for writing allocations to a binary file.
// Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump.
// Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of
// the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance
// of the ElementHeader struct. With this first instance being the root element, and the other instances being
// the root's descendants. To identify which instances are an ElementHeader's children, each struct
// is immediately followed by a sequence of consecutive offsets to the start of its child structs.
// These offsets are 4 bytes in size, and the 0 offset signifies no more children.
struct FileHeader
{
uint8_t ident[4]; // ASCII 'RSAD' identifying the file
uint32_t dims[3]; // Dimensions
uint16_t hdr_size; // Header size in bytes, including all element headers
};
struct ElementHeader
{
uint16_t type; // DataType enum
uint32_t kind; // DataKind enum
uint32_t element_size; // Size of a single element, including padding
uint16_t vector_size; // Vector width
uint32_t array_size; // Number of elements in array
};
// Monotonically increasing from 1
static uint32_t ID;
// Maps Allocation DataType enum and vector size to printable strings
// using mapping from RenderScript numerical types summary documentation
static const char *RsDataTypeToString[][4];
// Maps Allocation DataKind enum to printable strings
static const char *RsDataKindToString[];
// Maps allocation types to format sizes for printing.
static const uint32_t RSTypeToFormat[][3];
// Give each allocation an ID as a way
// for commands to reference it.
const uint32_t id;
RenderScriptRuntime::Element element; // Allocation Element type
empirical_type<Dimension> dimension; // Dimensions of the Allocation
empirical_type<lldb::addr_t> address; // Pointer to address of the RS Allocation
empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation
empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation
empirical_type<lldb::addr_t> context; // Pointer to the RS Context of the Allocation
empirical_type<uint32_t> size; // Size of the allocation
empirical_type<uint32_t> stride; // Stride between rows of the allocation
// Give each allocation an id, so we can reference it in user commands.
AllocationDetails() : id(ID++) {}
bool
shouldRefresh() const
{
bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh();
}
};
const ConstString &
RenderScriptRuntime::Element::GetFallbackStructName()
{
static const ConstString FallbackStructName("struct");
return FallbackStructName;
}
uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
"User",
"Undefined", "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7
"L Pixel", "A Pixel", "LA Pixel", "RGB Pixel",
"RGBA Pixel", "Pixel Depth", "YUV Pixel"};
const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
{"None", "None", "None", "None"},
{"half", "half2", "half3", "half4"},
{"float", "float2", "float3", "float4"},
{"double", "double2", "double3", "double4"},
{"char", "char2", "char3", "char4"},
{"short", "short2", "short3", "short4"},
{"int", "int2", "int3", "int4"},
{"long", "long2", "long3", "long4"},
{"uchar", "uchar2", "uchar3", "uchar4"},
{"ushort", "ushort2", "ushort3", "ushort4"},
{"uint", "uint2", "uint3", "uint4"},
{"ulong", "ulong2", "ulong3", "ulong4"},
{"bool", "bool2", "bool3", "bool4"},
{"packed_565", "packed_565", "packed_565", "packed_565"},
{"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
{"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
{"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
{"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
{"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
// Handlers
{"RS Element", "RS Element", "RS Element", "RS Element"},
{"RS Type", "RS Type", "RS Type", "RS Type"},
{"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
{"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
{"RS Script", "RS Script", "RS Script", "RS Script"},
// Deprecated
{"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
{"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"},
{"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"},
{"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"},
{"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"},
{"RS Font", "RS Font", "RS Font", "RS Font"}};
// Used as an index into the RSTypeToFormat array elements
enum TypeToFormatIndex
{
eFormatSingle = 0,
eFormatVector,
eElementSize
};
// { format enum of single element, format enum of element vector, size of element}
const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
{eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE
{eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16
{eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32
{eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64
{eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8
{eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16
{eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32
{eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64
{eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8
{eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16
{eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32
{eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64
{eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL
{eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5
{eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1
{eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4
{eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4
{eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3
{eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4} // RS_TYPE_MATRIX_2X2
};
const std::string RenderScriptRuntime::s_runtimeExpandSuffix(".expand");
const std::array<const char *, 3> RenderScriptRuntime::s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}};
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
LanguageRuntime *
RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
{
if (language == eLanguageTypeExtRenderScript)
return new RenderScriptRuntime(process);
else
return nullptr;
}
// Callback with a module to search for matching symbols.
// We first check that the module contains RS kernels.
// Then look for a symbol which matches our kernel name.
// The breakpoint address is finally set using the address of this symbol.
Searcher::CallbackReturn
RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool)
{
ModuleSP module = context.module_sp;
if (!module)
return Searcher::eCallbackReturnContinue;
// Is this a module containing renderscript kernels?
if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
return Searcher::eCallbackReturnContinue;
// Attempt to set a breakpoint on the kernel name symbol within the module library.
// If it's not found, it's likely debug info is unavailable - try to set a
// breakpoint on <name>.expand.
const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
if (!kernel_sym)
{
std::string kernel_name_expanded(m_kernel_name.AsCString());
kernel_name_expanded.append(".expand");
kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
}
if (kernel_sym)
{
Address bp_addr = kernel_sym->GetAddress();
if (filter.AddressPasses(bp_addr))
m_breakpoint->AddLocation(bp_addr);
}
return Searcher::eCallbackReturnContinue;
}
void
RenderScriptRuntime::Initialize()
{
PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance,
GetCommandObject);
}
void
RenderScriptRuntime::Terminate()
{
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString
RenderScriptRuntime::GetPluginNameStatic()
{
static ConstString g_name("renderscript");
return g_name;
}
RenderScriptRuntime::ModuleKind
RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
{
if (module_sp)
{
// Is this a module containing renderscript kernels?
const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
if (info_sym)
{
return eModuleKindKernelObj;
}
// Is this the main RS runtime library
const ConstString rs_lib("libRS.so");
if (module_sp->GetFileSpec().GetFilename() == rs_lib)
{
return eModuleKindLibRS;
}
const ConstString rs_driverlib("libRSDriver.so");
if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
{
return eModuleKindDriver;
}
const ConstString rs_cpureflib("libRSCpuRef.so");
if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
{
return eModuleKindImpl;
}
}
return eModuleKindIgnored;
}
bool
RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
{
return GetModuleKind(module_sp) != eModuleKindIgnored;
}
void
RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list)
{
Mutex::Locker locker(module_list.GetMutex());
size_t num_modules = module_list.GetSize();
for (size_t i = 0; i < num_modules; i++)
{
auto mod = module_list.GetModuleAtIndex(i);
if (IsRenderScriptModule(mod))
{
LoadModule(mod);
}
}
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString
RenderScriptRuntime::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
RenderScriptRuntime::GetPluginVersion()
{
return 1;
}
bool
RenderScriptRuntime::IsVTableName(const char *name)
{
return false;
}
bool
RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic,
TypeAndOrName &class_type_or_name, Address &address,
Value::ValueType &value_type)
{
return false;
}
TypeAndOrName
RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value)
{
return type_and_or_name;
}
bool
RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
{
return false;
}
lldb::BreakpointResolverSP
RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
{
BreakpointResolverSP resolver_sp;
return resolver_sp;
}
const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = {
// rsdScript
{
"rsdScriptInit",
"_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj",
"_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj",
0,
RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureScriptInit
},
{
"rsdScriptInvokeForEachMulti",
"_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
"_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
0,
RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti
},
{
"rsdScriptSetGlobalVar",
"_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj",
"_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm",
0,
RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureSetGlobalVar
},
// rsdAllocation
{
"rsdAllocationInit",
"_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
"_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
0,
RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureAllocationInit
},
{
"rsdAllocationRead2D",
"_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
"_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
0,
RenderScriptRuntime::eModuleKindDriver,
nullptr
},
{
"rsdAllocationDestroy",
"_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
"_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
0,
RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureAllocationDestroy
},
};
const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
bool
RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id,
lldb::user_id_t break_loc_id)
{
RuntimeHook *hook_info = (RuntimeHook *)baton;
ExecutionContext context(ctx->exe_ctx_ref);
RenderScriptRuntime *lang_rt =
(RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
lang_rt->HookCallback(hook_info, context);
return false;
}
void
RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log)
log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name);
if (hook_info->defn->grabber)
{
(this->*(hook_info->defn->grabber))(hook_info, context);
}
}
bool
RenderScriptRuntime::GetArgSimple(ExecutionContext &context, uint32_t arg, uint64_t *data)
{
// Get a positional integer argument.
// Given an ExecutionContext, ``context`` which should be a RenderScript
// frame, get the value of the positional argument ``arg`` and save its value
// to the address pointed to by ``data``.
// returns true on success, false otherwise.
// If unsuccessful, the value pointed to by ``data`` is undefined. Otherwise,
// ``data`` will be set to the value of the the given ``arg``.
// NOTE: only natural width integer arguments for the machine are supported.
// Behaviour with non primitive arguments is undefined.
if (!data)
return false;
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
Error error;
RegisterContext *reg_ctx = context.GetRegisterContext();
Process *process = context.GetProcessPtr();
bool success = false; // return value
if (!context.GetTargetPtr())
{
if (log)
log->Printf("%s - invalid target", __FUNCTION__);
return false;
}
switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
{
case llvm::Triple::ArchType::x86:
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = (1 + arg) * sizeof(uint32_t);
uint32_t result = 0;
process->ReadMemory(sp + offset, &result, sizeof(uint32_t), error);
if (error.Fail())
{
if (log)
log->Printf("%s - error reading X86 stack: '%s'.", __FUNCTION__, error.AsCString());
}
else
{
*data = result;
success = true;
}
break;
}
case llvm::Triple::ArchType::x86_64:
{
// amd64 has 6 integer registers, and 8 XMM registers for parameter passing.
// Surplus args are spilled onto the stack.
// rdi, rsi, rdx, rcx, r8, r9, (zmm0 - 7 for vectors)
// ref: AMD64 ABI Draft 0.99.6 October 7, 2013 10:35; Figure 3.4. Retrieved from
// http://www.x86-64.org/documentation/abi.pdf
if (arg > 5)
{
if (log)
log->Warning("%s - X86_64 - reading arguments passed on stack not supported yet.",
__FUNCTION__);
break;
}
const char *regnames[] = {"rdi", "rsi", "rdx", "rcx", "r8", "r9"};
assert((sizeof(regnames) / sizeof(const char *)) > arg);
const RegisterInfo *rArg = reg_ctx->GetRegisterInfoByName(regnames[arg]);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
*data = rVal.GetAsUInt64(0u, &success);
}
else
{
if (log)
log->Printf("%s - error reading x86_64 register: %" PRId32 ".", __FUNCTION__, arg);
}
break;
}
case llvm::Triple::ArchType::arm:
{
// arm 32 bit
// first 4 arguments are passed via registers
if (arg < 4)
{
const RegisterInfo *rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
(*data) = rVal.GetAsUInt32(0u, &success);
}
else
{
if (log)
log->Printf("%s - error reading ARM register: %" PRId32 ".", __FUNCTION__, arg);
}
}
else
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = (arg - 4) * sizeof(uint32_t);
uint32_t value = 0;
size_t bytes_read = process->ReadMemory(sp + offset, &value, sizeof(value), error);
if (error.Fail() || bytes_read != sizeof(value))
{
if (log)
log->Printf("%s - error reading ARM stack: %s.", __FUNCTION__, error.AsCString());
}
else
{
*data = value;
success = true;
}
}
break;
}
case llvm::Triple::ArchType::aarch64:
{
// arm 64 bit
// first 8 arguments are in the registers
if (arg < 8)
{
const RegisterInfo *rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
*data = rVal.GetAsUInt64(0u, &success);
}
else
{
if (log)
log->Printf("%s - AARCH64 - error while reading the argument #%" PRId32 ".",
__FUNCTION__, arg);
}
}
else
{
// @TODO: need to find the argument in the stack
if (log)
log->Printf("%s - AARCH64 - reading arguments passed on stack not supported yet.",
__FUNCTION__);
}
break;
}
case llvm::Triple::ArchType::mipsel:
{
// read from the registers
// first 4 arguments are passed in registers
if (arg < 4)
{
const RegisterInfo *rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
*data = rVal.GetAsUInt64(0u, &success);
}
else
{
if (log)
log->Printf("%s - Mips - error while reading the argument #%" PRId32 "",
__FUNCTION__, arg);
}
}
// arguments > 4 are read from the stack
else
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = arg * sizeof(uint32_t);
uint32_t value = 0;
size_t bytes_read = process->ReadMemory(sp + offset, &value, sizeof(value), error);
if (error.Fail() || bytes_read != sizeof(value))
{
if (log)
log->Printf("%s - error reading Mips stack: %s.",
__FUNCTION__, error.AsCString());
}
else
{
*data = value;
success = true;
}
}
break;
}
case llvm::Triple::ArchType::mips64el:
{
// read from the registers
if (arg < 8)
{
const RegisterInfo *rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
(*data) = rVal.GetAsUInt64(0u, &success);
}
else
{
if (log)
log->Printf("%s - Mips64 - error reading the argument #%" PRId32 "",
__FUNCTION__, arg);
}
}
// arguments > 8 are read from the stack
else
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = (arg - 8) * sizeof(uint64_t);
uint64_t value = 0;
size_t bytes_read = process->ReadMemory(sp + offset, &value, sizeof(value), error);
if (error.Fail() || bytes_read != sizeof(value))
{
if (log)
log->Printf("%s - Mips64 - error reading Mips64 stack: %s.",
__FUNCTION__, error.AsCString());
}
else
{
*data = value;
success = true;
}
}
break;
}
default:
{
// invalid architecture
if (log)
log->Printf("%s - architecture not supported.", __FUNCTION__);
}
}
if (!success)
{
if (log)
log->Printf("%s - failed to get argument at index %" PRIu32 ".", __FUNCTION__, arg);
}
return success;
}
void
RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info,
ExecutionContext& context)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
struct args_t
{
uint64_t context; // const Context *rsc
uint64_t script; // Script *s
uint64_t slot; // uint32_t slot
uint64_t aIns; // const Allocation **aIns
uint64_t inLen; // size_t inLen
uint64_t aOut; // Allocation *aout
uint64_t usr; // const void *usr
uint64_t usrLen; // size_t usrLen
uint64_t sc; // const RsScriptCall *sc
}
args;
bool success =
GetArgSimple(context, 0, &args.context) &&
GetArgSimple(context, 1, &args.script) &&
GetArgSimple(context, 2, &args.slot) &&
GetArgSimple(context, 3, &args.aIns) &&
GetArgSimple(context, 4, &args.inLen) &&
GetArgSimple(context, 5, &args.aOut) &&
GetArgSimple(context, 6, &args.usr) &&
GetArgSimple(context, 7, &args.usrLen) &&
GetArgSimple(context, 8, &args.sc);
if (!success)
{
if (log)
log->Printf("%s - Error while reading the function parameters", __FUNCTION__);
return;
}
const uint32_t target_ptr_size = m_process->GetAddressByteSize();
Error error;
std::vector<uint64_t> allocs;
// traverse allocation list
for (uint64_t i = 0; i < args.inLen; ++i)
{
// calculate offest to allocation pointer
const lldb::addr_t addr = args.aIns + i * target_ptr_size;
// Note: due to little endian layout, reading 32bits or 64bits into res64 will
// give the correct results.
uint64_t res64 = 0;
size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error);
if (read != target_ptr_size || !error.Success())
{
if (log)
log->Printf("%s - Error while reading allocation list argument %" PRId64, __FUNCTION__, i);
}
else
{
allocs.push_back(res64);
}
}
// if there is an output allocation track it
if (args.aOut)
{
allocs.push_back(args.aOut);
}
// for all allocations we have found
for (const uint64_t alloc_addr : allocs)
{
AllocationDetails* alloc = LookUpAllocation(alloc_addr, true);
if (alloc)
{
// save the allocation address
if (alloc->address.isValid())
{
// check the allocation address we already have matches
assert(*alloc->address.get() == alloc_addr);
}
else
{
alloc->address = alloc_addr;
}
// save the context
if (log)
{
if (alloc->context.isValid() && *alloc->context.get() != args.context)
log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__);
}
alloc->context = args.context;
}
}
// make sure we track this script object
if (lldb_private::RenderScriptRuntime::ScriptDetails * script = LookUpScript(args.script, true))
{
if (log)
{
if (script->context.isValid() && *script->context.get() != args.context)
log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
}
script->context = args.context;
}
}
void
RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Context, Script, int, data, length
uint64_t rs_context_u64 = 0U;
uint64_t rs_script_u64 = 0U;
uint64_t rs_id_u64 = 0U;
uint64_t rs_data_u64 = 0U;
uint64_t rs_length_u64 = 0U;
bool success = GetArgSimple(context, 0, &rs_context_u64) &&
GetArgSimple(context, 1, &rs_script_u64) &&
GetArgSimple(context, 2, &rs_id_u64) &&
GetArgSimple(context, 3, &rs_data_u64) &&
GetArgSimple(context, 4, &rs_length_u64);
if (!success)
{
if (log)
log->Printf("%s - error reading the function parameters.", __FUNCTION__);
return;
}
if (log)
{
log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.",
__FUNCTION__, rs_context_u64, rs_script_u64, rs_id_u64, rs_data_u64, rs_length_u64);
addr_t script_addr = (addr_t)rs_script_u64;
if (m_scriptMappings.find(script_addr) != m_scriptMappings.end())
{
auto rsm = m_scriptMappings[script_addr];
if (rs_id_u64 < rsm->m_globals.size())
{
auto rsg = rsm->m_globals[rs_id_u64];
log->Printf("%s - setting of '%s' within '%s' inferred.", __FUNCTION__,
rsg.m_name.AsCString(), rsm->m_module->GetFileSpec().GetFilename().AsCString());
}
}
}
}
void
RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Context, Alloc, bool
uint64_t rs_context_u64 = 0U;
uint64_t rs_alloc_u64 = 0U;
uint64_t rs_forceZero_u64 = 0U;
bool success = GetArgSimple(context, 0, &rs_context_u64) &&
GetArgSimple(context, 1, &rs_alloc_u64) &&
GetArgSimple(context, 2, &rs_forceZero_u64);
if (!success) // error case
{
if (log)
log->Printf("%s - error while reading the function parameters", __FUNCTION__);
return; // abort
}
if (log)
log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__,
rs_context_u64, rs_alloc_u64, rs_forceZero_u64);
AllocationDetails *alloc = LookUpAllocation(rs_alloc_u64, true);
if (alloc)
alloc->context = rs_context_u64;
}
void
RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Context, Alloc
uint64_t rs_context_u64 = 0U;
uint64_t rs_alloc_u64 = 0U;
bool success = GetArgSimple(context, 0, &rs_context_u64) &&
GetArgSimple(context, 1, &rs_alloc_u64);
if (!success)
{
if (log)
log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
return;
}
if (log)
log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, rs_context_u64, rs_alloc_u64);
for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter)
{
auto &allocation_ap = *iter; // get the unique pointer
if (allocation_ap->address.isValid() && *allocation_ap->address.get() == rs_alloc_u64)
{
m_allocations.erase(iter);
if (log)
log->Printf("%s - deleted allocation entry.", __FUNCTION__);
return;
}
}
if (log)
log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
}
void
RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Context, Script, resname Str, cachedir Str
Error error;
Process *process = context.GetProcessPtr();
uint64_t rs_context_u64 = 0U;
uint64_t rs_script_u64 = 0U;
uint64_t rs_resnameptr_u64 = 0U;
uint64_t rs_cachedirptr_u64 = 0U;
std::string resname;
std::string cachedir;
// read the function parameters
bool success = GetArgSimple(context, 0, &rs_context_u64) &&
GetArgSimple(context, 1, &rs_script_u64) &&
GetArgSimple(context, 2, &rs_resnameptr_u64) &&
GetArgSimple(context, 3, &rs_cachedirptr_u64);
if (!success)
{
if (log)
log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
return;
}
process->ReadCStringFromMemory((lldb::addr_t)rs_resnameptr_u64, resname, error);
if (error.Fail())
{
if (log)
log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString());
}
process->ReadCStringFromMemory((lldb::addr_t)rs_cachedirptr_u64, cachedir, error);
if (error.Fail())
{
if (log)
log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString());
}
if (log)
log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__,
rs_context_u64, rs_script_u64, resname.c_str(), cachedir.c_str());
if (resname.size() > 0)
{
StreamString strm;
strm.Printf("librs.%s.so", resname.c_str());
ScriptDetails *script = LookUpScript(rs_script_u64, true);
if (script)
{
script->type = ScriptDetails::eScriptC;
script->cacheDir = cachedir;
script->resName = resname;
script->scriptDyLib = strm.GetData();
script->context = addr_t(rs_context_u64);
}
if (log)
log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".",
__FUNCTION__, strm.GetData(), rs_context_u64, rs_script_u64);
}
else if (log)
{
log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
}
}
void
RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!module)
{
return;
}
Target &target = GetProcess()->GetTarget();
llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
if (targetArchType != llvm::Triple::ArchType::x86 &&
targetArchType != llvm::Triple::ArchType::arm &&
targetArchType != llvm::Triple::ArchType::aarch64 &&
targetArchType != llvm::Triple::ArchType::mipsel &&
targetArchType != llvm::Triple::ArchType::mips64el &&
targetArchType != llvm::Triple::ArchType::x86_64)
{
if (log)
log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
return;
}
uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
{
const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
if (hook_defn->kind != kind)
{
continue;
}
const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
if (!sym)
{
if (log)
{
log->Printf("%s - symbol '%s' related to the function %s not found",
__FUNCTION__, symbol_name, hook_defn->name);
}
continue;
}
addr_t addr = sym->GetLoadAddress(&target);
if (addr == LLDB_INVALID_ADDRESS)
{
if (log)
log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.",
__FUNCTION__, hook_defn->name, symbol_name);
continue;
}
else
{
if (log)
log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
__FUNCTION__, hook_defn->name, addr);
}
RuntimeHookSP hook(new RuntimeHook());
hook->address = addr;
hook->defn = hook_defn;
hook->bp_sp = target.CreateBreakpoint(addr, true, false);
hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
m_runtimeHooks[addr] = hook;
if (log)
{
log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
__FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(),
(uint64_t)hook_defn->version, (uint64_t)addr);
}
}
}
void
RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
{
if (!rsmodule_sp)
return;
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const ModuleSP module = rsmodule_sp->m_module;
const FileSpec &file = module->GetPlatformFileSpec();
// Iterate over all of the scripts that we currently know of.
// Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
for (const auto &rs_script : m_scripts)
{
// Extract the expected .so file path for this script.
std::string dylib;
if (!rs_script->scriptDyLib.get(dylib))
continue;
// Only proceed if the module that has loaded corresponds to this script.
if (file.GetFilename() != ConstString(dylib.c_str()))
continue;
// Obtain the script address which we use as a key.
lldb::addr_t script;
if (!rs_script->script.get(script))
continue;
// If we have a script mapping for the current script.
if (m_scriptMappings.find(script) != m_scriptMappings.end())
{
// if the module we have stored is different to the one we just received.
if (m_scriptMappings[script] != rsmodule_sp)
{
if (log)
log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__,
(uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
}
}
// We don't have a script mapping for the current script.
else
{
// Obtain the script resource name.
std::string resName;
if (rs_script->resName.get(resName))
// Set the modules resource name.
rsmodule_sp->m_resname = resName;
// Add Script/Module pair to map.
m_scriptMappings[script] = rsmodule_sp;
if (log)
log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__,
(uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
}
}
}
// Uses the Target API to evaluate the expression passed as a parameter to the function
// The result of that expression is returned an unsigned 64 bit int, via the result* paramter.
// Function returns true on success, and false on failure
bool
RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log)
log->Printf("%s(%s)", __FUNCTION__, expression);
ValueObjectSP expr_result;
// Perform the actual expression evaluation
GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result);
if (!expr_result)
{
if (log)
log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
return false;
}
// The result of the expression is invalid
if (!expr_result->GetError().Success())
{
Error err = expr_result->GetError();
if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
{
if (log)
log->Printf("%s - expression returned void.", __FUNCTION__);
result = nullptr;
return true;
}
if (log)
log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
err.AsCString());
return false;
}
bool success = false;
*result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t.
if (!success)
{
if (log)
log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__);
return false;
}
return true;
}
namespace
{
// Used to index expression format strings
enum ExpressionStrings
{
eExprGetOffsetPtr = 0,
eExprAllocGetType,
eExprTypeDimX,
eExprTypeDimY,
eExprTypeDimZ,
eExprTypeElemPtr,
eExprElementType,
eExprElementKind,
eExprElementVec,
eExprElementFieldCount,
eExprSubelementsId,
eExprSubelementsName,
eExprSubelementsArrSize,
_eExprLast // keep at the end, implicit size of the array runtimeExpressions
};
// max length of an expanded expression
const int jit_max_expr_size = 512;
// Retrieve the string to JIT for the given expression
const char*
JITTemplate(ExpressionStrings e)
{
// Format strings containing the expressions we may need to evaluate.
static std::array<const char*, _eExprLast> runtimeExpressions = {{
// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
"(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace(0x%lx, %u, %u, %u, 0, 0)",
// Type* rsaAllocationGetType(Context*, Allocation*)
"(void*)rsaAllocationGetType(0x%lx, 0x%lx)",
// rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
// Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
// mHal.state.lodCount; mHal.state.faces; mElement; into typeData
// Need to specify 32 or 64 bit for uint_t since this differs between devices
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[0]", // X dim
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[1]", // Y dim
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[2]", // Z dim
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[5]", // Element ptr
// rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
// Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[0]", // Type
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[1]", // Kind
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[3]", // Vector Size
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[4]", // Field Count
// rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
// size_t *arraySizes, uint32_t dataSize)
// Needed for Allocations of structs to gather details about fields/Subelements
"void *ids[%u]; const char *names[%u]; size_t arr_size[%u];"
"(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); ids[%u]", // Element* of field
"void *ids[%u]; const char *names[%u]; size_t arr_size[%u];"
"(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); names[%u]", // Name of field
"void *ids[%u]; const char *names[%u]; size_t arr_size[%u];"
"(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); arr_size[%u]" // Array size of field
}};
return runtimeExpressions[e];
}
} // end of the anonymous namespace
// JITs the RS runtime for the internal data pointer of an allocation.
// Is passed x,y,z coordinates for the pointer to a specific element.
// Then sets the data_ptr member in Allocation with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x,
uint32_t y, uint32_t z)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid())
{
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
char buffer[jit_max_expr_size];
int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
if (chars_written < 0)
{
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
allocation->data_ptr = mem_ptr;
return true;
}
// JITs the RS runtime for the internal pointer to the RS Type of an allocation
// Then sets the type_ptr member in Allocation with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->context.isValid())
{
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const char *expr_cstr = JITTemplate(eExprAllocGetType);
char buffer[jit_max_expr_size];
int chars_written =
snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
if (chars_written < 0)
{
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t type_ptr = static_cast<lldb::addr_t>(result);
allocation->type_ptr = type_ptr;
return true;
}
// JITs the RS runtime for information about the dimensions and type of an allocation
// Then sets dimension and element_ptr members in Allocation with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
{
if (log)
log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
return false;
}
// Expression is different depending on if device is 32 or 64 bit
uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
const uint32_t bits = archByteSize == 4 ? 32 : 64;
// We want 4 elements from packed data
const uint32_t num_exprs = 4;
assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
char buffer[num_exprs][jit_max_expr_size];
uint64_t results[num_exprs];
for (uint32_t i = 0; i < num_exprs; ++i)
{
const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(),
*allocation->type_ptr.get());
if (chars_written < 0)
{
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
return false;
}
// Assign results to allocation members
AllocationDetails::Dimension dims;
dims.dim_1 = static_cast<uint32_t>(results[0]);
dims.dim_2 = static_cast<uint32_t>(results[1]);
dims.dim_3 = static_cast<uint32_t>(results[2]);
allocation->dimension = dims;
addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
allocation->element.element_ptr = elem_ptr;
if (log)
log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__,
dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
return true;
}
// JITs the RS runtime for information about the Element of an allocation
// Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.element_ptr.isValid())
{
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
// We want 4 elements from packed data
const uint32_t num_exprs = 4;
assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
char buffer[num_exprs][jit_max_expr_size];
uint64_t results[num_exprs];
for (uint32_t i = 0; i < num_exprs; i++)
{
const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i));
int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get());
if (chars_written < 0)
{
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
return false;
}
// Assign results to allocation members
elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
elem.type_vec_size = static_cast<uint32_t>(results[2]);
elem.field_count = static_cast<uint32_t>(results[3]);
if (log)
log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32,
__FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
// If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
return false;
return true;
}
// JITs the RS runtime for information about the subelements/fields of a struct allocation
// This is necessary for infering the struct type so we can pretty print the allocation's contents.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
{
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const short num_exprs = 3;
assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
char expr_buffer[jit_max_expr_size];
uint64_t results;
// Iterate over struct fields.
const uint32_t field_count = *elem.field_count.get();
for (uint32_t field_index = 0; field_index < field_count; ++field_index)
{
Element child;
for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index)
{
const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr,
field_count, field_count, field_count,
context, *elem.element_ptr.get(), field_count, field_index);
if (chars_written < 0)
{
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
return false;
if (log)
log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
switch (expr_index)
{
case 0: // Element* of child
child.element_ptr = static_cast<addr_t>(results);
break;
case 1: // Name of child
{
lldb::addr_t address = static_cast<addr_t>(results);
Error err;
std::string name;
GetProcess()->ReadCStringFromMemory(address, name, err);
if (!err.Fail())
child.type_name = ConstString(name);
else
{
if (log)
log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__);
}
break;
}
case 2: // Array size of child
child.array_size = static_cast<uint32_t>(results);
break;
}
}
// We need to recursively JIT each Element field of the struct since
// structs can be nested inside structs.
if (!JITElementPacked(child, context, frame_ptr))
return false;
elem.children.push_back(child);
}
// Try to infer the name of the struct type so we can pretty print the allocation contents.
FindStructTypeName(elem, frame_ptr);
return true;
}
// JITs the RS runtime for the address of the last element in the allocation.
// The `elem_size` paramter represents the size of a single element, including padding.
// Which is needed as an offset from the last element pointer.
// Using this offset minus the starting address we can calculate the size of the allocation.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() ||
!allocation->element.datum_size.isValid())
{
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
// Find dimensions
uint32_t dim_x = allocation->dimension.get()->dim_1;
uint32_t dim_y = allocation->dimension.get()->dim_2;
uint32_t dim_z = allocation->dimension.get()->dim_3;
// Our plan of jitting the last element address doesn't seem to work for struct Allocations
// Instead try to infer the size ourselves without any inter element padding.
if (allocation->element.children.size() > 0)
{
if (dim_x == 0) dim_x = 1;
if (dim_y == 0) dim_y = 1;
if (dim_z == 0) dim_z = 1;
allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
if (log)
log->Printf("%s - infered size of struct allocation %" PRIu32 ".", __FUNCTION__,
*allocation->size.get());
return true;
}
const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
char buffer[jit_max_expr_size];
// Calculate last element
dim_x = dim_x == 0 ? 0 : dim_x - 1;
dim_y = dim_y == 0 ? 0 : dim_y - 1;
dim_z = dim_z == 0 ? 0 : dim_z - 1;
int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z);
if (chars_written < 0)
{
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
// Find pointer to last element and add on size of an element
allocation->size =
static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
return true;
}
// JITs the RS runtime for information about the stride between rows in the allocation.
// This is done to detect padding, since allocated memory is 16-byte aligned.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
{
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
char buffer[jit_max_expr_size];
int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0);
if (chars_written < 0)
{
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
}
else if (chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
return true;
}
// JIT all the current runtime info regarding an allocation
bool
RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr)
{
// GetOffsetPointer()
if (!JITDataPointer(allocation, frame_ptr))
return false;
// rsaAllocationGetType()
if (!JITTypePointer(allocation, frame_ptr))
return false;
// rsaTypeGetNativeData()
if (!JITTypePacked(allocation, frame_ptr))
return false;
// rsaElementGetNativeData()
if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
return false;
// Sets the datum_size member in Element
SetElementSize(allocation->element);
// Use GetOffsetPointer() to infer size of the allocation
if (!JITAllocationSize(allocation, frame_ptr))
return false;
return true;
}
// Function attempts to set the type_name member of the paramaterised Element object.
// This string should be the name of the struct type the Element represents.
// We need this string for pretty printing the Element to users.
void
RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.type_name.IsEmpty()) // Name already set
return;
else
elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
// Find all the global variables from the script rs modules
VariableList variable_list;
for (auto module_sp : m_rsmodules)
module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
// Iterate over all the global variables looking for one with a matching type to the Element.
// We make the assumption a match exists since there needs to be a global variable to reflect the
// struct type back into java host code.
for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
{
const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
if (!var_sp)
continue;
ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
if (!valobj_sp)
continue;
// Find the number of variable fields.
// If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
// Don't check for equality since RS can add extra struct members for padding.
size_t num_children = valobj_sp->GetNumChildren();
if (num_children > elem.children.size() || num_children == 0)
continue;
// Iterate over children looking for members with matching field names.
// If all the field names match, this is likely the struct we want.
//
// TODO: This could be made more robust by also checking children data sizes, or array size
bool found = true;
for (size_t child_index = 0; child_index < num_children; ++child_index)
{
ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
if (!child || (child->GetName() != elem.children[child_index].type_name))
{
found = false;
break;
}
}
// RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
if (found && num_children < elem.children.size())
{
const uint32_t size_diff = elem.children.size() - num_children;
if (log)
log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff);
for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index)
{
const ConstString &name = elem.children[num_children + padding_index].type_name;
if (strcmp(name.AsCString(), "#rs_padding") < 0)
found = false;
}
}
// We've found a global var with matching type
if (found)
{
// Dereference since our Element type isn't a pointer.
if (valobj_sp->IsPointerType())
{
Error err;
ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
if (!err.Fail())
valobj_sp = deref_valobj;
}
// Save name of variable in Element.
elem.type_name = valobj_sp->GetTypeName();
if (log)
log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString());
return;
}
}
}
// Function sets the datum_size member of Element. Representing the size of a single instance including padding.
// Assumes the relevant allocation information has already been jitted.
void
RenderScriptRuntime::SetElementSize(Element &elem)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const Element::DataType type = *elem.type.get();
assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
const uint32_t vec_size = *elem.type_vec_size.get();
uint32_t data_size = 0;
uint32_t padding = 0;
// Element is of a struct type, calculate size recursively.
if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
{
for (Element &child : elem.children)
{
SetElementSize(child);
const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
data_size += *child.datum_size.get() * array_size;
}
}
// These have been packed already
else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
type == Element::RS_TYPE_UNSIGNED_4_4_4_4)
{
data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
}
else if (type < Element::RS_TYPE_ELEMENT)
{
data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
if (vec_size == 3)
padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
}
else
data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
elem.padding = padding;
elem.datum_size = data_size + padding;
if (log)
log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding);
}
// Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
// Returning a shared pointer to the buffer containing the data.
std::shared_ptr<uint8_t>
RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// JIT all the allocation details
if (allocation->shouldRefresh())
{
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__);
if (!RefreshAllocation(allocation, frame_ptr))
{
if (log)
log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
return nullptr;
}
}
assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() &&
allocation->element.type_vec_size.isValid() && allocation->size.isValid() &&
"Allocation information not available");
// Allocate a buffer to copy data into
const uint32_t size = *allocation->size.get();
std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
if (!buffer)
{
if (log)
log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size);
return nullptr;
}
// Read the inferior memory
Error error;
lldb::addr_t data_ptr = *allocation->data_ptr.get();
GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
if (error.Fail())
{
if (log)
log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64,
__FUNCTION__, error.AsCString(), size, data_ptr);
return nullptr;
}
return buffer;
}
// Function copies data from a binary file into an allocation.
// There is a header at the start of the file, FileHeader, before the data content itself.
// Information from this header is used to display warnings to the user about incompatabilities
bool
RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Find allocation with the given id
AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
if (!alloc)
return false;
if (log)
log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
// JIT all the allocation details
if (alloc->shouldRefresh())
{
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
if (!RefreshAllocation(alloc, frame_ptr))
{
if (log)
log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
return false;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
// Check we can read from file
FileSpec file(filename, true);
if (!file.Exists())
{
strm.Printf("Error: File %s does not exist", filename);
strm.EOL();
return false;
}
if (!file.Readable())
{
strm.Printf("Error: File %s does not have readable permissions", filename);
strm.EOL();
return false;
}
// Read file into data buffer
DataBufferSP data_sp(file.ReadFileContents());
// Cast start of buffer to FileHeader and use pointer to read metadata
void *file_buffer = data_sp->GetBytes();
if (file_buffer == nullptr ||
data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader)))
{
strm.Printf("Error: File %s does not contain enough data for header", filename);
strm.EOL();
return false;
}
const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer);
// Check file starts with ascii characters "RSAD"
if (memcmp(file_header->ident, "RSAD", 4))
{
strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?");
strm.EOL();
return false;
}
// Look at the type of the root element in the header
AllocationDetails::ElementHeader root_element_header;
memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader),
sizeof(AllocationDetails::ElementHeader));
if (log)
log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__,
root_element_header.type, root_element_header.element_size);
// Check if the target allocation and file both have the same number of bytes for an Element
if (*alloc->element.datum_size.get() != root_element_header.element_size)
{
strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes",
root_element_header.element_size, *alloc->element.datum_size.get());
strm.EOL();
}
// Check if the target allocation and file both have the same type
const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
const uint32_t file_type = root_element_header.type;
if (file_type > Element::RS_TYPE_FONT)
{
strm.Printf("Warning: File has unknown allocation type");
strm.EOL();
}
else if (alloc_type != file_type)
{
// Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
uint32_t printable_target_type_index = alloc_type;
uint32_t printable_head_type_index = file_type;
if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT)
printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) +
Element::RS_TYPE_MATRIX_2X2 + 1);
if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT)
printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) +
Element::RS_TYPE_MATRIX_2X2 + 1);
const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0];
const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0];
strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr,
target_type_cstr);
strm.EOL();
}
// Advance buffer past header
file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size;
// Calculate size of allocation data in file
size_t length = data_sp->GetByteSize() - file_header->hdr_size;
// Check if the target allocation and file both have the same total data size.
const uint32_t alloc_size = *alloc->size.get();
if (alloc_size != length)
{
strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes",
(uint64_t)length, alloc_size);
strm.EOL();
length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
}
// Copy file data from our buffer into the target allocation.
lldb::addr_t alloc_data = *alloc->data_ptr.get();
Error error;
size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
if (!error.Success() || bytes_written != length)
{
strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
strm.EOL();
return false;
}
strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id);
strm.EOL();
return true;
}
// Function takes as parameters a byte buffer, which will eventually be written to file as the element header,
// an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset.
// Return value is the new offset after writing the element into the buffer.
// Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's
// children.
size_t
RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset,
const Element &elem)
{
// File struct for an element header with all the relevant details copied from elem.
// We assume members are valid already.
AllocationDetails::ElementHeader elem_header;
elem_header.type = *elem.type.get();
elem_header.kind = *elem.type_kind.get();
elem_header.element_size = *elem.datum_size.get();
elem_header.vector_size = *elem.type_vec_size.get();
elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0;
const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
// Copy struct into buffer and advance offset
// We assume that header_buffer has been checked for nullptr before this method is called
memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
offset += elem_header_size;
// Starting offset of child ElementHeader struct
size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t));
for (const RenderScriptRuntime::Element &child : elem.children)
{
// Recursively populate the buffer with the element header structs of children.
// Then save the offsets where they were set after the parent element header.
memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
offset += sizeof(uint32_t);
child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
}
// Zero indicates no more children
memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
return child_offset;
}
// Given an Element object this function returns the total size needed in the file header to store the element's
// details.
// Taking into account the size of the element header struct, plus the offsets to all the element's children.
// Function is recursive so that the size of all ancestors is taken into account.
size_t
RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem)
{
size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator
size += sizeof(AllocationDetails::ElementHeader); // Size of header struct with type details
// Calculate recursively for all descendants
for (const Element &child : elem.children)
size += CalculateElementHeaderSize(child);
return size;
}
// Function copies allocation contents into a binary file.
// This file can then be loaded later into a different allocation.
// There is a header, FileHeader, before the allocation data containing meta-data.
bool
RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Find allocation with the given id
AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
if (!alloc)
return false;
if (log)
log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get());
// JIT all the allocation details
if (alloc->shouldRefresh())
{
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
if (!RefreshAllocation(alloc, frame_ptr))
{
if (log)
log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
return false;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
"Allocation information not available");
// Check we can create writable file
FileSpec file_spec(filename, true);
File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
if (!file)
{
strm.Printf("Error: Failed to open '%s' for writing", filename);
strm.EOL();
return false;
}
// Read allocation into buffer of heap memory
const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
if (!buffer)
{
strm.Printf("Error: Couldn't read allocation data into buffer");
strm.EOL();
return false;
}
// Create the file header
AllocationDetails::FileHeader head;
memcpy(head.ident, "RSAD", 4);
head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large");
head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size);
// Write the file header
size_t num_bytes = sizeof(AllocationDetails::FileHeader);
if (log)
log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, num_bytes);
Error err = file.Write(&head, num_bytes);
if (!err.Success())
{
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
strm.EOL();
return false;
}
// Create the headers describing the element type of the allocation.
std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]);
if (element_header_buffer == nullptr)
{
strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", element_header_size);
strm.EOL();
return false;
}
PopulateElementHeaders(element_header_buffer, 0, alloc->element);
// Write headers for allocation element type to file
num_bytes = element_header_size;
if (log)
log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, num_bytes);
err = file.Write(element_header_buffer.get(), num_bytes);
if (!err.Success())
{
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
strm.EOL();
return false;
}
// Write allocation data to file
num_bytes = static_cast<size_t>(*alloc->size.get());
if (log)
log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, num_bytes);
err = file.Write(buffer.get(), num_bytes);
if (!err.Success())
{
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
strm.EOL();
return false;
}
strm.Printf("Allocation written to file '%s'", filename);
strm.EOL();
return true;
}
bool
RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (module_sp)
{
for (const auto &rs_module : m_rsmodules)
{
if (rs_module->m_module == module_sp)
{
// Check if the user has enabled automatically breaking on
// all RS kernels.
if (m_breakAllKernels)
BreakOnModuleKernels(rs_module);
return false;
}
}
bool module_loaded = false;
switch (GetModuleKind(module_sp))
{
case eModuleKindKernelObj:
{
RSModuleDescriptorSP module_desc;
module_desc.reset(new RSModuleDescriptor(module_sp));
if (module_desc->ParseRSInfo())
{
m_rsmodules.push_back(module_desc);
module_loaded = true;
}
if (module_loaded)
{
FixupScriptDetails(module_desc);
}
break;
}
case eModuleKindDriver:
{
if (!m_libRSDriver)
{
m_libRSDriver = module_sp;
LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
}
break;
}
case eModuleKindImpl:
{
m_libRSCpuRef = module_sp;
break;
}
case eModuleKindLibRS:
{
if (!m_libRS)
{
m_libRS = module_sp;
static ConstString gDbgPresentStr("gDebuggerPresent");
const Symbol *debug_present =
m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
if (debug_present)
{
Error error;
uint32_t flag = 0x00000001U;
Target &target = GetProcess()->GetTarget();
addr_t addr = debug_present->GetLoadAddress(&target);
GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
if (error.Success())
{
if (log)
log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__);
m_debuggerPresentFlagged = true;
}
else if (log)
{
log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__,
error.AsCString());
}
}
else if (log)
{
log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__);
}
}
break;
}
default:
break;
}
if (module_loaded)
Update();
return module_loaded;
}
return false;
}
void
RenderScriptRuntime::Update()
{
if (m_rsmodules.size() > 0)
{
if (!m_initiated)
{
Initiate();
}
}
}
// The maximum line length of an .rs.info packet
#define MAXLINE 500
// The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
// The string is basic and is parsed on a line by line basis.
bool
RSModuleDescriptor::ParseRSInfo()
{
const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
if (info_sym)
{
const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
const addr_t size = info_sym->GetByteSize();
const FileSpec fs = m_module->GetFileSpec();
DataBufferSP buffer = fs.ReadFileContents(addr, size);
if (!buffer)
return false;
std::string info((const char *)buffer->GetBytes());
std::vector<std::string> info_lines;
size_t lpos = info.find('\n');
while (lpos != std::string::npos)
{
info_lines.push_back(info.substr(0, lpos));
info = info.substr(lpos + 1);
lpos = info.find('\n');
}
size_t offset = 0;
while (offset < info_lines.size())
{
std::string line = info_lines[offset];
// Parse directives
uint32_t numDefns = 0;
if (sscanf(line.c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1)
{
while (numDefns--)
m_globals.push_back(RSGlobalDescriptor(this, info_lines[++offset].c_str()));
}
else if (sscanf(line.c_str(), "exportFuncCount: %" PRIu32 "", &numDefns) == 1)
{
}
else if (sscanf(line.c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1)
{
char name[MAXLINE];
while (numDefns--)
{
uint32_t slot = 0;
name[0] = '\0';
if (sscanf(info_lines[++offset].c_str(), "%" PRIu32 " - %s", &slot, &name[0]) == 2)
{
m_kernels.push_back(RSKernelDescriptor(this, name, slot));
}
}
}
else if (sscanf(line.c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1)
{
char name[MAXLINE];
char value[MAXLINE];
while (numDefns--)
{
name[0] = '\0';
value[0] = '\0';
if (sscanf(info_lines[++offset].c_str(), "%s - %s", &name[0], &value[0]) != 0 && (name[0] != '\0'))
{
m_pragmas[std::string(name)] = value;
}
}
}
else if (sscanf(line.c_str(), "objectSlotCount: %" PRIu32 "", &numDefns) == 1)
{
}
offset++;
}
return m_kernels.size() > 0;
}
return false;
}
void
RenderScriptRuntime::Status(Stream &strm) const
{
if (m_libRS)
{
strm.Printf("Runtime Library discovered.");
strm.EOL();
}
if (m_libRSDriver)
{
strm.Printf("Runtime Driver discovered.");
strm.EOL();
}
if (m_libRSCpuRef)
{
strm.Printf("CPU Reference Implementation discovered.");
strm.EOL();
}
if (m_runtimeHooks.size())
{
strm.Printf("Runtime functions hooked:");
strm.EOL();
for (auto b : m_runtimeHooks)
{
strm.Indent(b.second->defn->name);
strm.EOL();
}
}
else
{
strm.Printf("Runtime is not hooked.");
strm.EOL();
}
}
void
RenderScriptRuntime::DumpContexts(Stream &strm) const
{
strm.Printf("Inferred RenderScript Contexts:");
strm.EOL();
strm.IndentMore();
std::map<addr_t, uint64_t> contextReferences;
// Iterate over all of the currently discovered scripts.
// Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
for (const auto &script : m_scripts)
{
if (!script->context.isValid())
continue;
lldb::addr_t context = *script->context;
if (contextReferences.find(context) != contextReferences.end())
{
contextReferences[context]++;
}
else
{
contextReferences[context] = 1;
}
}
for (const auto &cRef : contextReferences)
{
strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
strm.EOL();
}
strm.IndentLess();
}
void
RenderScriptRuntime::DumpKernels(Stream &strm) const
{
strm.Printf("RenderScript Kernels:");
strm.EOL();
strm.IndentMore();
for (const auto &module : m_rsmodules)
{
strm.Printf("Resource '%s':", module->m_resname.c_str());
strm.EOL();
for (const auto &kernel : module->m_kernels)
{
strm.Indent(kernel.m_name.AsCString());
strm.EOL();
}
}
strm.IndentLess();
}
RenderScriptRuntime::AllocationDetails *
RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
{
AllocationDetails *alloc = nullptr;
// See if we can find allocation using id as an index;
if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id)
{
alloc = m_allocations[alloc_id - 1].get();
return alloc;
}
// Fallback to searching
for (const auto &a : m_allocations)
{
if (a->id == alloc_id)
{
alloc = a.get();
break;
}
}
if (alloc == nullptr)
{
strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id);
strm.EOL();
}
return alloc;
}
// Prints the contents of an allocation to the output stream, which may be a file
bool
RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id)
{
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Check we can find the desired allocation
AllocationDetails *alloc = FindAllocByID(strm, id);
if (!alloc)
return false; // FindAllocByID() will print error message for us here
if (log)
log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
// Check we have information about the allocation, if not calculate it
if (alloc->shouldRefresh())
{
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
// JIT all the allocation information
if (!RefreshAllocation(alloc, frame_ptr))
{
strm.Printf("Error: Couldn't JIT allocation details");
strm.EOL();
return false;
}
}
// Establish format and size of each data element
const uint32_t vec_size = *alloc->element.type_vec_size.get();
const Element::DataType type = *alloc->element.type.get();
assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
lldb::Format format;
if (type >= Element::RS_TYPE_ELEMENT)
format = eFormatHex;
else
format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
: static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
const uint32_t data_size = *alloc->element.datum_size.get();
if (log)
log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size);
// Allocate a buffer to copy data into
std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
if (!buffer)
{
strm.Printf("Error: Couldn't read allocation data");
strm.EOL();
return false;
}
// Calculate stride between rows as there may be padding at end of rows since
// allocated memory is 16-byte aligned
if (!alloc->stride.isValid())
{
if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
alloc->stride = 0;
else if (!JITAllocationStride(alloc, frame_ptr))
{
strm.Printf("Error: Couldn't calculate allocation row stride");
strm.EOL();
return false;
}
}
const uint32_t stride = *alloc->stride.get();
const uint32_t size = *alloc->size.get(); // Size of whole allocation
const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
if (log)
log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32,
__FUNCTION__, stride, size, padding);
// Find dimensions used to index loops, so need to be non-zero
uint32_t dim_x = alloc->dimension.get()->dim_1;
dim_x = dim_x == 0 ? 1 : dim_x;
uint32_t dim_y = alloc->dimension.get()->dim_2;
dim_y = dim_y == 0 ? 1 : dim_y;
uint32_t dim_z = alloc->dimension.get()->dim_3;
dim_z = dim_z == 0 ? 1 : dim_z;
// Use data extractor to format output
const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
uint32_t offset = 0; // Offset in buffer to next element to be printed
uint32_t prev_row = 0; // Offset to the start of the previous row
// Iterate over allocation dimensions, printing results to user
strm.Printf("Data (X, Y, Z):");
for (uint32_t z = 0; z < dim_z; ++z)
{
for (uint32_t y = 0; y < dim_y; ++y)
{
// Use stride to index start of next row.
if (!(y == 0 && z == 0))
offset = prev_row + stride;
prev_row = offset;
// Print each element in the row individually
for (uint32_t x = 0; x < dim_x; ++x)
{
strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
(alloc->element.type_name != Element::GetFallbackStructName()))
{
// Here we are dumping an Element of struct type.
// This is done using expression evaluation with the name of the struct type and pointer to element.
// Don't print the name of the resulting expression, since this will be '$[0-9]+'
DumpValueObjectOptions expr_options;
expr_options.SetHideName(true);
// Setup expression as derefrencing a pointer cast to element address.
char expr_char_buffer[jit_max_expr_size];
int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
if (chars_written < 0 || chars_written >= jit_max_expr_size)
{
if (log)
log->Printf("%s - error in snprintf().", __FUNCTION__);
continue;
}
// Evaluate expression
ValueObjectSP expr_result;
GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
// Print the results to our stream.
expr_result->Dump(strm, expr_options);
}
else
{
alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
}
offset += data_size;
}
}
}
strm.EOL();
return true;
}
// Function recalculates all our cached information about allocations by jitting the
// RS runtime regarding each allocation we know about.
// Returns true if all allocations could be recomputed, false otherwise.
bool
RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr)
{
bool success = true;
for (auto &alloc : m_allocations)
{
// JIT current allocation information
if (!RefreshAllocation(alloc.get(), frame_ptr))
{
strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id);
success = false;
}
}
if (success)
strm.Printf("All allocations successfully recomputed");
strm.EOL();
return success;
}
// Prints information regarding currently loaded allocations.
// These details are gathered by jitting the runtime, which has as latency.
// Index parameter specifies a single allocation ID to print, or a zero value to print them all
void
RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index)
{
strm.Printf("RenderScript Allocations:");
strm.EOL();
strm.IndentMore();
for (auto &alloc : m_allocations)
{
// index will only be zero if we want to print all allocations
if (index != 0 && index != alloc->id)
continue;
// JIT current allocation information
if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr))
{
strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id);
strm.EOL();
continue;
}
strm.Printf("%" PRIu32 ":", alloc->id);
strm.EOL();
strm.IndentMore();
strm.Indent("Context: ");
if (!alloc->context.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
strm.Indent("Address: ");
if (!alloc->address.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
strm.Indent("Data pointer: ");
if (!alloc->data_ptr.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
strm.Indent("Dimensions: ");
if (!alloc->dimension.isValid())
strm.Printf("unknown\n");
else
strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3);
strm.Indent("Data Type: ");
if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
strm.Printf("unknown\n");
else
{
const int vector_size = *alloc->element.type_vec_size.get();
Element::DataType type = *alloc->element.type.get();
if (!alloc->element.type_name.IsEmpty())
strm.Printf("%s\n", alloc->element.type_name.AsCString());
else
{
// Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
Element::RS_TYPE_MATRIX_2X2 + 1);
if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
sizeof(AllocationDetails::RsDataTypeToString[0])) ||
vector_size > 4 || vector_size < 1)
strm.Printf("invalid type\n");
else
strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
[vector_size - 1]);
}
}
strm.Indent("Data Kind: ");
if (!alloc->element.type_kind.isValid())
strm.Printf("unknown\n");
else
{
const Element::DataKind kind = *alloc->element.type_kind.get();
if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
strm.Printf("invalid kind\n");
else
strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
}
strm.EOL();
strm.IndentLess();
}
strm.IndentLess();
}
// Set breakpoints on every kernel found in RS module
void
RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
{
for (const auto &kernel : rsmodule_sp->m_kernels)
{
// Don't set breakpoint on 'root' kernel
if (strcmp(kernel.m_name.AsCString(), "root") == 0)
continue;
CreateKernelBreakpoint(kernel.m_name);
}
}
// Method is internally called by the 'kernel breakpoint all' command to
// enable or disable breaking on all kernels.
//
// When do_break is true we want to enable this functionality.
// When do_break is false we want to disable it.
void
RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
{
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
InitSearchFilter(target);
// Set breakpoints on all the kernels
if (do_break && !m_breakAllKernels)
{
m_breakAllKernels = true;
for (const auto &module : m_rsmodules)
BreakOnModuleKernels(module);
if (log)
log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__);
}
else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
{
m_breakAllKernels = false;
if (log)
log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__);
}
}
// Given the name of a kernel this function creates a breakpoint using our
// own breakpoint resolver, and returns the Breakpoint shared pointer.
BreakpointSP
RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name)
{
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
if (!m_filtersp)
{
if (log)
log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
return nullptr;
}
BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
// Give RS breakpoints a specific name, so the user can manipulate them as a group.
Error err;
if (!bp->AddName("RenderScriptKernel", err) && log)
log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString());
return bp;
}
// Given an expression for a variable this function tries to calculate the variable's value.
// If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
// Otherwise function returns false.
bool
RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val)
{
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
Error error;
VariableSP var_sp;
// Find variable in stack frame
ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
var_name, eNoDynamicValues,
StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
var_sp, error));
if (!error.Success())
{
if (log)
log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name);
return false;
}
// Find the uint32_t value for the variable
bool success = false;
val = value_sp->GetValueAsUnsigned(0, &success);
if (!success)
{
if (log)
log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name);
return false;
}
return true;
}
// Function attempts to find the current coordinate of a kernel invocation by investigating the
// values of frame variables in the .expand function. These coordinates are returned via the coord
// array reference parameter. Returns true if the coordinates could be found, and false otherwise.
bool
RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr)
{
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!thread_ptr)
{
if (log)
log->Printf("%s - Error, No thread pointer", __FUNCTION__);
return false;
}
// Walk the call stack looking for a function whose name has the suffix '.expand'
// and contains the variables we're looking for.
for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i)
{
if (!thread_ptr->SetSelectedFrameByIndex(i))
continue;
StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
if (!frame_sp)
continue;
// Find the function name
const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false);
const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString();
if (!func_name_cstr)
continue;
if (log)
log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr);
// Check if function name has .expand suffix
std::string func_name(func_name_cstr);
const int length_difference = func_name.length() - RenderScriptRuntime::s_runtimeExpandSuffix.length();
if (length_difference <= 0)
continue;
const int32_t has_expand_suffix = func_name.compare(length_difference,
RenderScriptRuntime::s_runtimeExpandSuffix.length(),
RenderScriptRuntime::s_runtimeExpandSuffix);
if (has_expand_suffix != 0)
continue;
if (log)
log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr);
// Get values for variables in .expand frame that tell us the current kernel invocation
bool found_coord_variables = true;
assert(RenderScriptRuntime::s_runtimeCoordVars.size() == coord.size());
for (uint32_t i = 0; i < coord.size(); ++i)
{
uint64_t value = 0;
if (!GetFrameVarAsUnsigned(frame_sp, RenderScriptRuntime::s_runtimeCoordVars[i], value))
{
found_coord_variables = false;
break;
}
coord[i] = value;
}
if (found_coord_variables)
return true;
}
return false;
}
// Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
// Baton parameter contains a pointer to the target coordinate we want to break on.
// Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
// Parameter 'break_id' is the id of the Breakpoint which made the callback.
// Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
// a single logical breakpoint can have multiple addresses.
bool
RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id,
user_id_t break_loc_id)
{
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
assert(baton && "Error: null baton in conditional kernel breakpoint callback");
// Coordinate we want to stop on
const uint32_t *target_coord = static_cast<const uint32_t *>(baton);
if (log)
log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id,
target_coord[0], target_coord[1], target_coord[2]);
// Select current thread
ExecutionContext context(ctx->exe_ctx_ref);
Thread *thread_ptr = context.GetThreadPtr();
assert(thread_ptr && "Null thread pointer");
// Find current kernel invocation from .expand frame variables
RSCoordinate current_coord{}; // Zero initialise array
if (!GetKernelCoordinate(current_coord, thread_ptr))
{
if (log)
log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__);
return false;
}
if (log)
log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1],
current_coord[2]);
// Check if the current kernel invocation coordinate matches our target coordinate
if (current_coord[0] == target_coord[0] &&
current_coord[1] == target_coord[1] &&
current_coord[2] == target_coord[2])
{
if (log)
log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0],
current_coord[1], current_coord[2]);
BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
return true;
}
// No match on coordinate
return false;
}
// Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
// Argument 'coords', represents a three dimensional coordinate which can be used to specify
// a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
void
RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords,
Error &error, TargetSP target)
{
if (!name)
{
error.SetErrorString("invalid kernel name");
return;
}
InitSearchFilter(target);
ConstString kernel_name(name);
BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
// We have a conditional breakpoint on a specific coordinate
if (coords[0] != -1)
{
strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32,
coords[0], coords[1], coords[2]);
strm.EOL();
// Allocate memory for the baton, and copy over coordinate
uint32_t *baton = new uint32_t[coords.size()];
baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
// Create a callback that will be invoked everytime the breakpoint is hit.
// The baton object passed to the handler is the target coordinate we want to break on.
bp->SetCallback(KernelBreakpointHit, baton, true);
// Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton);
}
if (bp)
bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
}
void
RenderScriptRuntime::DumpModules(Stream &strm) const
{
strm.Printf("RenderScript Modules:");
strm.EOL();
strm.IndentMore();
for (const auto &module : m_rsmodules)
{
module->Dump(strm);
}
strm.IndentLess();
}
RenderScriptRuntime::ScriptDetails *
RenderScriptRuntime::LookUpScript(addr_t address, bool create)
{
for (const auto &s : m_scripts)
{
if (s->script.isValid())
if (*s->script == address)
return s.get();
}
if (create)
{
std::unique_ptr<ScriptDetails> s(new ScriptDetails);
s->script = address;
m_scripts.push_back(std::move(s));
return m_scripts.back().get();
}
return nullptr;
}
RenderScriptRuntime::AllocationDetails *
RenderScriptRuntime::LookUpAllocation(addr_t address, bool create)
{
for (const auto &a : m_allocations)
{
if (a->address.isValid())
if (*a->address == address)
return a.get();
}
if (create)
{
std::unique_ptr<AllocationDetails> a(new AllocationDetails);
a->address = address;
m_allocations.push_back(std::move(a));
return m_allocations.back().get();
}
return nullptr;
}
void
RSModuleDescriptor::Dump(Stream &strm) const
{
strm.Indent();
m_module->GetFileSpec().Dump(&strm);
if (m_module->GetNumCompileUnits())
{
strm.Indent("Debug info loaded.");
}
else
{
strm.Indent("Debug info does not exist.");
}
strm.EOL();
strm.IndentMore();
strm.Indent();
strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
strm.EOL();
strm.IndentMore();
for (const auto &global : m_globals)
{
global.Dump(strm);
}
strm.IndentLess();
strm.Indent();
strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
strm.EOL();
strm.IndentMore();
for (const auto &kernel : m_kernels)
{
kernel.Dump(strm);
}
strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
strm.EOL();
strm.IndentMore();
for (const auto &key_val : m_pragmas)
{
strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
strm.EOL();
}
strm.IndentLess(4);
}
void
RSGlobalDescriptor::Dump(Stream &strm) const
{
strm.Indent(m_name.AsCString());
VariableList var_list;
m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
if (var_list.GetSize() == 1)
{
auto var = var_list.GetVariableAtIndex(0);
auto type = var->GetType();
if (type)
{
strm.Printf(" - ");
type->DumpTypeName(&strm);
}
else
{
strm.Printf(" - Unknown Type");
}
}
else
{
strm.Printf(" - variable identified, but not found in binary");
const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
if (s)
{
strm.Printf(" (symbol exists) ");
}
}
strm.EOL();
}
void
RSKernelDescriptor::Dump(Stream &strm) const
{
strm.Indent(m_name.AsCString());
strm.EOL();
}
class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript module dump",
"Dumps renderscript specific information for all modules.", "renderscript module dump",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeModuleDump() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->DumpModules(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.",
nullptr)
{
LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
}
~CommandObjectRenderScriptRuntimeModule() override = default;
};
class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript kernel list",
"Lists renderscript kernel names and associated script resources.",
"renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeKernelList() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->DumpKernels(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
"Sets a breakpoint on a renderscript kernel.",
"renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused),
m_options(interpreter)
{
}
~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
Options *
GetOptions() override
{
return &m_options;
}
class CommandOptions : public Options
{
public:
CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
~CommandOptions() override = default;
Error
SetOptionValue(uint32_t option_idx, const char *option_arg) override
{
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option)
{
case 'c':
if (!ParseCoordinate(option_arg))
error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
option_arg);
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return error;
}
// -c takes an argument of the form 'num[,num][,num]'.
// Where 'id_cstr' is this argument with the whitespace trimmed.
// Missing coordinates are defaulted to zero.
bool
ParseCoordinate(const char *id_cstr)
{
RegularExpression regex;
RegularExpression::Match regex_match(3);
bool matched = false;
if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
matched = true;
else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
matched = true;
else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
matched = true;
for (uint32_t i = 0; i < 3; i++)
{
std::string group;
if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0);
else
m_coord[i] = 0;
}
return matched;
}
void
OptionParsingStarting() override
{
// -1 means the -c option hasn't been set
m_coord[0] = -1;
m_coord[1] = -1;
m_coord[2] = -1;
}
const OptionDefinition *
GetDefinitions() override
{
return g_option_table;
}
static OptionDefinition g_option_table[];
std::array<int, 3> m_coord;
};
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc < 1)
{
result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
Error error;
runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
error, m_exe_ctx.GetTargetSP());
if (error.Success())
{
result.AppendMessage("Breakpoint(s) created");
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
result.SetStatus(eReturnStatusFailed);
result.AppendErrorWithFormat("Error: %s", error.AsCString());
return false;
}
private:
CommandOptions m_options;
};
OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = {
{LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue,
"Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
"Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
"Any unset dimensions will be defaulted to zero."},
{0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript kernel breakpoint all",
"Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
"Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
"but does not remove currently set breakpoints.",
"renderscript kernel breakpoint all <enable/disable>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
{
}
~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc != 1)
{
result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
bool do_break = false;
const char *argument = command.GetArgumentAtIndex(0);
if (strcmp(argument, "enable") == 0)
{
do_break = true;
result.AppendMessage("Breakpoints will be set on all kernels.");
}
else if (strcmp(argument, "disable") == 0)
{
do_break = false;
result.AppendMessage("Breakpoints will not be set on any new kernels.");
}
else
{
result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
result.SetStatus(eReturnStatusFailed);
return false;
}
runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript kernel coordinate",
"Shows the (x,y,z) coordinate of the current kernel invocation.",
"renderscript kernel coordinate",
eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
{
}
~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RSCoordinate coord{}; // Zero initialize array
bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr());
Stream &stream = result.GetOutputStream();
if (success)
{
stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]);
stream.EOL();
result.SetStatus(eReturnStatusSuccessFinishResult);
}
else
{
stream.Printf("Error: Coordinate could not be found.");
stream.EOL();
result.SetStatus(eReturnStatusFailed);
}
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript kernel",
"Commands that generate breakpoints on renderscript kernels.", nullptr)
{
LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
}
~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
};
class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.",
nullptr)
{
LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
LoadSubCommand("coordinate",
CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
LoadSubCommand("breakpoint",
CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
}
~CommandObjectRenderScriptRuntimeKernel() override = default;
};
class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.",
"renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeContextDump() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->DumpContexts(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.",
nullptr)
{
LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
}
~CommandObjectRenderScriptRuntimeContext() override = default;
};
class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation dump",
"Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched),
m_options(interpreter)
{
}
~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
Options *
GetOptions() override
{
return &m_options;
}
class CommandOptions : public Options
{
public:
CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
~CommandOptions() override = default;
Error
SetOptionValue(uint32_t option_idx, const char *option_arg) override
{
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option)
{
case 'f':
m_outfile.SetFile(option_arg, true);
if (m_outfile.Exists())
{
m_outfile.Clear();
error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
}
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return error;
}
void
OptionParsingStarting() override
{
m_outfile.Clear();
}
const OptionDefinition *
GetDefinitions() override
{
return g_option_table;
}
static OptionDefinition g_option_table[];
FileSpec m_outfile;
};
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc < 1)
{
result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
const char *id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete)
{
result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
Stream *output_strm = nullptr;
StreamFile outfile_stream;
const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
if (outfile_spec)
{
// Open output file
char path[256];
outfile_spec.GetPath(path, sizeof(path));
if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
{
output_strm = &outfile_stream;
result.GetOutputStream().Printf("Results written to '%s'", path);
result.GetOutputStream().EOL();
}
else
{
result.AppendErrorWithFormat("Couldn't open file '%s'", path);
result.SetStatus(eReturnStatusFailed);
return false;
}
}
else
output_strm = &result.GetOutputStream();
assert(output_strm != nullptr);
bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
private:
CommandOptions m_options;
};
OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = {
{LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename,
"Print results to specified file instead of command line."},
{0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation list",
"List renderscript allocations and their information.", "renderscript allocation list",
eCommandRequiresProcess | eCommandProcessMustBeLaunched),
m_options(interpreter)
{
}
~CommandObjectRenderScriptRuntimeAllocationList() override = default;
Options *
GetOptions() override
{
return &m_options;
}
class CommandOptions : public Options
{
public:
CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {}
~CommandOptions() override = default;
Error
SetOptionValue(uint32_t option_idx, const char *option_arg) override
{
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option)
{
case 'i':
bool success;
m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success);
if (!success)
error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option);
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return error;
}
void
OptionParsingStarting() override
{
m_id = 0;
}
const OptionDefinition *
GetDefinitions() override
{
return g_option_table;
}
static OptionDefinition g_option_table[];
uint32_t m_id;
};
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id);
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
private:
CommandOptions m_options;
};
OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = {
{LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex,
"Only show details of a single allocation with specified id."},
{0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.",
"renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc != 2)
{
result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
const char *id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete)
{
result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
const char *filename = command.GetArgumentAtIndex(1);
bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
};
class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.",
"renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc != 2)
{
result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
const char *id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete)
{
result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
const char *filename = command.GetArgumentAtIndex(1);
bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
};
class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation refresh",
"Recomputes the details of all allocations.", "renderscript allocation refresh",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr());
if (success)
{
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
else
{
result.SetStatus(eReturnStatusFailed);
return false;
}
}
};
class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript allocation",
"Commands that deal with renderscript allocations.", nullptr)
{
LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter)));
}
~CommandObjectRenderScriptRuntimeAllocation() override = default;
};
class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.",
"renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeStatus() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->Status(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.",
"renderscript <subcommand> [<subcommand-options>]")
{
LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
}
~CommandObjectRenderScriptRuntime() override = default;
};
void
RenderScriptRuntime::Initiate()
{
assert(!m_initiated);
}
RenderScriptRuntime::RenderScriptRuntime(Process *process)
: lldb_private::CPPLanguageRuntime(process),
m_initiated(false),
m_debuggerPresentFlagged(false),
m_breakAllKernels(false)
{
ModulesDidLoad(process->GetTarget().GetImages());
}
lldb::CommandObjectSP
RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter)
{
return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
}
RenderScriptRuntime::~RenderScriptRuntime() = default;