This commit enables support for providing and processing external
resources within MLIR assembly formats. This is a mechanism with which
dialects, and external clients, may attach additional information when
printing IR without that information being encoded in the IR itself.
External resources are not uniqued within the MLIR context, are not
attached directly to any operation, and are solely intended to live and be
processed outside of the immediate IR. There are many potential uses of this
functionality, for example MLIR's pass crash reproducer could utilize this to
attach the pass resource executing when a crash occurs. Other types of
uses may be embedding large amounts of binary data, such as weights in ML
applications, that shouldn't be copied directly into the MLIR context, but
need to be kept adjacent to the IR.
External resources are encoded using a key-value pair nested within a
dictionary anchored by name either on a dialect, or an externally registered
entity. The key is an identifier used to disambiguate the data. The value
may be stored in various limited forms, but general encodings use a string
(human readable) or blob format (binary). Within the textual format, an
example may be of the form:
```mlir
{-#
// The `dialect_resources` section within the file-level metadata
// dictionary is used to contain any dialect resource entries.
dialect_resources: {
// Here is a dictionary anchored on "foo_dialect", which is a dialect
// namespace.
foo_dialect: {
// `some_dialect_resource` is a key to be interpreted by the dialect,
// and used to initialize/configure/etc.
some_dialect_resource: "Some important resource value"
}
},
// The `external_resources` section within the file-level metadata
// dictionary is used to contain any non-dialect resource entries.
external_resources: {
// Here is a dictionary anchored on "mlir_reproducer", which is an
// external entity representing MLIR's crash reproducer functionality.
mlir_reproducer: {
// `pipeline` is an entry that holds a crash reproducer pipeline
// resource.
pipeline: "func.func(canonicalize,cse)"
}
}
```
Differential Revision: https://reviews.llvm.org/D126446
751 lines
27 KiB
C++
751 lines
27 KiB
C++
//===- AffineParser.cpp - MLIR Affine Parser ------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a parser for Affine structures.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Parser.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
namespace {
|
|
|
|
/// Lower precedence ops (all at the same precedence level). LNoOp is false in
|
|
/// the boolean sense.
|
|
enum AffineLowPrecOp {
|
|
/// Null value.
|
|
LNoOp,
|
|
Add,
|
|
Sub
|
|
};
|
|
|
|
/// Higher precedence ops - all at the same precedence level. HNoOp is false
|
|
/// in the boolean sense.
|
|
enum AffineHighPrecOp {
|
|
/// Null value.
|
|
HNoOp,
|
|
Mul,
|
|
FloorDiv,
|
|
CeilDiv,
|
|
Mod
|
|
};
|
|
|
|
/// This is a specialized parser for affine structures (affine maps, affine
|
|
/// expressions, and integer sets), maintaining the state transient to their
|
|
/// bodies.
|
|
class AffineParser : public Parser {
|
|
public:
|
|
AffineParser(ParserState &state, bool allowParsingSSAIds = false,
|
|
function_ref<ParseResult(bool)> parseElement = nullptr)
|
|
: Parser(state), allowParsingSSAIds(allowParsingSSAIds),
|
|
parseElement(parseElement) {}
|
|
|
|
ParseResult parseAffineMapRange(unsigned numDims, unsigned numSymbols,
|
|
AffineMap &result);
|
|
ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set);
|
|
ParseResult parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols,
|
|
IntegerSet &result);
|
|
ParseResult parseAffineMapOfSSAIds(AffineMap &map,
|
|
OpAsmParser::Delimiter delimiter);
|
|
ParseResult parseAffineExprOfSSAIds(AffineExpr &expr);
|
|
void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds,
|
|
unsigned &numDims);
|
|
|
|
private:
|
|
// Binary affine op parsing.
|
|
AffineLowPrecOp consumeIfLowPrecOp();
|
|
AffineHighPrecOp consumeIfHighPrecOp();
|
|
|
|
// Identifier lists for polyhedral structures.
|
|
ParseResult parseDimIdList(unsigned &numDims);
|
|
ParseResult parseSymbolIdList(unsigned &numSymbols);
|
|
ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims,
|
|
unsigned &numSymbols);
|
|
ParseResult parseIdentifierDefinition(AffineExpr idExpr);
|
|
|
|
AffineExpr parseAffineExpr();
|
|
AffineExpr parseParentheticalExpr();
|
|
AffineExpr parseNegateExpression(AffineExpr lhs);
|
|
AffineExpr parseIntegerExpr();
|
|
AffineExpr parseBareIdExpr();
|
|
AffineExpr parseSSAIdExpr(bool isSymbol);
|
|
AffineExpr parseSymbolSSAIdExpr();
|
|
|
|
AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
|
|
AffineExpr rhs, SMLoc opLoc);
|
|
AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
|
|
AffineExpr rhs);
|
|
AffineExpr parseAffineOperandExpr(AffineExpr lhs);
|
|
AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
|
|
AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
|
|
SMLoc llhsOpLoc);
|
|
AffineExpr parseAffineConstraint(bool *isEq);
|
|
|
|
private:
|
|
bool allowParsingSSAIds;
|
|
function_ref<ParseResult(bool)> parseElement;
|
|
unsigned numDimOperands = 0;
|
|
unsigned numSymbolOperands = 0;
|
|
SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
|
|
};
|
|
} // namespace
|
|
|
|
/// Create an affine binary high precedence op expression (mul's, div's, mod).
|
|
/// opLoc is the location of the op token to be used to report errors
|
|
/// for non-conforming expressions.
|
|
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
|
|
AffineExpr lhs, AffineExpr rhs,
|
|
SMLoc opLoc) {
|
|
// TODO: make the error location info accurate.
|
|
switch (op) {
|
|
case Mul:
|
|
if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
|
|
emitError(opLoc, "non-affine expression: at least one of the multiply "
|
|
"operands has to be either a constant or symbolic");
|
|
return nullptr;
|
|
}
|
|
return lhs * rhs;
|
|
case FloorDiv:
|
|
if (!rhs.isSymbolicOrConstant()) {
|
|
emitError(opLoc, "non-affine expression: right operand of floordiv "
|
|
"has to be either a constant or symbolic");
|
|
return nullptr;
|
|
}
|
|
return lhs.floorDiv(rhs);
|
|
case CeilDiv:
|
|
if (!rhs.isSymbolicOrConstant()) {
|
|
emitError(opLoc, "non-affine expression: right operand of ceildiv "
|
|
"has to be either a constant or symbolic");
|
|
return nullptr;
|
|
}
|
|
return lhs.ceilDiv(rhs);
|
|
case Mod:
|
|
if (!rhs.isSymbolicOrConstant()) {
|
|
emitError(opLoc, "non-affine expression: right operand of mod "
|
|
"has to be either a constant or symbolic");
|
|
return nullptr;
|
|
}
|
|
return lhs % rhs;
|
|
case HNoOp:
|
|
llvm_unreachable("can't create affine expression for null high prec op");
|
|
return nullptr;
|
|
}
|
|
llvm_unreachable("Unknown AffineHighPrecOp");
|
|
}
|
|
|
|
/// Create an affine binary low precedence op expression (add, sub).
|
|
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
|
|
AffineExpr lhs, AffineExpr rhs) {
|
|
switch (op) {
|
|
case AffineLowPrecOp::Add:
|
|
return lhs + rhs;
|
|
case AffineLowPrecOp::Sub:
|
|
return lhs - rhs;
|
|
case AffineLowPrecOp::LNoOp:
|
|
llvm_unreachable("can't create affine expression for null low prec op");
|
|
return nullptr;
|
|
}
|
|
llvm_unreachable("Unknown AffineLowPrecOp");
|
|
}
|
|
|
|
/// Consume this token if it is a lower precedence affine op (there are only
|
|
/// two precedence levels).
|
|
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
|
|
switch (getToken().getKind()) {
|
|
case Token::plus:
|
|
consumeToken(Token::plus);
|
|
return AffineLowPrecOp::Add;
|
|
case Token::minus:
|
|
consumeToken(Token::minus);
|
|
return AffineLowPrecOp::Sub;
|
|
default:
|
|
return AffineLowPrecOp::LNoOp;
|
|
}
|
|
}
|
|
|
|
/// Consume this token if it is a higher precedence affine op (there are only
|
|
/// two precedence levels)
|
|
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
|
|
switch (getToken().getKind()) {
|
|
case Token::star:
|
|
consumeToken(Token::star);
|
|
return Mul;
|
|
case Token::kw_floordiv:
|
|
consumeToken(Token::kw_floordiv);
|
|
return FloorDiv;
|
|
case Token::kw_ceildiv:
|
|
consumeToken(Token::kw_ceildiv);
|
|
return CeilDiv;
|
|
case Token::kw_mod:
|
|
consumeToken(Token::kw_mod);
|
|
return Mod;
|
|
default:
|
|
return HNoOp;
|
|
}
|
|
}
|
|
|
|
/// Parse a high precedence op expression list: mul, div, and mod are high
|
|
/// precedence binary ops, i.e., parse a
|
|
/// expr_1 op_1 expr_2 op_2 ... expr_n
|
|
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
|
|
/// All affine binary ops are left associative.
|
|
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
|
|
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
|
|
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
|
|
/// report an error for non-conforming expressions.
|
|
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
|
|
AffineHighPrecOp llhsOp,
|
|
SMLoc llhsOpLoc) {
|
|
AffineExpr lhs = parseAffineOperandExpr(llhs);
|
|
if (!lhs)
|
|
return nullptr;
|
|
|
|
// Found an LHS. Parse the remaining expression.
|
|
auto opLoc = getToken().getLoc();
|
|
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
|
|
if (llhs) {
|
|
AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
|
|
if (!expr)
|
|
return nullptr;
|
|
return parseAffineHighPrecOpExpr(expr, op, opLoc);
|
|
}
|
|
// No LLHS, get RHS
|
|
return parseAffineHighPrecOpExpr(lhs, op, opLoc);
|
|
}
|
|
|
|
// This is the last operand in this expression.
|
|
if (llhs)
|
|
return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
|
|
|
|
// No llhs, 'lhs' itself is the expression.
|
|
return lhs;
|
|
}
|
|
|
|
/// Parse an affine expression inside parentheses.
|
|
///
|
|
/// affine-expr ::= `(` affine-expr `)`
|
|
AffineExpr AffineParser::parseParentheticalExpr() {
|
|
if (parseToken(Token::l_paren, "expected '('"))
|
|
return nullptr;
|
|
if (getToken().is(Token::r_paren))
|
|
return emitError("no expression inside parentheses"), nullptr;
|
|
|
|
auto expr = parseAffineExpr();
|
|
if (!expr || parseToken(Token::r_paren, "expected ')'"))
|
|
return nullptr;
|
|
|
|
return expr;
|
|
}
|
|
|
|
/// Parse the negation expression.
|
|
///
|
|
/// affine-expr ::= `-` affine-expr
|
|
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
|
|
if (parseToken(Token::minus, "expected '-'"))
|
|
return nullptr;
|
|
|
|
AffineExpr operand = parseAffineOperandExpr(lhs);
|
|
// Since negation has the highest precedence of all ops (including high
|
|
// precedence ops) but lower than parentheses, we are only going to use
|
|
// parseAffineOperandExpr instead of parseAffineExpr here.
|
|
if (!operand)
|
|
// Extra error message although parseAffineOperandExpr would have
|
|
// complained. Leads to a better diagnostic.
|
|
return emitError("missing operand of negation"), nullptr;
|
|
return (-1) * operand;
|
|
}
|
|
|
|
/// Returns true if the given token can be represented as an identifier.
|
|
static bool isIdentifier(const Token &token) {
|
|
// We include only `inttype` and `bare_identifier` here since they are the
|
|
// only non-keyword tokens that can be used to represent an identifier.
|
|
return token.isAny(Token::bare_identifier, Token::inttype) ||
|
|
token.isKeyword();
|
|
}
|
|
|
|
/// Parse a bare id that may appear in an affine expression.
|
|
///
|
|
/// affine-expr ::= bare-id
|
|
AffineExpr AffineParser::parseBareIdExpr() {
|
|
if (!isIdentifier(getToken()))
|
|
return emitWrongTokenError("expected bare identifier"), nullptr;
|
|
|
|
StringRef sRef = getTokenSpelling();
|
|
for (auto entry : dimsAndSymbols) {
|
|
if (entry.first == sRef) {
|
|
consumeToken();
|
|
return entry.second;
|
|
}
|
|
}
|
|
|
|
return emitWrongTokenError("use of undeclared identifier"), nullptr;
|
|
}
|
|
|
|
/// Parse an SSA id which may appear in an affine expression.
|
|
AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) {
|
|
if (!allowParsingSSAIds)
|
|
return emitWrongTokenError("unexpected ssa identifier"), nullptr;
|
|
if (getToken().isNot(Token::percent_identifier))
|
|
return emitWrongTokenError("expected ssa identifier"), nullptr;
|
|
auto name = getTokenSpelling();
|
|
// Check if we already parsed this SSA id.
|
|
for (auto entry : dimsAndSymbols) {
|
|
if (entry.first == name) {
|
|
consumeToken(Token::percent_identifier);
|
|
return entry.second;
|
|
}
|
|
}
|
|
// Parse the SSA id and add an AffineDim/SymbolExpr to represent it.
|
|
if (parseElement(isSymbol))
|
|
return nullptr;
|
|
auto idExpr = isSymbol
|
|
? getAffineSymbolExpr(numSymbolOperands++, getContext())
|
|
: getAffineDimExpr(numDimOperands++, getContext());
|
|
dimsAndSymbols.push_back({name, idExpr});
|
|
return idExpr;
|
|
}
|
|
|
|
AffineExpr AffineParser::parseSymbolSSAIdExpr() {
|
|
if (parseToken(Token::kw_symbol, "expected symbol keyword") ||
|
|
parseToken(Token::l_paren, "expected '(' at start of SSA symbol"))
|
|
return nullptr;
|
|
AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true);
|
|
if (!symbolExpr)
|
|
return nullptr;
|
|
if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol"))
|
|
return nullptr;
|
|
return symbolExpr;
|
|
}
|
|
|
|
/// Parse a positive integral constant appearing in an affine expression.
|
|
///
|
|
/// affine-expr ::= integer-literal
|
|
AffineExpr AffineParser::parseIntegerExpr() {
|
|
auto val = getToken().getUInt64IntegerValue();
|
|
if (!val.hasValue() || (int64_t)val.getValue() < 0)
|
|
return emitError("constant too large for index"), nullptr;
|
|
|
|
consumeToken(Token::integer);
|
|
return builder.getAffineConstantExpr((int64_t)val.getValue());
|
|
}
|
|
|
|
/// Parses an expression that can be a valid operand of an affine expression.
|
|
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
|
|
/// operator, the rhs of which is being parsed. This is used to determine
|
|
/// whether an error should be emitted for a missing right operand.
|
|
// Eg: for an expression without parentheses (like i + j + k + l), each
|
|
// of the four identifiers is an operand. For i + j*k + l, j*k is not an
|
|
// operand expression, it's an op expression and will be parsed via
|
|
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
|
|
// -l are valid operands that will be parsed by this function.
|
|
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
|
|
switch (getToken().getKind()) {
|
|
case Token::kw_symbol:
|
|
return parseSymbolSSAIdExpr();
|
|
case Token::percent_identifier:
|
|
return parseSSAIdExpr(/*isSymbol=*/false);
|
|
case Token::integer:
|
|
return parseIntegerExpr();
|
|
case Token::l_paren:
|
|
return parseParentheticalExpr();
|
|
case Token::minus:
|
|
return parseNegateExpression(lhs);
|
|
case Token::kw_ceildiv:
|
|
case Token::kw_floordiv:
|
|
case Token::kw_mod:
|
|
// Try to treat these tokens as identifiers.
|
|
return parseBareIdExpr();
|
|
case Token::plus:
|
|
case Token::star:
|
|
if (lhs)
|
|
emitError("missing right operand of binary operator");
|
|
else
|
|
emitError("missing left operand of binary operator");
|
|
return nullptr;
|
|
default:
|
|
// If nothing matches, we try to treat this token as an identifier.
|
|
if (isIdentifier(getToken()))
|
|
return parseBareIdExpr();
|
|
|
|
if (lhs)
|
|
emitError("missing right operand of binary operator");
|
|
else
|
|
emitError("expected affine expression");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// Parse affine expressions that are bare-id's, integer constants,
|
|
/// parenthetical affine expressions, and affine op expressions that are a
|
|
/// composition of those.
|
|
///
|
|
/// All binary op's associate from left to right.
|
|
///
|
|
/// {add, sub} have lower precedence than {mul, div, and mod}.
|
|
///
|
|
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
|
|
/// ceildiv, and mod are at the same higher precedence level. Negation has
|
|
/// higher precedence than any binary op.
|
|
///
|
|
/// llhs: the affine expression appearing on the left of the one being parsed.
|
|
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
|
|
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
|
|
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
|
|
/// associativity.
|
|
///
|
|
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
|
|
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
|
|
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
|
|
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
|
|
AffineLowPrecOp llhsOp) {
|
|
AffineExpr lhs;
|
|
if (!(lhs = parseAffineOperandExpr(llhs)))
|
|
return nullptr;
|
|
|
|
// Found an LHS. Deal with the ops.
|
|
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
|
|
if (llhs) {
|
|
AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
|
|
return parseAffineLowPrecOpExpr(sum, lOp);
|
|
}
|
|
// No LLHS, get RHS and form the expression.
|
|
return parseAffineLowPrecOpExpr(lhs, lOp);
|
|
}
|
|
auto opLoc = getToken().getLoc();
|
|
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
|
|
// We have a higher precedence op here. Get the rhs operand for the llhs
|
|
// through parseAffineHighPrecOpExpr.
|
|
AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
|
|
if (!highRes)
|
|
return nullptr;
|
|
|
|
// If llhs is null, the product forms the first operand of the yet to be
|
|
// found expression. If non-null, the op to associate with llhs is llhsOp.
|
|
AffineExpr expr =
|
|
llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
|
|
|
|
// Recurse for subsequent low prec op's after the affine high prec op
|
|
// expression.
|
|
if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
|
|
return parseAffineLowPrecOpExpr(expr, nextOp);
|
|
return expr;
|
|
}
|
|
// Last operand in the expression list.
|
|
if (llhs)
|
|
return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
|
|
// No llhs, 'lhs' itself is the expression.
|
|
return lhs;
|
|
}
|
|
|
|
/// Parse an affine expression.
|
|
/// affine-expr ::= `(` affine-expr `)`
|
|
/// | `-` affine-expr
|
|
/// | affine-expr `+` affine-expr
|
|
/// | affine-expr `-` affine-expr
|
|
/// | affine-expr `*` affine-expr
|
|
/// | affine-expr `floordiv` affine-expr
|
|
/// | affine-expr `ceildiv` affine-expr
|
|
/// | affine-expr `mod` affine-expr
|
|
/// | bare-id
|
|
/// | integer-literal
|
|
///
|
|
/// Additional conditions are checked depending on the production. For eg.,
|
|
/// one of the operands for `*` has to be either constant/symbolic; the second
|
|
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
|
|
AffineExpr AffineParser::parseAffineExpr() {
|
|
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
|
|
}
|
|
|
|
/// Parse a dim or symbol from the lists appearing before the actual
|
|
/// expressions of the affine map. Update our state to store the
|
|
/// dimensional/symbolic identifier.
|
|
ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
|
|
if (!isIdentifier(getToken()))
|
|
return emitWrongTokenError("expected bare identifier");
|
|
|
|
auto name = getTokenSpelling();
|
|
for (auto entry : dimsAndSymbols) {
|
|
if (entry.first == name)
|
|
return emitError("redefinition of identifier '" + name + "'");
|
|
}
|
|
consumeToken();
|
|
|
|
dimsAndSymbols.push_back({name, idExpr});
|
|
return success();
|
|
}
|
|
|
|
/// Parse the list of dimensional identifiers to an affine map.
|
|
ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
|
|
auto parseElt = [&]() -> ParseResult {
|
|
auto dimension = getAffineDimExpr(numDims++, getContext());
|
|
return parseIdentifierDefinition(dimension);
|
|
};
|
|
return parseCommaSeparatedList(Delimiter::Paren, parseElt,
|
|
" in dimensional identifier list");
|
|
}
|
|
|
|
/// Parse the list of symbolic identifiers to an affine map.
|
|
ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
|
|
auto parseElt = [&]() -> ParseResult {
|
|
auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
|
|
return parseIdentifierDefinition(symbol);
|
|
};
|
|
return parseCommaSeparatedList(Delimiter::Square, parseElt,
|
|
" in symbol list");
|
|
}
|
|
|
|
/// Parse the list of symbolic identifiers to an affine map.
|
|
ParseResult
|
|
AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims,
|
|
unsigned &numSymbols) {
|
|
if (parseDimIdList(numDims)) {
|
|
return failure();
|
|
}
|
|
if (!getToken().is(Token::l_square)) {
|
|
numSymbols = 0;
|
|
return success();
|
|
}
|
|
return parseSymbolIdList(numSymbols);
|
|
}
|
|
|
|
/// Parses an ambiguous affine map or integer set definition inline.
|
|
ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map,
|
|
IntegerSet &set) {
|
|
unsigned numDims = 0, numSymbols = 0;
|
|
|
|
// List of dimensional and optional symbol identifiers.
|
|
if (parseDimAndOptionalSymbolIdList(numDims, numSymbols))
|
|
return failure();
|
|
|
|
if (consumeIf(Token::arrow))
|
|
return parseAffineMapRange(numDims, numSymbols, map);
|
|
|
|
if (parseToken(Token::colon, "expected '->' or ':'"))
|
|
return failure();
|
|
return parseIntegerSetConstraints(numDims, numSymbols, set);
|
|
}
|
|
|
|
/// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
|
|
ParseResult
|
|
AffineParser::parseAffineMapOfSSAIds(AffineMap &map,
|
|
OpAsmParser::Delimiter delimiter) {
|
|
|
|
SmallVector<AffineExpr, 4> exprs;
|
|
auto parseElt = [&]() -> ParseResult {
|
|
auto elt = parseAffineExpr();
|
|
exprs.push_back(elt);
|
|
return elt ? success() : failure();
|
|
};
|
|
|
|
// Parse a multi-dimensional affine expression (a comma-separated list of
|
|
// 1-d affine expressions); the list can be empty. Grammar:
|
|
// multi-dim-affine-expr ::= `(` `)`
|
|
// | `(` affine-expr (`,` affine-expr)* `)`
|
|
if (parseCommaSeparatedList(delimiter, parseElt, " in affine map"))
|
|
return failure();
|
|
|
|
// Parsed a valid affine map.
|
|
map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands,
|
|
exprs, getContext());
|
|
return success();
|
|
}
|
|
|
|
/// Parse an AffineExpr where the dim and symbol identifiers are SSA ids.
|
|
ParseResult AffineParser::parseAffineExprOfSSAIds(AffineExpr &expr) {
|
|
expr = parseAffineExpr();
|
|
return success(expr != nullptr);
|
|
}
|
|
|
|
/// Parse the range and sizes affine map definition inline.
|
|
///
|
|
/// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
|
|
///
|
|
/// multi-dim-affine-expr ::= `(` `)`
|
|
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)`
|
|
ParseResult AffineParser::parseAffineMapRange(unsigned numDims,
|
|
unsigned numSymbols,
|
|
AffineMap &result) {
|
|
SmallVector<AffineExpr, 4> exprs;
|
|
auto parseElt = [&]() -> ParseResult {
|
|
auto elt = parseAffineExpr();
|
|
ParseResult res = elt ? success() : failure();
|
|
exprs.push_back(elt);
|
|
return res;
|
|
};
|
|
|
|
// Parse a multi-dimensional affine expression (a comma-separated list of
|
|
// 1-d affine expressions). Grammar:
|
|
// multi-dim-affine-expr ::= `(` `)`
|
|
// | `(` affine-expr (`,` affine-expr)* `)`
|
|
if (parseCommaSeparatedList(Delimiter::Paren, parseElt,
|
|
" in affine map range"))
|
|
return failure();
|
|
|
|
// Parsed a valid affine map.
|
|
result = AffineMap::get(numDims, numSymbols, exprs, getContext());
|
|
return success();
|
|
}
|
|
|
|
/// Parse an affine constraint.
|
|
/// affine-constraint ::= affine-expr `>=` `0`
|
|
/// | affine-expr `==` `0`
|
|
///
|
|
/// isEq is set to true if the parsed constraint is an equality, false if it
|
|
/// is an inequality (greater than or equal).
|
|
///
|
|
AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
|
|
AffineExpr expr = parseAffineExpr();
|
|
if (!expr)
|
|
return nullptr;
|
|
|
|
if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
|
|
getToken().is(Token::integer)) {
|
|
auto dim = getToken().getUnsignedIntegerValue();
|
|
if (dim && *dim == 0) {
|
|
consumeToken(Token::integer);
|
|
*isEq = false;
|
|
return expr;
|
|
}
|
|
return emitError("expected '0' after '>='"), nullptr;
|
|
}
|
|
|
|
if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
|
|
getToken().is(Token::integer)) {
|
|
auto dim = getToken().getUnsignedIntegerValue();
|
|
if (dim && *dim == 0) {
|
|
consumeToken(Token::integer);
|
|
*isEq = true;
|
|
return expr;
|
|
}
|
|
return emitError("expected '0' after '=='"), nullptr;
|
|
}
|
|
|
|
return emitError("expected '== 0' or '>= 0' at end of affine constraint"),
|
|
nullptr;
|
|
}
|
|
|
|
/// Parse the constraints that are part of an integer set definition.
|
|
/// integer-set-inline
|
|
/// ::= dim-and-symbol-id-lists `:`
|
|
/// '(' affine-constraint-conjunction? ')'
|
|
/// affine-constraint-conjunction ::= affine-constraint (`,`
|
|
/// affine-constraint)*
|
|
///
|
|
ParseResult AffineParser::parseIntegerSetConstraints(unsigned numDims,
|
|
unsigned numSymbols,
|
|
IntegerSet &result) {
|
|
SmallVector<AffineExpr, 4> constraints;
|
|
SmallVector<bool, 4> isEqs;
|
|
auto parseElt = [&]() -> ParseResult {
|
|
bool isEq;
|
|
auto elt = parseAffineConstraint(&isEq);
|
|
ParseResult res = elt ? success() : failure();
|
|
if (elt) {
|
|
constraints.push_back(elt);
|
|
isEqs.push_back(isEq);
|
|
}
|
|
return res;
|
|
};
|
|
|
|
// Parse a list of affine constraints (comma-separated).
|
|
if (parseCommaSeparatedList(Delimiter::Paren, parseElt,
|
|
" in integer set constraint list"))
|
|
return failure();
|
|
|
|
// If no constraints were parsed, then treat this as a degenerate 'true' case.
|
|
if (constraints.empty()) {
|
|
/* 0 == 0 */
|
|
auto zero = getAffineConstantExpr(0, getContext());
|
|
result = IntegerSet::get(numDims, numSymbols, zero, true);
|
|
return success();
|
|
}
|
|
|
|
// Parsed a valid integer set.
|
|
result = IntegerSet::get(numDims, numSymbols, constraints, isEqs);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Parser
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Parse an ambiguous reference to either and affine map or an integer set.
|
|
ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map,
|
|
IntegerSet &set) {
|
|
return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set);
|
|
}
|
|
ParseResult Parser::parseAffineMapReference(AffineMap &map) {
|
|
SMLoc curLoc = getToken().getLoc();
|
|
IntegerSet set;
|
|
if (parseAffineMapOrIntegerSetReference(map, set))
|
|
return failure();
|
|
if (set)
|
|
return emitError(curLoc, "expected AffineMap, but got IntegerSet");
|
|
return success();
|
|
}
|
|
ParseResult Parser::parseIntegerSetReference(IntegerSet &set) {
|
|
SMLoc curLoc = getToken().getLoc();
|
|
AffineMap map;
|
|
if (parseAffineMapOrIntegerSetReference(map, set))
|
|
return failure();
|
|
if (map)
|
|
return emitError(curLoc, "expected IntegerSet, but got AffineMap");
|
|
return success();
|
|
}
|
|
|
|
/// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to
|
|
/// parse SSA value uses encountered while parsing affine expressions.
|
|
ParseResult
|
|
Parser::parseAffineMapOfSSAIds(AffineMap &map,
|
|
function_ref<ParseResult(bool)> parseElement,
|
|
OpAsmParser::Delimiter delimiter) {
|
|
return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
|
|
.parseAffineMapOfSSAIds(map, delimiter);
|
|
}
|
|
|
|
/// Parse an AffineExpr of SSA ids. The callback `parseElement` is used to parse
|
|
/// SSA value uses encountered while parsing.
|
|
ParseResult
|
|
Parser::parseAffineExprOfSSAIds(AffineExpr &expr,
|
|
function_ref<ParseResult(bool)> parseElement) {
|
|
return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
|
|
.parseAffineExprOfSSAIds(expr);
|
|
}
|
|
|
|
IntegerSet mlir::parseIntegerSet(StringRef inputStr, MLIRContext *context,
|
|
bool printDiagnosticInfo) {
|
|
llvm::SourceMgr sourceMgr;
|
|
auto memBuffer = llvm::MemoryBuffer::getMemBuffer(
|
|
inputStr, /*BufferName=*/"<mlir_parser_buffer>",
|
|
/*RequiresNullTerminator=*/false);
|
|
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
|
|
SymbolState symbolState;
|
|
ParserConfig config(context);
|
|
ParserState state(sourceMgr, config, symbolState, /*asmState=*/nullptr);
|
|
Parser parser(state);
|
|
|
|
raw_ostream &os = printDiagnosticInfo ? llvm::errs() : llvm::nulls();
|
|
SourceMgrDiagnosticHandler handler(sourceMgr, context, os);
|
|
IntegerSet set;
|
|
if (parser.parseIntegerSetReference(set))
|
|
return IntegerSet();
|
|
|
|
Token endTok = parser.getToken();
|
|
if (endTok.isNot(Token::eof)) {
|
|
parser.emitError(endTok.getLoc(), "encountered unexpected token");
|
|
return IntegerSet();
|
|
}
|
|
|
|
return set;
|
|
}
|