Files
clang-p2996/clang/lib/Sema/SemaOpenACC.cpp
erichkeane eb257fe37b [OpenACC] Enable 3 more clauses for combined constructs.
'num_gangs', 'num_workers', and 'vector_length' are similar to
eachother, and are all the same implementation as for compute
constructs, so this patch just enables them and adds the necessary
testing to ensure they work correctly.  These will get more complicated
when they get combined with 'gang', 'worker', 'vector' and 'reduction',
but those restrictions will be implemented when those clauses are
enabled.
2024-12-03 09:31:40 -08:00

3335 lines
128 KiB
C++

//===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenACC constructs and
/// clauses.
///
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaOpenACC.h"
#include "clang/AST/StmtOpenACC.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
using namespace clang;
namespace {
bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K,
SourceLocation StartLoc, bool IsStmt) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
// Nothing to do here, both invalid and unimplemented don't really need to
// do anything.
break;
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Loop:
if (!IsStmt)
return S.Diag(StartLoc, diag::err_acc_construct_appertainment) << K;
break;
}
return false;
}
bool doesClauseApplyToDirective(OpenACCDirectiveKind DirectiveKind,
OpenACCClauseKind ClauseKind) {
switch (ClauseKind) {
// FIXME: For each clause as we implement them, we can add the
// 'legalization' list here.
case OpenACCClauseKind::Default:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Data:
return true;
default:
return false;
}
case OpenACCClauseKind::If:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Self:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::VectorLength:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::FirstPrivate:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Private:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::NoCreate:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Present:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Copy:
case OpenACCClauseKind::PCopy:
case OpenACCClauseKind::PresentOrCopy:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::CopyIn:
case OpenACCClauseKind::PCopyIn:
case OpenACCClauseKind::PresentOrCopyIn:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::CopyOut:
case OpenACCClauseKind::PCopyOut:
case OpenACCClauseKind::PresentOrCopyOut:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Create:
case OpenACCClauseKind::PCreate:
case OpenACCClauseKind::PresentOrCreate:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Attach:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::DevicePtr:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Async:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Wait:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Seq:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Routine:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Independent:
case OpenACCClauseKind::Auto:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Reduction:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::DeviceType:
case OpenACCClauseKind::DType:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Routine:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Collapse: {
switch (DirectiveKind) {
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
}
case OpenACCClauseKind::Tile: {
switch (DirectiveKind) {
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
}
case OpenACCClauseKind::Gang: {
switch (DirectiveKind) {
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Routine:
return true;
default:
return false;
}
case OpenACCClauseKind::Worker: {
switch (DirectiveKind) {
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Routine:
return true;
default:
return false;
}
}
case OpenACCClauseKind::Vector: {
switch (DirectiveKind) {
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Routine:
return true;
default:
return false;
}
}
}
default:
// Do nothing so we can go to the 'unimplemented' diagnostic instead.
return true;
}
llvm_unreachable("Invalid clause kind");
}
bool checkAlreadyHasClauseOfKind(
SemaOpenACC &S, ArrayRef<const OpenACCClause *> ExistingClauses,
SemaOpenACC::OpenACCParsedClause &Clause) {
const auto *Itr = llvm::find_if(ExistingClauses, [&](const OpenACCClause *C) {
return C->getClauseKind() == Clause.getClauseKind();
});
if (Itr != ExistingClauses.end()) {
S.Diag(Clause.getBeginLoc(), diag::err_acc_duplicate_clause_disallowed)
<< Clause.getDirectiveKind() << Clause.getClauseKind();
S.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
return true;
}
return false;
}
bool checkValidAfterDeviceType(
SemaOpenACC &S, const OpenACCDeviceTypeClause &DeviceTypeClause,
const SemaOpenACC::OpenACCParsedClause &NewClause) {
// This is only a requirement on compute and loop constructs so far, so this
// is fine otherwise.
if (!isOpenACCComputeDirectiveKind(NewClause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(NewClause.getDirectiveKind()) &&
NewClause.getDirectiveKind() != OpenACCDirectiveKind::Loop)
return false;
// OpenACC3.3: Section 2.4: Clauses that precede any device_type clause are
// default clauses. Clauses that follow a device_type clause up to the end of
// the directive or up to the next device_type clause are device-specific
// clauses for the device types specified in the device_type argument.
//
// The above implies that despite what the individual text says, these are
// valid.
if (NewClause.getClauseKind() == OpenACCClauseKind::DType ||
NewClause.getClauseKind() == OpenACCClauseKind::DeviceType)
return false;
// Implement check from OpenACC3.3: section 2.5.4:
// Only the async, wait, num_gangs, num_workers, and vector_length clauses may
// follow a device_type clause.
if (isOpenACCComputeDirectiveKind(NewClause.getDirectiveKind())) {
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::VectorLength:
return false;
default:
break;
}
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
// Implement check from OpenACC3.3: section 2.9:
// Only the collapse, gang, worker, vector, seq, independent, auto, and tile
// clauses may follow a device_type clause.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Collapse:
case OpenACCClauseKind::Gang:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Seq:
case OpenACCClauseKind::Independent:
case OpenACCClauseKind::Auto:
case OpenACCClauseKind::Tile:
return false;
default:
break;
}
} else if (isOpenACCCombinedDirectiveKind(NewClause.getDirectiveKind())) {
// This seems like it should be the union of 2.9 and 2.5.4 from above.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::VectorLength:
case OpenACCClauseKind::Collapse:
case OpenACCClauseKind::Gang:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Seq:
case OpenACCClauseKind::Independent:
case OpenACCClauseKind::Auto:
case OpenACCClauseKind::Tile:
return false;
default:
break;
}
}
S.Diag(NewClause.getBeginLoc(), diag::err_acc_clause_after_device_type)
<< NewClause.getClauseKind() << DeviceTypeClause.getClauseKind()
<< NewClause.getDirectiveKind();
S.Diag(DeviceTypeClause.getBeginLoc(), diag::note_acc_previous_clause_here);
return true;
}
class SemaOpenACCClauseVisitor {
SemaOpenACC &SemaRef;
ASTContext &Ctx;
ArrayRef<const OpenACCClause *> ExistingClauses;
bool NotImplemented = false;
OpenACCClause *isNotImplemented() {
NotImplemented = true;
return nullptr;
}
// OpenACC 3.3 2.9:
// A 'gang', 'worker', or 'vector' clause may not appear if a 'seq' clause
// appears.
bool DiagIfSeqClause(SemaOpenACC::OpenACCParsedClause &Clause) {
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCSeqClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_cannot_combine)
<< Clause.getClauseKind() << (*Itr)->getClauseKind()
<< Clause.getDirectiveKind();
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
return true;
}
return false;
}
public:
SemaOpenACCClauseVisitor(SemaOpenACC &S,
ArrayRef<const OpenACCClause *> ExistingClauses)
: SemaRef(S), Ctx(S.getASTContext()), ExistingClauses(ExistingClauses) {}
// Once we've implemented everything, we shouldn't need this infrastructure.
// But in the meantime, we use this to help decide whether the clause was
// handled for this directive.
bool diagNotImplemented() { return NotImplemented; }
OpenACCClause *Visit(SemaOpenACC::OpenACCParsedClause &Clause) {
switch (Clause.getClauseKind()) {
#define VISIT_CLAUSE(CLAUSE_NAME) \
case OpenACCClauseKind::CLAUSE_NAME: \
return Visit##CLAUSE_NAME##Clause(Clause);
#define CLAUSE_ALIAS(ALIAS, CLAUSE_NAME, DEPRECATED) \
case OpenACCClauseKind::ALIAS: \
if (DEPRECATED) \
SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_deprecated_alias_name) \
<< Clause.getClauseKind() << OpenACCClauseKind::CLAUSE_NAME; \
return Visit##CLAUSE_NAME##Clause(Clause);
#include "clang/Basic/OpenACCClauses.def"
default:
return isNotImplemented();
}
llvm_unreachable("Invalid clause kind");
}
#define VISIT_CLAUSE(CLAUSE_NAME) \
OpenACCClause *Visit##CLAUSE_NAME##Clause( \
SemaOpenACC::OpenACCParsedClause &Clause);
#include "clang/Basic/OpenACCClauses.def"
};
OpenACCClause *SemaOpenACCClauseVisitor::VisitDefaultClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
// Only 'data' is left.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// Don't add an invalid clause to the AST.
if (Clause.getDefaultClauseKind() == OpenACCDefaultClauseKind::Invalid)
return nullptr;
// OpenACC 3.3, Section 2.5.4:
// At most one 'default' clause may appear, and it must have a value of
// either 'none' or 'present'.
// Second half of the sentence is diagnosed during parsing.
if (checkAlreadyHasClauseOfKind(SemaRef, ExistingClauses, Clause))
return nullptr;
return OpenACCDefaultClause::Create(
Ctx, Clause.getDefaultClauseKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitTileClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Duplicates here are not really sensible. We could possible permit
// multiples if they all had the same value, but there isn't really a good
// reason to do so. Also, this simplifies the suppression of duplicates, in
// that we know if we 'find' one after instantiation, that it is the same
// clause, which simplifies instantiation/checking/etc.
if (checkAlreadyHasClauseOfKind(SemaRef, ExistingClauses, Clause))
return nullptr;
llvm::SmallVector<Expr *> NewSizeExprs;
// Make sure these are all positive constant expressions or *.
for (Expr *E : Clause.getIntExprs()) {
ExprResult Res = SemaRef.CheckTileSizeExpr(E);
if (!Res.isUsable())
return nullptr;
NewSizeExprs.push_back(Res.get());
}
return OpenACCTileClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), NewSizeExprs,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitIfClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(SemaRef, ExistingClauses, Clause))
return nullptr;
// The parser has ensured that we have a proper condition expr, so there
// isn't really much to do here.
// If the 'if' clause is true, it makes the 'self' clause have no effect,
// diagnose that here.
// TODO OpenACC: When we add these two to other constructs, we might not
// want to warn on this (for example, 'update').
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCSelfClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_if_self_conflict);
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
}
return OpenACCIfClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getConditionExpr(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitSelfClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// TODO OpenACC: When we implement this for 'update', this takes a
// 'var-list' instead of a condition expression, so semantics/handling has
// to happen differently here.
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(SemaRef, ExistingClauses, Clause))
return nullptr;
// If the 'if' clause is true, it makes the 'self' clause have no effect,
// diagnose that here.
// TODO OpenACC: When we add these two to other constructs, we might not
// want to warn on this (for example, 'update').
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCIfClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_if_self_conflict);
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
}
return OpenACCSelfClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getConditionExpr(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNumGangsClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(SemaRef, ExistingClauses, Clause))
return nullptr;
// num_gangs requires at least 1 int expr in all forms. Diagnose here, but
// allow us to continue, an empty clause might be useful for future
// diagnostics.
if (Clause.getIntExprs().empty())
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_num_gangs_num_args)
<< /*NoArgs=*/0;
unsigned MaxArgs =
(Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop)
? 3
: 1;
// The max number of args differs between parallel and other constructs.
// Again, allow us to continue for the purposes of future diagnostics.
if (Clause.getIntExprs().size() > MaxArgs)
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_num_gangs_num_args)
<< /*NoArgs=*/1 << Clause.getDirectiveKind() << MaxArgs
<< Clause.getIntExprs().size();
// OpenACC 3.3 Section 2.5.4:
// A reduction clause may not appear on a parallel construct with a
// num_gangs clause that has more than one argument.
// TODO: OpenACC: Reduction on Combined Construct needs to do this too.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel &&
Clause.getIntExprs().size() > 1) {
auto *Parallel =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (Parallel != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_reduction_num_gangs_conflict)
<< Clause.getIntExprs().size();
SemaRef.Diag((*Parallel)->getBeginLoc(),
diag::note_acc_previous_clause_here);
return nullptr;
}
}
return OpenACCNumGangsClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNumWorkersClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(SemaRef, ExistingClauses, Clause))
return nullptr;
assert(Clause.getIntExprs().size() == 1 &&
"Invalid number of expressions for NumWorkers");
return OpenACCNumWorkersClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs()[0],
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitVectorLengthClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(SemaRef, ExistingClauses, Clause))
return nullptr;
assert(Clause.getIntExprs().size() == 1 &&
"Invalid number of expressions for NumWorkers");
return OpenACCVectorLengthClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs()[0],
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitAsyncClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(SemaRef, ExistingClauses, Clause))
return nullptr;
assert(Clause.getNumIntExprs() < 2 &&
"Invalid number of expressions for Async");
return OpenACCAsyncClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitPrivateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCPrivateClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitFirstPrivateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCFirstPrivateClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNoCreateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCNoCreateClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitPresentClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCPresentClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCCopyClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyInClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCCopyInClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.isReadOnly(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyOutClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCCopyOutClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.isZero(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCreateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCCreateClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.isZero(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitAttachClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// ActOnVar ensured that everything is a valid variable reference, but we
// still have to make sure it is a pointer type.
llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
llvm::erase_if(VarList, [&](Expr *E) {
return SemaRef.CheckVarIsPointerType(OpenACCClauseKind::Attach, E);
});
Clause.setVarListDetails(VarList,
/*IsReadOnly=*/false, /*IsZero=*/false);
return OpenACCAttachClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDevicePtrClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// ActOnVar ensured that everything is a valid variable reference, but we
// still have to make sure it is a pointer type.
llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
llvm::erase_if(VarList, [&](Expr *E) {
return SemaRef.CheckVarIsPointerType(OpenACCClauseKind::DevicePtr, E);
});
Clause.setVarListDetails(VarList,
/*IsReadOnly=*/false, /*IsZero=*/false);
return OpenACCDevicePtrClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitWaitClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute'/'combined' constructs,
// and 'compute'/'combined' constructs are the only construct that can do
// anything with this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
return OpenACCWaitClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getDevNumExpr(),
Clause.getQueuesLoc(), Clause.getQueueIdExprs(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceTypeClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute', 'combined', and
// 'loop' constructs, and 'compute'/'combined'/'loop' constructs are the only
// construct that can do anything with this yet, so skip/treat as
// unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
Clause.getDirectiveKind() != OpenACCDirectiveKind::Loop &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return isNotImplemented();
// TODO OpenACC: Once we get enough of the CodeGen implemented that we have
// a source for the list of valid architectures, we need to warn on unknown
// identifiers here.
return OpenACCDeviceTypeClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getDeviceTypeArchitectures(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitAutoClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// OpenACC 3.3 2.9:
// Only one of the seq, independent, and auto clauses may appear.
const auto *Itr =
llvm::find_if(ExistingClauses,
llvm::IsaPred<OpenACCIndependentClause, OpenACCSeqClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_loop_spec_conflict)
<< Clause.getClauseKind() << Clause.getDirectiveKind();
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
return nullptr;
}
return OpenACCAutoClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitIndependentClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// OpenACC 3.3 2.9:
// Only one of the seq, independent, and auto clauses may appear.
const auto *Itr = llvm::find_if(
ExistingClauses, llvm::IsaPred<OpenACCAutoClause, OpenACCSeqClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_loop_spec_conflict)
<< Clause.getClauseKind() << Clause.getDirectiveKind();
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
return nullptr;
}
return OpenACCIndependentClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitVectorClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DiagIfSeqClause(Clause))
return nullptr;
// Restrictions only properly implemented on 'loop' constructs, and it is
// the only construct that can do anything with this, so skip/treat as
// unimplemented for the combined constructs.
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Loop)
return isNotImplemented();
Expr *IntExpr =
Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr;
if (IntExpr) {
switch (SemaRef.getActiveComputeConstructInfo().Kind) {
case OpenACCDirectiveKind::Invalid:
case OpenACCDirectiveKind::Parallel:
// No restriction on when 'parallel' can contain an argument.
break;
case OpenACCDirectiveKind::Serial:
// GCC disallows this, and there is no real good reason for us to permit
// it, so disallow until we come up with a use case that makes sense.
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< OpenACCClauseKind::Vector << "num" << /*serial=*/3;
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::Kernels: {
const auto *Itr =
llvm::find_if(SemaRef.getActiveComputeConstructInfo().Clauses,
llvm::IsaPred<OpenACCVectorLengthClause>);
if (Itr != SemaRef.getActiveComputeConstructInfo().Clauses.end()) {
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< OpenACCClauseKind::Vector << /*vector_length=*/2;
SemaRef.Diag((*Itr)->getBeginLoc(),
diag::note_acc_previous_clause_here);
IntExpr = nullptr;
}
break;
}
default:
llvm_unreachable("Non compute construct in active compute construct");
}
}
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
if (SemaRef.LoopGangClauseOnKernelLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're on
// one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Vector << OpenACCClauseKind::Gang
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopGangClauseOnKernelLoc,
diag::note_acc_previous_clause_here);
return nullptr;
}
// OpenACC 3.3 2.9.3: The region of a loop with a 'worker' clause may not
// contain a loop with a gang or worker clause unless within a nested compute
// region.
if (SemaRef.LoopWorkerClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're on
// one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Vector << OpenACCClauseKind::Worker
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopWorkerClauseLoc,
diag::note_acc_previous_clause_here);
return nullptr;
}
// OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not
// contain a loop with a gang, worker, or vector clause unless within a nested
// compute region.
if (SemaRef.LoopVectorClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're on
// one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Vector << OpenACCClauseKind::Vector
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopVectorClauseLoc,
diag::note_acc_previous_clause_here);
return nullptr;
}
return OpenACCVectorClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), IntExpr,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitWorkerClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DiagIfSeqClause(Clause))
return nullptr;
// Restrictions only properly implemented on 'loop' constructs, and it is
// the only construct that can do anything with this, so skip/treat as
// unimplemented for the combined constructs.
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Loop)
return isNotImplemented();
Expr *IntExpr =
Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr;
if (IntExpr) {
switch (SemaRef.getActiveComputeConstructInfo().Kind) {
case OpenACCDirectiveKind::Invalid:
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< OpenACCClauseKind::Worker << "num" << /*orphan=*/0;
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::Parallel:
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< OpenACCClauseKind::Worker << "num" << /*parallel=*/1;
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::Serial:
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< OpenACCClauseKind::Worker << "num" << /*serial=*/3;
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::Kernels: {
const auto *Itr =
llvm::find_if(SemaRef.getActiveComputeConstructInfo().Clauses,
llvm::IsaPred<OpenACCNumWorkersClause>);
if (Itr != SemaRef.getActiveComputeConstructInfo().Clauses.end()) {
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< OpenACCClauseKind::Worker << /*num_workers=*/1;
SemaRef.Diag((*Itr)->getBeginLoc(),
diag::note_acc_previous_clause_here);
IntExpr = nullptr;
}
break;
}
default:
llvm_unreachable("Non compute construct in active compute construct");
}
}
// OpenACC 3.3 2.9.3: The region of a loop with a 'worker' clause may not
// contain a loop with a gang or worker clause unless within a nested compute
// region.
if (SemaRef.LoopWorkerClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're on
// one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Worker << OpenACCClauseKind::Worker
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopWorkerClauseLoc,
diag::note_acc_previous_clause_here);
return nullptr;
}
// OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not
// contain a loop with a gang, worker, or vector clause unless within a nested
// compute region.
if (SemaRef.LoopVectorClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're on
// one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Worker << OpenACCClauseKind::Vector
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopVectorClauseLoc,
diag::note_acc_previous_clause_here);
return nullptr;
}
return OpenACCWorkerClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), IntExpr,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitGangClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DiagIfSeqClause(Clause))
return nullptr;
// Restrictions only properly implemented on 'loop' constructs, and it is
// the only construct that can do anything with this, so skip/treat as
// unimplemented for the combined constructs.
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Loop)
return isNotImplemented();
// OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop
// directive that has a gang clause and is within a compute construct that has
// a num_gangs clause with more than one explicit argument.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop &&
SemaRef.getActiveComputeConstructInfo().Kind !=
OpenACCDirectiveKind::Invalid) {
// num_gangs clause on the active compute construct.
auto *NumGangsClauseItr =
llvm::find_if(SemaRef.getActiveComputeConstructInfo().Clauses,
llvm::IsaPred<OpenACCNumGangsClause>);
auto *ReductionClauseItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (ReductionClauseItr != ExistingClauses.end() &&
NumGangsClauseItr !=
SemaRef.getActiveComputeConstructInfo().Clauses.end() &&
cast<OpenACCNumGangsClause>(*NumGangsClauseItr)->getIntExprs().size() >
1) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_gang_reduction_numgangs_conflict)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Reduction;
SemaRef.Diag((*ReductionClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here);
SemaRef.Diag((*NumGangsClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here);
return nullptr;
}
}
llvm::SmallVector<OpenACCGangKind> GangKinds;
llvm::SmallVector<Expr *> IntExprs;
// Store the existing locations, so we can do duplicate checking. Index is
// the int-value of the OpenACCGangKind enum.
SourceLocation ExistingElemLoc[3];
for (unsigned I = 0; I < Clause.getIntExprs().size(); ++I) {
OpenACCGangKind GK = Clause.getGangKinds()[I];
ExprResult ER = SemaRef.CheckGangExpr(GK, Clause.getIntExprs()[I]);
if (!ER.isUsable())
continue;
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... An argument with no
// keyword or with num keyword is only allowed when num_gangs does not
// appear on the kernels construct.
if (SemaRef.getActiveComputeConstructInfo().Kind ==
OpenACCDirectiveKind::Kernels &&
GK == OpenACCGangKind::Num) {
const auto *Itr =
llvm::find_if(SemaRef.getActiveComputeConstructInfo().Clauses,
llvm::IsaPred<OpenACCNumGangsClause>);
if (Itr != SemaRef.getActiveComputeConstructInfo().Clauses.end()) {
SemaRef.Diag(ER.get()->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< OpenACCClauseKind::Gang << /*num_gangs=*/0;
SemaRef.Diag((*Itr)->getBeginLoc(),
diag::note_acc_previous_clause_here);
continue;
}
}
// OpenACC 3.3 2.9: 'gang-arg-list' may have at most one num, one dim, and
// one static argument.
if (ExistingElemLoc[static_cast<unsigned>(GK)].isValid()) {
SemaRef.Diag(ER.get()->getBeginLoc(), diag::err_acc_gang_multiple_elt)
<< static_cast<unsigned>(GK);
SemaRef.Diag(ExistingElemLoc[static_cast<unsigned>(GK)],
diag::note_acc_previous_expr_here);
continue;
}
ExistingElemLoc[static_cast<unsigned>(GK)] = ER.get()->getBeginLoc();
GangKinds.push_back(GK);
IntExprs.push_back(ER.get());
}
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
if (SemaRef.LoopGangClauseOnKernelLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're on
// one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Gang
<< /*kernels construct info*/ 1;
SemaRef.Diag(SemaRef.LoopGangClauseOnKernelLoc,
diag::note_acc_previous_clause_here);
return nullptr;
}
// OpenACC 3.3 2.9.3: The region of a loop with a 'worker' clause may not
// contain a loop with a gang or worker clause unless within a nested compute
// region.
if (SemaRef.LoopWorkerClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're on
// one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Worker
<< /*kernels construct info*/ 1;
SemaRef.Diag(SemaRef.LoopWorkerClauseLoc,
diag::note_acc_previous_clause_here);
return nullptr;
}
// OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not
// contain a loop with a gang, worker, or vector clause unless within a nested
// compute region.
if (SemaRef.LoopVectorClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're on
// one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Vector
<< /*kernels construct info*/ 1;
SemaRef.Diag(SemaRef.LoopVectorClauseLoc,
diag::note_acc_previous_clause_here);
return nullptr;
}
return SemaRef.CheckGangClause(ExistingClauses, Clause.getBeginLoc(),
Clause.getLParenLoc(), GangKinds, IntExprs,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitSeqClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'loop' constructs and combined ,
// and it is the only construct that can do anything with this, so skip/treat
// as unimplemented for the routine constructs.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Routine)
return isNotImplemented();
// OpenACC 3.3 2.9:
// Only one of the seq, independent, and auto clauses may appear.
const auto *Itr =
llvm::find_if(ExistingClauses,
llvm::IsaPred<OpenACCAutoClause, OpenACCIndependentClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_loop_spec_conflict)
<< Clause.getClauseKind() << Clause.getDirectiveKind();
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
return nullptr;
}
// OpenACC 3.3 2.9:
// A 'gang', 'worker', or 'vector' clause may not appear if a 'seq' clause
// appears.
Itr = llvm::find_if(ExistingClauses,
llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause,
OpenACCVectorClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_cannot_combine)
<< Clause.getClauseKind() << (*Itr)->getClauseKind()
<< Clause.getDirectiveKind();
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
return nullptr;
}
return OpenACCSeqClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitReductionClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
// TODO: OpenACC: Remove check once we get combined constructs for this clause.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) &&
Clause.getDirectiveKind() != OpenACCDirectiveKind::Loop)
return isNotImplemented();
// OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop
// directive that has a gang clause and is within a compute construct that has
// a num_gangs clause with more than one explicit argument.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop &&
SemaRef.getActiveComputeConstructInfo().Kind !=
OpenACCDirectiveKind::Invalid) {
// num_gangs clause on the active compute construct.
auto *NumGangsClauseItr =
llvm::find_if(SemaRef.getActiveComputeConstructInfo().Clauses,
llvm::IsaPred<OpenACCNumGangsClause>);
auto *GangClauseItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCGangClause>);
if (GangClauseItr != ExistingClauses.end() &&
NumGangsClauseItr !=
SemaRef.getActiveComputeConstructInfo().Clauses.end() &&
cast<OpenACCNumGangsClause>(*NumGangsClauseItr)->getIntExprs().size() >
1) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_gang_reduction_numgangs_conflict)
<< OpenACCClauseKind::Reduction << OpenACCClauseKind::Gang;
SemaRef.Diag((*GangClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here);
SemaRef.Diag((*NumGangsClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here);
return nullptr;
}
}
// OpenACC3.3 Section 2.9.11: If a variable is involved in a reduction that
// spans multiple nested loops where two or more of those loops have
// associated loop directives, a reduction clause containing that variable
// must appear on each of those loop directives.
//
// This can't really be implemented in the CFE, as this requires a level of
// rechability/useage analysis that we're not really wanting to get into.
// Additionally, I'm alerted that this restriction is one that the middle-end
// can just 'figure out' as an extension and isn't really necessary.
//
// OpenACC3.3 Section 2.9.11: Every 'var' in a reduction clause appearing on
// an orphaned loop construct must be private.
//
// This again is something we cannot really diagnose, as it requires we see
// all the uses/scopes of all variables referenced. The middle end/MLIR might
// be able to diagnose this.
// OpenACC 3.3 Section 2.5.4:
// A reduction clause may not appear on a parallel construct with a
// num_gangs clause that has more than one argument.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel) {
auto NumGangsClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCNumGangsClause>);
for (auto *NGC : NumGangsClauses) {
unsigned NumExprs =
cast<OpenACCNumGangsClause>(NGC)->getIntExprs().size();
if (NumExprs > 1) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_reduction_num_gangs_conflict)
<< NumExprs;
SemaRef.Diag(NGC->getBeginLoc(), diag::note_acc_previous_clause_here);
return nullptr;
}
}
}
SmallVector<Expr *> ValidVars;
for (Expr *Var : Clause.getVarList()) {
ExprResult Res = SemaRef.CheckReductionVar(Clause.getDirectiveKind(),
Clause.getReductionOp(), Var);
if (Res.isUsable())
ValidVars.push_back(Res.get());
}
return SemaRef.CheckReductionClause(
ExistingClauses, Clause.getDirectiveKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getReductionOp(), ValidVars,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCollapseClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Duplicates here are not really sensible. We could possible permit
// multiples if they all had the same value, but there isn't really a good
// reason to do so. Also, this simplifies the suppression of duplicates, in
// that we know if we 'find' one after instantiation, that it is the same
// clause, which simplifies instantiation/checking/etc.
if (checkAlreadyHasClauseOfKind(SemaRef, ExistingClauses, Clause))
return nullptr;
ExprResult LoopCount = SemaRef.CheckCollapseLoopCount(Clause.getLoopCount());
if (!LoopCount.isUsable())
return nullptr;
return OpenACCCollapseClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.isForce(),
LoopCount.get(), Clause.getEndLoc());
}
void CollectActiveReductionClauses(
llvm::SmallVector<OpenACCReductionClause *> &ActiveClauses,
ArrayRef<OpenACCClause *> CurClauses) {
for (auto *CurClause : CurClauses) {
if (auto *RedClause = dyn_cast<OpenACCReductionClause>(CurClause);
RedClause && !RedClause->getVarList().empty())
ActiveClauses.push_back(RedClause);
}
}
} // namespace
SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {}
SemaOpenACC::AssociatedStmtRAII::AssociatedStmtRAII(
SemaOpenACC &S, OpenACCDirectiveKind DK, SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses)
: SemaRef(S), OldActiveComputeConstructInfo(S.ActiveComputeConstructInfo),
DirKind(DK), OldLoopGangClauseOnKernelLoc(S.LoopGangClauseOnKernelLoc),
OldLoopWorkerClauseLoc(S.LoopWorkerClauseLoc),
OldLoopVectorClauseLoc(S.LoopVectorClauseLoc),
OldLoopWithoutSeqInfo(S.LoopWithoutSeqInfo),
ActiveReductionClauses(S.ActiveReductionClauses),
LoopRAII(SemaRef, /*PreserveDepth=*/false) {
// Compute constructs end up taking their 'loop'.
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// Implement the 'unless within a nested compute region' part.
SemaRef.LoopGangClauseOnKernelLoc = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
SemaRef.LoopWithoutSeqInfo = {};
} else if (DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
// TODO: OpenACC: We need to set these 3, CollapseInfo, and TileInfo
SemaRef.LoopGangClauseOnKernelLoc = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (DirKind == OpenACCDirectiveKind::KernelsLoop && UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernelLoc = (*Itr)->getBeginLoc();
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
} else if (DirKind == OpenACCDirectiveKind::Loop) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (SemaRef.getActiveComputeConstructInfo().Kind ==
OpenACCDirectiveKind::Kernels &&
UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernelLoc = (*Itr)->getBeginLoc();
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
}
}
void SemaOpenACC::AssociatedStmtRAII::SetCollapseInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// Reset this checking for loops that aren't covered in a RAII object.
SemaRef.LoopInfo.CurLevelHasLoopAlready = false;
SemaRef.CollapseInfo.CollapseDepthSatisfied = true;
SemaRef.TileInfo.TileDepthSatisfied = true;
// We make sure to take an optional list of uninstantiated clauses, so that
// we can check to make sure we don't 'double diagnose' in the event that
// the value of 'N' was not dependent in a template. We also ensure during
// Sema that there is only 1 collapse on each construct, so we can count on
// the fact that if both find a 'collapse', that they are the same one.
auto *CollapseClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCCollapseClause>);
auto *UnInstCollapseClauseItr =
llvm::find_if(UnInstClauses, llvm::IsaPred<OpenACCCollapseClause>);
if (Clauses.end() == CollapseClauseItr)
return;
OpenACCCollapseClause *CollapseClause =
cast<OpenACCCollapseClause>(*CollapseClauseItr);
SemaRef.CollapseInfo.ActiveCollapse = CollapseClause;
Expr *LoopCount = CollapseClause->getLoopCount();
// If the loop count is still instantiation dependent, setting the depth
// counter isn't necessary, so return here.
if (!LoopCount || LoopCount->isInstantiationDependent())
return;
// Suppress diagnostics if we've done a 'transform' where the previous version
// wasn't dependent, meaning we already diagnosed it.
if (UnInstCollapseClauseItr != UnInstClauses.end() &&
!cast<OpenACCCollapseClause>(*UnInstCollapseClauseItr)
->getLoopCount()
->isInstantiationDependent())
return;
SemaRef.CollapseInfo.CollapseDepthSatisfied = false;
SemaRef.CollapseInfo.CurCollapseCount =
cast<ConstantExpr>(LoopCount)->getResultAsAPSInt();
SemaRef.CollapseInfo.DirectiveKind = DirKind;
}
void SemaOpenACC::AssociatedStmtRAII::SetTileInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// We don't diagnose if this is during instantiation, since the only thing we
// care about is the number of arguments, which we can figure out without
// instantiation, so we don't want to double-diagnose.
if (UnInstClauses.size() > 0)
return;
auto *TileClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCTileClause>);
if (Clauses.end() == TileClauseItr)
return;
OpenACCTileClause *TileClause = cast<OpenACCTileClause>(*TileClauseItr);
SemaRef.TileInfo.ActiveTile = TileClause;
SemaRef.TileInfo.TileDepthSatisfied = false;
SemaRef.TileInfo.CurTileCount = TileClause->getSizeExprs().size();
SemaRef.TileInfo.DirectiveKind = DirKind;
}
SemaOpenACC::AssociatedStmtRAII::~AssociatedStmtRAII() {
SemaRef.ActiveComputeConstructInfo = OldActiveComputeConstructInfo;
SemaRef.LoopGangClauseOnKernelLoc = OldLoopGangClauseOnKernelLoc;
SemaRef.LoopWorkerClauseLoc = OldLoopWorkerClauseLoc;
SemaRef.LoopVectorClauseLoc = OldLoopVectorClauseLoc;
SemaRef.LoopWithoutSeqInfo = OldLoopWithoutSeqInfo;
SemaRef.ActiveReductionClauses.swap(ActiveReductionClauses);
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels ||
DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
// Nothing really to do here, the restorations above should be enough for
// now.
} else if (DirKind == OpenACCDirectiveKind::Loop) {
// Nothing really to do here, the LoopInConstruct should handle restorations
// correctly.
}
}
OpenACCClause *
SemaOpenACC::ActOnClause(ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCParsedClause &Clause) {
if (Clause.getClauseKind() == OpenACCClauseKind::Invalid)
return nullptr;
// Diagnose that we don't support this clause on this directive.
if (!doesClauseApplyToDirective(Clause.getDirectiveKind(),
Clause.getClauseKind())) {
Diag(Clause.getBeginLoc(), diag::err_acc_clause_appertainment)
<< Clause.getDirectiveKind() << Clause.getClauseKind();
return nullptr;
}
if (const auto *DevTypeClause =
llvm::find_if(ExistingClauses,
[&](const OpenACCClause *C) {
return isa<OpenACCDeviceTypeClause>(C);
});
DevTypeClause != ExistingClauses.end()) {
if (checkValidAfterDeviceType(
*this, *cast<OpenACCDeviceTypeClause>(*DevTypeClause), Clause))
return nullptr;
}
SemaOpenACCClauseVisitor Visitor{*this, ExistingClauses};
OpenACCClause *Result = Visitor.Visit(Clause);
assert((!Result || Result->getClauseKind() == Clause.getClauseKind()) &&
"Created wrong clause?");
if (Visitor.diagNotImplemented())
Diag(Clause.getBeginLoc(), diag::warn_acc_clause_unimplemented)
<< Clause.getClauseKind();
return Result;
}
namespace {
// Return true if the two vars refer to the same variable, for the purposes of
// equality checking.
bool areVarsEqual(Expr *VarExpr1, Expr *VarExpr2) {
if (VarExpr1->isInstantiationDependent() ||
VarExpr2->isInstantiationDependent())
return false;
VarExpr1 = VarExpr1->IgnoreParenCasts();
VarExpr2 = VarExpr2->IgnoreParenCasts();
// Legal expressions can be: Scalar variable reference, sub-array, array
// element, or composite variable member.
// Sub-array.
if (isa<ArraySectionExpr>(VarExpr1)) {
auto *Expr2AS = dyn_cast<ArraySectionExpr>(VarExpr2);
if (!Expr2AS)
return false;
auto *Expr1AS = cast<ArraySectionExpr>(VarExpr1);
if (!areVarsEqual(Expr1AS->getBase(), Expr2AS->getBase()))
return false;
// We could possibly check to see if the ranges aren't overlapping, but it
// isn't clear that the rules allow this.
return true;
}
// Array-element.
if (isa<ArraySubscriptExpr>(VarExpr1)) {
auto *Expr2AS = dyn_cast<ArraySubscriptExpr>(VarExpr2);
if (!Expr2AS)
return false;
auto *Expr1AS = cast<ArraySubscriptExpr>(VarExpr1);
if (!areVarsEqual(Expr1AS->getBase(), Expr2AS->getBase()))
return false;
// We could possibly check to see if the elements referenced aren't the
// same, but it isn't clear by reading of the standard that this is allowed
// (and that the 'var' refered to isn't the array).
return true;
}
// Scalar variable reference, or composite variable.
if (isa<DeclRefExpr>(VarExpr1)) {
auto *Expr2DRE = dyn_cast<DeclRefExpr>(VarExpr2);
if (!Expr2DRE)
return false;
auto *Expr1DRE = cast<DeclRefExpr>(VarExpr1);
return Expr1DRE->getDecl()->getMostRecentDecl() ==
Expr2DRE->getDecl()->getMostRecentDecl();
}
llvm_unreachable("Unknown variable type encountered");
}
} // namespace
/// OpenACC 3.3 section 2.5.15:
/// At a mininmum, the supported data types include ... the numerical data types
/// in C, C++, and Fortran.
///
/// If the reduction var is a composite variable, each
/// member of the composite variable must be a supported datatype for the
/// reduction operation.
ExprResult SemaOpenACC::CheckReductionVar(OpenACCDirectiveKind DirectiveKind,
OpenACCReductionOperator ReductionOp,
Expr *VarExpr) {
VarExpr = VarExpr->IgnoreParenCasts();
auto TypeIsValid = [](QualType Ty) {
return Ty->isDependentType() || Ty->isScalarType();
};
if (isa<ArraySectionExpr>(VarExpr)) {
Expr *ASExpr = VarExpr;
QualType BaseTy = ArraySectionExpr::getBaseOriginalType(ASExpr);
QualType EltTy = getASTContext().getBaseElementType(BaseTy);
if (!TypeIsValid(EltTy)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_type)
<< EltTy << /*Sub array base type*/ 1;
return ExprError();
}
} else if (auto *RD = VarExpr->getType()->getAsRecordDecl()) {
if (!RD->isStruct() && !RD->isClass()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*not class or struct*/ 0 << VarExpr->getType();
return ExprError();
}
if (!RD->isCompleteDefinition()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*incomplete*/ 1 << VarExpr->getType();
return ExprError();
}
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
CXXRD && !CXXRD->isAggregate()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*aggregate*/ 2 << VarExpr->getType();
return ExprError();
}
for (FieldDecl *FD : RD->fields()) {
if (!TypeIsValid(FD->getType())) {
Diag(VarExpr->getExprLoc(),
diag::err_acc_reduction_composite_member_type);
Diag(FD->getLocation(), diag::note_acc_reduction_composite_member_loc);
return ExprError();
}
}
} else if (!TypeIsValid(VarExpr->getType())) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_type)
<< VarExpr->getType() << /*Sub array base type*/ 0;
return ExprError();
}
// OpenACC3.3: 2.9.11: Reduction clauses on nested constructs for the same
// reduction 'var' must have the same reduction operator.
if (!VarExpr->isInstantiationDependent()) {
for (const OpenACCReductionClause *RClause : ActiveReductionClauses) {
if (RClause->getReductionOp() == ReductionOp)
break;
for (Expr *OldVarExpr : RClause->getVarList()) {
if (OldVarExpr->isInstantiationDependent())
continue;
if (areVarsEqual(VarExpr, OldVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_reduction_op_mismatch)
<< ReductionOp << RClause->getReductionOp();
Diag(OldVarExpr->getExprLoc(), diag::note_acc_previous_clause_here);
return ExprError();
}
}
}
}
return VarExpr;
}
void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K,
SourceLocation DirLoc) {
// Start an evaluation context to parse the clause arguments on.
SemaRef.PushExpressionEvaluationContext(
Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
switch (K) {
case OpenACCDirectiveKind::Invalid:
// Nothing to do here, an invalid kind has nothing we can check here. We
// want to continue parsing clauses as far as we can, so we will just
// ensure that we can still work and don't check any construct-specific
// rules anywhere.
break;
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
// Nothing to do here, there is no real legalization that needs to happen
// here as these constructs do not take any arguments.
break;
default:
Diag(DirLoc, diag::warn_acc_construct_unimplemented) << K;
break;
}
}
ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK,
OpenACCClauseKind CK, SourceLocation Loc,
Expr *IntExpr) {
assert(((DK != OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK != OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid)) &&
"Only one of directive or clause kind should be provided");
class IntExprConverter : public Sema::ICEConvertDiagnoser {
OpenACCDirectiveKind DirectiveKind;
OpenACCClauseKind ClauseKind;
Expr *IntExpr;
// gets the index into the diagnostics so we can use this for clauses,
// directives, and sub array.s
unsigned getDiagKind() const {
if (ClauseKind != OpenACCClauseKind::Invalid)
return 0;
if (DirectiveKind != OpenACCDirectiveKind::Invalid)
return 1;
return 2;
}
public:
IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *IntExpr)
: ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false,
/*Suppress=*/false,
/*SuppressConversion=*/true),
DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {}
bool match(QualType T) override {
// OpenACC spec just calls this 'integer expression' as having an
// 'integer type', so fall back on C99's 'integer type'.
return T->isIntegerType();
}
SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_requires_integer)
<< getDiagKind() << ClauseKind << DirectiveKind << T;
}
SemaBase::SemaDiagnosticBuilder
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_incomplete_class_type)
<< T << IntExpr->getSourceRange();
}
SemaBase::SemaDiagnosticBuilder
diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
return S.Diag(Loc, diag::err_acc_int_expr_explicit_conversion)
<< T << ConvTy;
}
SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S,
CXXConversionDecl *Conv,
QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_multiple_conversions) << T;
}
SemaBase::SemaDiagnosticBuilder
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseConversion(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
llvm_unreachable("conversion functions are permitted");
}
} IntExprDiagnoser(DK, CK, IntExpr);
if (!IntExpr)
return ExprError();
ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion(
Loc, IntExpr, IntExprDiagnoser);
if (IntExprResult.isInvalid())
return ExprError();
IntExpr = IntExprResult.get();
if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType())
return ExprError();
// TODO OpenACC: Do we want to perform usual unary conversions here? When
// doing codegen we might find that is necessary, but skip it for now.
return IntExpr;
}
bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind,
Expr *VarExpr) {
// We already know that VarExpr is a proper reference to a variable, so we
// should be able to just take the type of the expression to get the type of
// the referenced variable.
// We've already seen an error, don't diagnose anything else.
if (!VarExpr || VarExpr->containsErrors())
return false;
if (isa<ArraySectionExpr>(VarExpr->IgnoreParenImpCasts()) ||
VarExpr->hasPlaceholderType(BuiltinType::ArraySection)) {
Diag(VarExpr->getExprLoc(), diag::err_array_section_use) << /*OpenACC=*/0;
Diag(VarExpr->getExprLoc(), diag::note_acc_expected_pointer_var);
return true;
}
QualType Ty = VarExpr->getType();
Ty = Ty.getNonReferenceType().getUnqualifiedType();
// Nothing we can do if this is a dependent type.
if (Ty->isDependentType())
return false;
if (!Ty->isPointerType())
return Diag(VarExpr->getExprLoc(), diag::err_acc_var_not_pointer_type)
<< ClauseKind << Ty;
return false;
}
ExprResult SemaOpenACC::ActOnVar(OpenACCClauseKind CK, Expr *VarExpr) {
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
// Sub-arrays/subscript-exprs are fine as long as the base is a
// VarExpr/MemberExpr. So strip all of those off.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return VarExpr;
}
// If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a
// reduction clause must be a scalar variable name, an aggregate variable
// name, an array element, or a subarray.
// A MemberExpr that references a Field is valid.
if (CK != OpenACCClauseKind::Reduction) {
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl()))
return VarExpr;
}
}
// Referring to 'this' is always OK.
if (isa<CXXThisExpr>(CurVarExpr))
return VarExpr;
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr>(CurVarExpr) ||
(CK != OpenACCClauseKind::Reduction &&
isa<CXXDependentScopeMemberExpr>(CurVarExpr)))
return VarExpr;
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref)
<< (CK != OpenACCClauseKind::Reduction);
return ExprError();
}
ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc,
Expr *LowerBound,
SourceLocation ColonLoc,
Expr *Length,
SourceLocation RBLoc) {
ASTContext &Context = getASTContext();
// Handle placeholders.
if (Base->hasPlaceholderType() &&
!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(LowerBound);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
LowerBound = Result.get();
}
if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Length);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
Length = Result.get();
}
// Check the 'base' value, it must be an array or pointer type, and not to/of
// a function type.
QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base);
QualType ResultTy;
if (!Base->isTypeDependent()) {
if (OriginalBaseTy->isAnyPointerType()) {
ResultTy = OriginalBaseTy->getPointeeType();
} else if (OriginalBaseTy->isArrayType()) {
ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType();
} else {
return ExprError(
Diag(Base->getExprLoc(), diag::err_acc_typecheck_subarray_value)
<< Base->getSourceRange());
}
if (ResultTy->isFunctionType()) {
Diag(Base->getExprLoc(), diag::err_acc_subarray_function_type)
<< ResultTy << Base->getSourceRange();
return ExprError();
}
if (SemaRef.RequireCompleteType(Base->getExprLoc(), ResultTy,
diag::err_acc_subarray_incomplete_type,
Base))
return ExprError();
if (!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
}
auto GetRecovery = [&](Expr *E, QualType Ty) {
ExprResult Recovery =
SemaRef.CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), E, Ty);
return Recovery.isUsable() ? Recovery.get() : nullptr;
};
// Ensure both of the expressions are int-exprs.
if (LowerBound && !LowerBound->isTypeDependent()) {
ExprResult LBRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
LowerBound->getExprLoc(), LowerBound);
if (LBRes.isUsable())
LBRes = SemaRef.DefaultLvalueConversion(LBRes.get());
LowerBound =
LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy);
}
if (Length && !Length->isTypeDependent()) {
ExprResult LenRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
Length->getExprLoc(), Length);
if (LenRes.isUsable())
LenRes = SemaRef.DefaultLvalueConversion(LenRes.get());
Length =
LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy);
}
// Length is required if the base type is not an array of known bounds.
if (!Length && (OriginalBaseTy.isNull() ||
(!OriginalBaseTy->isDependentType() &&
!OriginalBaseTy->isConstantArrayType() &&
!OriginalBaseTy->isDependentSizedArrayType()))) {
bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType();
Diag(ColonLoc, diag::err_acc_subarray_no_length) << IsArray;
// Fill in a dummy 'length' so that when we instantiate this we don't
// double-diagnose here.
ExprResult Recovery = SemaRef.CreateRecoveryExpr(
ColonLoc, SourceLocation(), ArrayRef<Expr *>(), Context.IntTy);
Length = Recovery.isUsable() ? Recovery.get() : nullptr;
}
// Check the values of each of the arguments, they cannot be negative(we
// assume), and if the array bound is known, must be within range. As we do
// so, do our best to continue with evaluation, we can set the
// value/expression to nullptr/nullopt if they are invalid, and treat them as
// not present for the rest of evaluation.
// We don't have to check for dependence, because the dependent size is
// represented as a different AST node.
std::optional<llvm::APSInt> BaseSize;
if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) {
const auto *ArrayTy = Context.getAsConstantArrayType(OriginalBaseTy);
BaseSize = ArrayTy->getSize();
}
auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> {
if (!E || E->isInstantiationDependent())
return std::nullopt;
Expr::EvalResult Res;
if (!E->EvaluateAsInt(Res, Context))
return std::nullopt;
return Res.Val.getInt();
};
std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound);
std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length);
// Check lower bound for negative or out of range.
if (LowerBoundValue.has_value()) {
if (LowerBoundValue->isNegative()) {
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_negative)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LowerBoundValue, *BaseSize) >= 0) {
// Lower bound (start index) must be less than the size of the array.
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
}
}
// Check length for negative or out of range.
if (LengthValue.has_value()) {
if (LengthValue->isNegative()) {
Diag(Length->getExprLoc(), diag::err_acc_subarray_negative)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LengthValue, *BaseSize) > 0) {
// Length must be lessthan or EQUAL to the size of the array.
Diag(Length->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
}
// Adding two APSInts requires matching sign, so extract that here.
auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt {
if (LHS.isSigned() == RHS.isSigned())
return LHS + RHS;
unsigned Width = std::max(LHS.getBitWidth(), RHS.getBitWidth()) + 1;
return llvm::APSInt(LHS.sext(Width) + RHS.sext(Width), /*Signed=*/true);
};
// If we know all 3 values, we can diagnose that the total value would be out
// of range.
if (BaseSize.has_value() && LowerBoundValue.has_value() &&
LengthValue.has_value() &&
llvm::APSInt::compareValues(AddAPSInt(*LowerBoundValue, *LengthValue),
*BaseSize) > 0) {
Diag(Base->getExprLoc(),
diag::err_acc_subarray_base_plus_length_out_of_range)
<< toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
// If any part of the expression is dependent, return a dependent sub-array.
QualType ArrayExprTy = Context.ArraySectionTy;
if (Base->isTypeDependent() ||
(LowerBound && LowerBound->isInstantiationDependent()) ||
(Length && Length->isInstantiationDependent()))
ArrayExprTy = Context.DependentTy;
return new (Context)
ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue,
OK_Ordinary, ColonLoc, RBLoc);
}
ExprResult SemaOpenACC::CheckCollapseLoopCount(Expr *LoopCount) {
if (!LoopCount)
return ExprError();
assert((LoopCount->isInstantiationDependent() ||
LoopCount->getType()->isIntegerType()) &&
"Loop argument non integer?");
// If this is dependent, there really isn't anything we can check.
if (LoopCount->isInstantiationDependent())
return ExprResult{LoopCount};
std::optional<llvm::APSInt> ICE =
LoopCount->getIntegerConstantExpr(getASTContext());
// OpenACC 3.3: 2.9.1
// The argument to the collapse clause must be a constant positive integer
// expression.
if (!ICE || *ICE <= 0) {
Diag(LoopCount->getBeginLoc(), diag::err_acc_collapse_loop_count)
<< ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
return ExprError();
}
return ExprResult{
ConstantExpr::Create(getASTContext(), LoopCount, APValue{*ICE})};
}
namespace {
ExprResult CheckGangStaticExpr(SemaOpenACC &S, Expr *E) {
if (isa<OpenACCAsteriskSizeExpr>(E))
return E;
return S.ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Gang,
E->getBeginLoc(), E);
}
} // namespace
ExprResult SemaOpenACC::CheckGangExpr(OpenACCGangKind GK, Expr *E) {
// Gang Expr legality depends on the associated compute construct.
switch (ActiveComputeConstructInfo.Kind) {
case OpenACCDirectiveKind::Invalid:
case OpenACCDirectiveKind::Parallel: {
switch (GK) {
// OpenACC 3.3 2.9.2: When the parent compute construct is a parallel
// construct, or an orphaned loop construct, the gang clause behaves as
// follows. ... The dim argument must be a constant positive integer value
// 1, 2, or 3.
case OpenACCGangKind::Dim: {
if (!E)
return ExprError();
ExprResult Res =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Gang,
E->getBeginLoc(), E);
if (!Res.isUsable())
return Res;
if (Res.get()->isInstantiationDependent())
return Res;
std::optional<llvm::APSInt> ICE =
Res.get()->getIntegerConstantExpr(getASTContext());
if (!ICE || *ICE <= 0 || ICE > 3) {
Diag(Res.get()->getBeginLoc(), diag::err_acc_gang_dim_value)
<< ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
return ExprError();
}
return ExprResult{
ConstantExpr::Create(getASTContext(), Res.get(), APValue{*ICE})};
}
// OpenACC 3.3 2.9.2: When the parent compute construct is a parallel
// construct, or an orphaned loop construct, the gang clause behaves as
// follows. ... The num argument is not allowed.
case OpenACCGangKind::Num:
Diag(E->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< OpenACCClauseKind::Gang << GK
<< (/*orphan/parallel=*/ActiveComputeConstructInfo.Kind ==
OpenACCDirectiveKind::Parallel
? 1
: 0);
return ExprError();
case OpenACCGangKind::Static:
return CheckGangStaticExpr(*this, E);
}
} break;
case OpenACCDirectiveKind::Kernels: {
switch (GK) {
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The dim argument is
// not allowed.
case OpenACCGangKind::Dim:
Diag(E->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< OpenACCClauseKind::Gang << GK << /*kernels=*/2;
return ExprError();
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... An argument with no
// keyword or with num keyword is only allowed when num_gangs does not
// appear on the kernels construct. ... The region of a loop with the gang
// clause may not contain another loop with a gang clause unless within a
// nested compute region.
case OpenACCGangKind::Num:
// This isn't allowed if there is a 'num_gangs' on the kernel construct,
// and makes loop-with-gang-clause ill-formed inside of this 'loop', but
// nothing can be enforced here.
return ExprResult{E};
case OpenACCGangKind::Static:
return CheckGangStaticExpr(*this, E);
}
} break;
case OpenACCDirectiveKind::Serial: {
switch (GK) {
// 'dim' and 'num' don't really make sense on serial, and GCC rejects them
// too, so we disallow them too.
case OpenACCGangKind::Dim:
case OpenACCGangKind::Num:
Diag(E->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< OpenACCClauseKind::Gang << GK << /*Kernels=*/3;
return ExprError();
case OpenACCGangKind::Static:
return CheckGangStaticExpr(*this, E);
}
} break;
default:
llvm_unreachable("Non compute construct in active compute construct?");
}
llvm_unreachable("Compute construct directive not handled?");
}
OpenACCClause *
SemaOpenACC::CheckGangClause(ArrayRef<const OpenACCClause *> ExistingClauses,
SourceLocation BeginLoc, SourceLocation LParenLoc,
ArrayRef<OpenACCGangKind> GangKinds,
ArrayRef<Expr *> IntExprs, SourceLocation EndLoc) {
// OpenACC 3.3 2.9.11: A reduction clause may not appear on a loop directive
// that has a gang clause with a dim: argument whose value is greater than 1.
const auto *ReductionItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (ReductionItr != ExistingClauses.end()) {
const auto GangZip = llvm::zip_equal(GangKinds, IntExprs);
const auto GangItr = llvm::find_if(GangZip, [](const auto &Tuple) {
return std::get<0>(Tuple) == OpenACCGangKind::Dim;
});
if (GangItr != GangZip.end()) {
const Expr *DimExpr = std::get<1>(*GangItr);
assert(
(DimExpr->isInstantiationDependent() || isa<ConstantExpr>(DimExpr)) &&
"Improperly formed gang argument");
if (const auto *DimVal = dyn_cast<ConstantExpr>(DimExpr);
DimVal && DimVal->getResultAsAPSInt() > 1) {
Diag(DimVal->getBeginLoc(), diag::err_acc_gang_reduction_conflict)
<< /*gang/reduction=*/0;
Diag((*ReductionItr)->getBeginLoc(),
diag::note_acc_previous_clause_here);
return nullptr;
}
}
}
return OpenACCGangClause::Create(getASTContext(), BeginLoc, LParenLoc,
GangKinds, IntExprs, EndLoc);
}
OpenACCClause *SemaOpenACC::CheckReductionClause(
ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DirectiveKind, SourceLocation BeginLoc,
SourceLocation LParenLoc, OpenACCReductionOperator ReductionOp,
ArrayRef<Expr *> Vars, SourceLocation EndLoc) {
if (DirectiveKind == OpenACCDirectiveKind::Loop) {
// OpenACC 3.3 2.9.11: A reduction clause may not appear on a loop directive
// that has a gang clause with a dim: argument whose value is greater
// than 1.
const auto *GangItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCGangClause>);
while (GangItr != ExistingClauses.end()) {
auto *GangClause = cast<OpenACCGangClause>(*GangItr);
for (unsigned I = 0; I < GangClause->getNumExprs(); ++I) {
std::pair<OpenACCGangKind, const Expr *> EPair = GangClause->getExpr(I);
// We know there is only 1 on this gang, so move onto the next gang.
if (EPair.first != OpenACCGangKind::Dim)
break;
if (const auto *DimVal = dyn_cast<ConstantExpr>(EPair.second);
DimVal && DimVal->getResultAsAPSInt() > 1) {
Diag(BeginLoc, diag::err_acc_gang_reduction_conflict)
<< /*reduction/gang=*/1;
Diag((*GangItr)->getBeginLoc(), diag::note_acc_previous_clause_here);
return nullptr;
}
}
++GangItr;
}
}
auto *Ret = OpenACCReductionClause::Create(
getASTContext(), BeginLoc, LParenLoc, ReductionOp, Vars, EndLoc);
return Ret;
}
ExprResult SemaOpenACC::CheckTileSizeExpr(Expr *SizeExpr) {
if (!SizeExpr)
return ExprError();
assert((SizeExpr->isInstantiationDependent() ||
SizeExpr->getType()->isIntegerType()) &&
"size argument non integer?");
// If dependent, or an asterisk, the expression is fine.
if (SizeExpr->isInstantiationDependent() ||
isa<OpenACCAsteriskSizeExpr>(SizeExpr))
return ExprResult{SizeExpr};
std::optional<llvm::APSInt> ICE =
SizeExpr->getIntegerConstantExpr(getASTContext());
// OpenACC 3.3 2.9.8
// where each tile size is a constant positive integer expression or asterisk.
if (!ICE || *ICE <= 0) {
Diag(SizeExpr->getBeginLoc(), diag::err_acc_size_expr_value)
<< ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
return ExprError();
}
return ExprResult{
ConstantExpr::Create(getASTContext(), SizeExpr, APValue{*ICE})};
}
void SemaOpenACC::ActOnWhileStmt(SourceLocation WhileLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ActOnDoStmt(SourceLocation DoLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ForStmtBeginHelper(SourceLocation ForLoc,
ForStmtBeginChecker &C) {
assert(getLangOpts().OpenACC && "Check enabled when not OpenACC?");
// Enable the while/do-while checking.
LoopInfo.TopLevelLoopSeen = true;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
C.check();
// OpenACC 3.3 2.9.1:
// Each associated loop, except the innermost, must contain exactly one loop
// or loop nest.
// This checks for more than 1 loop at the current level, the
// 'depth'-satisifed checking manages the 'not zero' case.
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< CollapseInfo.DirectiveKind << OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "No collapse object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
} else {
--(*CollapseInfo.CurCollapseCount);
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*CollapseInfo.CurCollapseCount == 0)
CollapseInfo.CollapseDepthSatisfied = true;
}
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
C.check();
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "No tile object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
} else {
--(*TileInfo.CurTileCount);
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*TileInfo.CurTileCount == 0)
TileInfo.TileDepthSatisfied = true;
}
}
// Set this to 'false' for the body of this loop, so that the next level
// checks independently.
LoopInfo.CurLevelHasLoopAlready = false;
}
namespace {
bool isValidLoopVariableType(QualType LoopVarTy) {
// Just skip if it is dependent, it could be any of the below.
if (LoopVarTy->isDependentType())
return true;
// The loop variable must be of integer,
if (LoopVarTy->isIntegerType())
return true;
// C/C++ pointer,
if (LoopVarTy->isPointerType())
return true;
// or C++ random-access iterator type.
if (const auto *RD = LoopVarTy->getAsCXXRecordDecl()) {
// Note: Only do CXXRecordDecl because RecordDecl can't be a random access
// iterator type!
// We could either do a lot of work to see if this matches
// random-access-iterator, but it seems that just checking that the
// 'iterator_category' typedef is more than sufficient. If programmers are
// willing to lie about this, we can let them.
for (const auto *TD :
llvm::make_filter_range(RD->decls(), llvm::IsaPred<TypedefNameDecl>)) {
const auto *TDND = cast<TypedefNameDecl>(TD)->getCanonicalDecl();
if (TDND->getName() != "iterator_category")
continue;
// If there is no type for this decl, return false.
if (TDND->getUnderlyingType().isNull())
return false;
const CXXRecordDecl *ItrCategoryDecl =
TDND->getUnderlyingType()->getAsCXXRecordDecl();
// If the category isn't a record decl, it isn't the tag type.
if (!ItrCategoryDecl)
return false;
auto IsRandomAccessIteratorTag = [](const CXXRecordDecl *RD) {
if (RD->getName() != "random_access_iterator_tag")
return false;
// Checks just for std::random_access_iterator_tag.
return RD->getEnclosingNamespaceContext()->isStdNamespace();
};
if (IsRandomAccessIteratorTag(ItrCategoryDecl))
return true;
// We can also support types inherited from the
// random_access_iterator_tag.
for (CXXBaseSpecifier BS : ItrCategoryDecl->bases()) {
if (IsRandomAccessIteratorTag(BS.getType()->getAsCXXRecordDecl()))
return true;
}
return false;
}
}
return false;
}
} // namespace
void SemaOpenACC::ForStmtBeginChecker::check() {
if (SemaRef.LoopWithoutSeqInfo.Kind == OpenACCDirectiveKind::Invalid)
return;
if (AlreadyChecked)
return;
AlreadyChecked = true;
// OpenACC3.3 2.1:
// A loop associated with a loop construct that does not have a seq clause
// must be written to meet all the following conditions:
// - The loop variable must be of integer, C/C++ pointer, or C++ random-access
// iterator type.
// - The loop variable must monotonically increase or decrease in the
// direction of its termination condition.
// - The loop trip count must be computable in constant time when entering the
// loop construct.
//
// For a C++ range-based for loop, the loop variable
// identified by the above conditions is the internal iterator, such as a
// pointer, that the compiler generates to iterate the range. it is not the
// variable declared by the for loop.
if (IsRangeFor) {
// If the range-for is being instantiated and didn't change, don't
// re-diagnose.
if (!RangeFor.has_value())
return;
// For a range-for, we can assume everything is 'corect' other than the type
// of the iterator, so check that.
const DeclStmt *RangeStmt = (*RangeFor)->getBeginStmt();
// In some dependent contexts, the autogenerated range statement doesn't get
// included until instantiation, so skip for now.
if (!RangeStmt)
return;
const ValueDecl *InitVar = cast<ValueDecl>(RangeStmt->getSingleDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
if (!isValidLoopVariableType(VarType)) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return;
}
// Else we are in normal 'ForStmt', so we can diagnose everything.
// We only have to check cond/inc if they have changed, but 'init' needs to
// just suppress its diagnostics if it hasn't changed.
const ValueDecl *InitVar = checkInit();
if (Cond.has_value())
checkCond();
if (Inc.has_value())
checkInc(InitVar);
}
const ValueDecl *SemaOpenACC::ForStmtBeginChecker::checkInit() {
if (!Init) {
if (InitChanged) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
}
auto DiagLoopVar = [&]() {
if (InitChanged) {
SemaRef.Diag(Init->getBeginLoc(), diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
Init = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(Init))
Init = E->IgnoreParenImpCasts();
const ValueDecl *InitVar = nullptr;
if (const auto *BO = dyn_cast<BinaryOperator>(Init)) {
// Allow assignment operator here.
if (!BO->isAssignmentOp())
return DiagLoopVar();
const Expr *LHS = BO->getLHS()->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS))
InitVar = DRE->getDecl();
} else if (const auto *DS = dyn_cast<DeclStmt>(Init)) {
// Allow T t = <whatever>
if (!DS->isSingleDecl())
return DiagLoopVar();
InitVar = dyn_cast<ValueDecl>(DS->getSingleDecl());
// Ensure we have an initializer, unless this is a record/dependent type.
if (InitVar) {
if (!isa<VarDecl>(InitVar))
return DiagLoopVar();
if (!InitVar->getType()->isRecordType() &&
!InitVar->getType()->isDependentType() &&
!cast<VarDecl>(InitVar)->hasInit())
return DiagLoopVar();
}
} else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(Init)) {
// Allow assignment operator call.
if (CE->getOperator() != OO_Equal)
return DiagLoopVar();
const Expr *LHS = CE->getArg(0)->IgnoreParenImpCasts();
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
InitVar = DRE->getDecl();
} else if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
InitVar = ME->getMemberDecl();
}
}
if (!InitVar)
return DiagLoopVar();
InitVar = cast<ValueDecl>(InitVar->getCanonicalDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
// Since we have one, all we need to do is ensure it is the right type.
if (!isValidLoopVariableType(VarType)) {
if (InitChanged) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
}
return InitVar;
}
void SemaOpenACC::ForStmtBeginChecker::checkCond() {
if (!*Cond) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_terminating_condition)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
// Nothing else to do here. we could probably do some additional work to look
// into the termination condition, but that error-prone. For now, we don't
// implement anything other than 'there is a termination condition', and if
// codegen/MLIR comes up with some necessary restrictions, we can implement
// them here.
}
void SemaOpenACC::ForStmtBeginChecker::checkInc(const ValueDecl *Init) {
if (!*Inc) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
return;
}
auto DiagIncVar = [this] {
SemaRef.Diag((*Inc)->getBeginLoc(), diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
return;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(*Inc))
Inc = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(*Inc))
Inc = E->IgnoreParenImpCasts();
auto getDeclFromExpr = [](const Expr *E) -> const ValueDecl * {
E = E->IgnoreParenImpCasts();
if (const auto *FE = dyn_cast<FullExpr>(E))
E = FE->getSubExpr();
E = E->IgnoreParenImpCasts();
if (!E)
return nullptr;
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<ValueDecl>(DRE->getDecl());
if (const auto *ME = dyn_cast<MemberExpr>(E))
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
return ME->getMemberDecl();
return nullptr;
};
const ValueDecl *IncVar = nullptr;
// Here we enforce the monotonically increase/decrease:
if (const auto *UO = dyn_cast<UnaryOperator>(*Inc)) {
// Allow increment/decrement ops.
if (!UO->isIncrementDecrementOp())
return DiagIncVar();
IncVar = getDeclFromExpr(UO->getSubExpr());
} else if (const auto *BO = dyn_cast<BinaryOperator>(*Inc)) {
switch (BO->getOpcode()) {
default:
return DiagIncVar();
case BO_AddAssign:
case BO_SubAssign:
case BO_MulAssign:
case BO_DivAssign:
case BO_Assign:
// += -= *= /= should all be fine here, this should be all of the
// 'monotonical' compound-assign ops.
// Assignment we just give up on, we could do better, and ensure that it
// is a binary/operator expr doing more work, but that seems like a lot
// of work for an error prone check.
break;
}
IncVar = getDeclFromExpr(BO->getLHS());
} else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(*Inc)) {
switch (CE->getOperator()) {
default:
return DiagIncVar();
case OO_PlusPlus:
case OO_MinusMinus:
case OO_PlusEqual:
case OO_MinusEqual:
case OO_StarEqual:
case OO_SlashEqual:
case OO_Equal:
// += -= *= /= should all be fine here, this should be all of the
// 'monotonical' compound-assign ops.
// Assignment we just give up on, we could do better, and ensure that it
// is a binary/operator expr doing more work, but that seems like a lot
// of work for an error prone check.
break;
}
IncVar = getDeclFromExpr(CE->getArg(0));
} else if (const auto *ME = dyn_cast<CXXMemberCallExpr>(*Inc)) {
IncVar = getDeclFromExpr(ME->getImplicitObjectArgument());
// We can't really do much for member expressions, other than hope they are
// doing the right thing, so give up here.
}
if (!IncVar)
return DiagIncVar();
// InitVar shouldn't be null unless there was an error, so don't diagnose if
// that is the case. Else we should ensure that it refers to the loop
// value.
if (Init && IncVar->getCanonicalDecl() != Init->getCanonicalDecl())
return DiagIncVar();
return;
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *OldFirst,
const Stmt *First, const Stmt *OldSecond,
const Stmt *Second, const Stmt *OldThird,
const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
std::optional<const Stmt *> S;
if (OldSecond == Second)
S = std::nullopt;
else
S = Second;
std::optional<const Stmt *> T;
if (OldThird == Third)
S = std::nullopt;
else
S = Third;
bool InitChanged = false;
if (OldFirst != First) {
InitChanged = true;
// VarDecls are always rebuild because they are dependent, so we can do a
// little work to suppress some of the double checking based on whether the
// type is instantiation dependent.
QualType OldVDTy;
QualType NewVDTy;
if (const auto *DS = dyn_cast<DeclStmt>(OldFirst))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
OldVDTy = VD->getType();
if (const auto *DS = dyn_cast<DeclStmt>(First))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
NewVDTy = VD->getType();
if (!OldVDTy.isNull() && !NewVDTy.isNull())
InitChanged = OldVDTy->isInstantiationDependentType() !=
NewVDTy->isInstantiationDependentType();
}
ForStmtBeginChecker FSBC{*this, ForLoc, First, InitChanged, S, T};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *First,
const Stmt *Second, const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, First, /*InitChanged=*/true,
Second, Third};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *OldRangeFor,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC)
return;
std::optional<const CXXForRangeStmt *> RF;
if (OldRangeFor == RangeFor)
RF = std::nullopt;
else
RF = cast<CXXForRangeStmt>(RangeFor);
ForStmtBeginChecker FSBC{*this, ForLoc, RF};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, cast<CXXForRangeStmt>(RangeFor)};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
namespace {
SourceLocation FindInterveningCodeInLoop(const Stmt *CurStmt) {
// We should diagnose on anything except `CompoundStmt`, `NullStmt`,
// `ForStmt`, `CXXForRangeStmt`, since those are legal, and `WhileStmt` and
// `DoStmt`, as those are caught as a violation elsewhere.
// For `CompoundStmt` we need to search inside of it.
if (!CurStmt ||
isa<ForStmt, NullStmt, ForStmt, CXXForRangeStmt, WhileStmt, DoStmt>(
CurStmt))
return SourceLocation{};
// Any other construct is an error anyway, so it has already been diagnosed.
if (isa<OpenACCConstructStmt>(CurStmt))
return SourceLocation{};
// Search inside the compound statement, this allows for arbitrary nesting
// of compound statements, as long as there isn't any code inside.
if (const auto *CS = dyn_cast<CompoundStmt>(CurStmt)) {
for (const auto *ChildStmt : CS->children()) {
SourceLocation ChildStmtLoc = FindInterveningCodeInLoop(ChildStmt);
if (ChildStmtLoc.isValid())
return ChildStmtLoc;
}
// Empty/not invalid compound statements are legal.
return SourceLocation{};
}
return CurStmt->getBeginLoc();
}
} // namespace
void SemaOpenACC::ActOnForStmtEnd(SourceLocation ForLoc, StmtResult Body) {
if (!getLangOpts().OpenACC)
return;
// Set this to 'true' so if we find another one at this level we can diagnose.
LoopInfo.CurLevelHasLoopAlready = true;
if (!Body.isUsable())
return;
bool IsActiveCollapse = CollapseInfo.CurCollapseCount &&
*CollapseInfo.CurCollapseCount > 0 &&
!CollapseInfo.ActiveCollapse->hasForce();
bool IsActiveTile = TileInfo.CurTileCount && *TileInfo.CurTileCount > 0;
if (IsActiveCollapse || IsActiveTile) {
SourceLocation OtherStmtLoc = FindInterveningCodeInLoop(Body.get());
if (OtherStmtLoc.isValid() && IsActiveCollapse) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Collapse << CollapseInfo.DirectiveKind;
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (OtherStmtLoc.isValid() && IsActiveTile) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Tile << TileInfo.DirectiveKind;
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
}
}
bool SemaOpenACC::ActOnStartStmtDirective(OpenACCDirectiveKind K,
SourceLocation StartLoc) {
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
// OpenACC 3.3 2.9.1:
// Intervening code must not contain other OpenACC directives or calls to API
// routines.
//
// ALL constructs are ill-formed if there is an active 'collapse'
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse << K;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile << K;
assert(TileInfo.ActiveTile && "Tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/true);
}
StmtResult SemaOpenACC::ActOnEndStmtDirective(OpenACCDirectiveKind K,
SourceLocation StartLoc,
SourceLocation DirLoc,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses,
StmtResult AssocStmt) {
switch (K) {
default:
return StmtEmpty();
case OpenACCDirectiveKind::Invalid:
return StmtError();
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels: {
return OpenACCComputeConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop: {
return OpenACCCombinedConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Loop: {
return OpenACCLoopConstruct::Create(
getASTContext(), ActiveComputeConstructInfo.Kind, StartLoc, DirLoc,
EndLoc, Clauses, AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
}
llvm_unreachable("Unhandled case in directive handling?");
}
StmtResult SemaOpenACC::ActOnAssociatedStmt(
SourceLocation DirectiveLoc, OpenACCDirectiveKind K,
ArrayRef<const OpenACCClause *> Clauses, StmtResult AssocStmt) {
switch (K) {
default:
llvm_unreachable("Unimplemented associated statement application");
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
// There really isn't any checking here that could happen. As long as we
// have a statement to associate, this should be fine.
// OpenACC 3.3 Section 6:
// Structured Block: in C or C++, an executable statement, possibly
// compound, with a single entry at the top and a single exit at the
// bottom.
// FIXME: Should we reject DeclStmt's here? The standard isn't clear, and
// an interpretation of it is to allow this and treat the initializer as
// the 'structured block'.
return AssocStmt;
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
if (!AssocStmt.isUsable())
return StmtError();
if (!isa<CXXForRangeStmt, ForStmt>(AssocStmt.get())) {
Diag(AssocStmt.get()->getBeginLoc(), diag::err_acc_loop_not_for_loop)
<< K;
Diag(DirectiveLoc, diag::note_acc_construct_here) << K;
return StmtError();
}
if (!CollapseInfo.CollapseDepthSatisfied || !TileInfo.TileDepthSatisfied) {
if (!CollapseInfo.CollapseDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (!TileInfo.TileDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "Collapse count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
return StmtError();
}
return AssocStmt.get();
}
llvm_unreachable("Invalid associated statement application");
}
bool SemaOpenACC::ActOnStartDeclDirective(OpenACCDirectiveKind K,
SourceLocation StartLoc) {
// OpenCC3.3 2.1 (line 889)
// A program must not depend on the order of evaluation of expressions in
// clause arguments or on any side effects of the evaluations.
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/false);
}
DeclGroupRef SemaOpenACC::ActOnEndDeclDirective() { return DeclGroupRef{}; }
ExprResult
SemaOpenACC::BuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return OpenACCAsteriskSizeExpr::Create(getASTContext(), AsteriskLoc);
}
ExprResult
SemaOpenACC::ActOnOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return BuildOpenACCAsteriskSizeExpr(AsteriskLoc);
}