Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
Peiming Liu eb65327fe9 [mlir][sparse] Add new option (enable-runtime-library) to sparse compiler pipeline
Add new option (enable-runtime-library) to sparse compiler pipeline, it allows us to decide whether we need to rewrite operations (e.g., concatenate, reshape) within sparsification (when using codegen) or convert them after sparsification (when using runtime library).

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D133597
2022-09-09 20:54:47 +00:00

242 lines
10 KiB
C++

//===- SparseTensorPasses.cpp - Pass for autogen sparse tensor code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
#define GEN_PASS_DEF_SPARSIFICATIONPASS
#define GEN_PASS_DEF_SPARSETENSORCONVERSIONPASS
#define GEN_PASS_DEF_SPARSETENSORCODEGEN
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Passes implementation.
//===----------------------------------------------------------------------===//
struct SparsificationPass
: public impl::SparsificationPassBase<SparsificationPass> {
SparsificationPass() = default;
SparsificationPass(const SparsificationPass &pass) = default;
SparsificationPass(const SparsificationOptions &options) {
parallelization = options.parallelizationStrategy;
vectorization = options.vectorizationStrategy;
vectorLength = options.vectorLength;
enableSIMDIndex32 = options.enableSIMDIndex32;
enableVLAVectorization = options.enableVLAVectorization;
enableRuntimeLibrary = options.enableRuntimeLibrary;
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet prePatterns(ctx);
// Translate strategy flags to strategy options.
SparsificationOptions options(parallelization, vectorization, vectorLength,
enableSIMDIndex32, enableVLAVectorization,
enableRuntimeLibrary);
// Apply pre-rewriting.
populateSparseTensorRewriting(prePatterns, options.enableRuntimeLibrary);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(prePatterns));
// Apply sparsification and vector cleanup rewriting.
RewritePatternSet patterns(ctx);
populateSparsificationPatterns(patterns, options);
vector::populateVectorToVectorCanonicalizationPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct SparseTensorConversionPass
: public impl::SparseTensorConversionPassBase<SparseTensorConversionPass> {
SparseTensorConversionPass() = default;
SparseTensorConversionPass(const SparseTensorConversionPass &pass) = default;
SparseTensorConversionPass(const SparseTensorConversionOptions &options) {
sparseToSparse = static_cast<int32_t>(options.sparseToSparseStrategy);
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
SparseTensorTypeToPtrConverter converter;
ConversionTarget target(*ctx);
// Everything in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
// All dynamic rules below accept new function, call, return, and various
// tensor and bufferization operations as legal output of the rewriting
// provided that all sparse tensor types have been fully rewritten.
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType());
});
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<tensor::DimOp>([&](tensor::DimOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<tensor::CastOp>([&](tensor::CastOp op) {
return converter.isLegal(op.getSource().getType()) &&
converter.isLegal(op.getDest().getType());
});
target.addDynamicallyLegalOp<tensor::ExpandShapeOp>(
[&](tensor::ExpandShapeOp op) {
return converter.isLegal(op.getSrc().getType()) &&
converter.isLegal(op.getResult().getType());
});
target.addDynamicallyLegalOp<tensor::CollapseShapeOp>(
[&](tensor::CollapseShapeOp op) {
return converter.isLegal(op.getSrc().getType()) &&
converter.isLegal(op.getResult().getType());
});
target.addDynamicallyLegalOp<bufferization::AllocTensorOp>(
[&](bufferization::AllocTensorOp op) {
return converter.isLegal(op.getType());
});
target.addDynamicallyLegalOp<bufferization::DeallocTensorOp>(
[&](bufferization::DeallocTensorOp op) {
return converter.isLegal(op.getTensor().getType());
});
// The following operations and dialects may be introduced by the
// rewriting rules, and are therefore marked as legal.
target.addLegalOp<complex::ConstantOp, complex::NotEqualOp, linalg::FillOp,
linalg::YieldOp, tensor::ExtractOp>();
target.addLegalDialect<
arith::ArithmeticDialect, bufferization::BufferizationDialect,
LLVM::LLVMDialect, memref::MemRefDialect, scf::SCFDialect>();
// Translate strategy flags to strategy options.
SparseTensorConversionOptions options(
sparseToSparseConversionStrategy(sparseToSparse));
// Populate with rules and apply rewriting rules.
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
converter);
populateCallOpTypeConversionPattern(patterns, converter);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateSparseTensorConversionPatterns(converter, patterns, options);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
struct SparseTensorCodegenPass
: public impl::SparseTensorCodegenBase<SparseTensorCodegenPass> {
SparseTensorCodegenPass() = default;
SparseTensorCodegenPass(const SparseTensorCodegenPass &pass) = default;
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
SparseTensorTypeToBufferConverter converter;
ConversionTarget target(*ctx);
// Everything in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
// All dynamic rules below accept new function, call, return, and various
// tensor and bufferization operations as legal output of the rewriting
// provided that all sparse tensor types have been fully rewritten.
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType());
});
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<bufferization::AllocTensorOp>(
[&](bufferization::AllocTensorOp op) {
return converter.isLegal(op.getType());
});
target.addDynamicallyLegalOp<bufferization::DeallocTensorOp>(
[&](bufferization::DeallocTensorOp op) {
return converter.isLegal(op.getTensor().getType());
});
// The following operations and dialects may be introduced by the
// codegen rules, and are therefore marked as legal.
target.addLegalOp<linalg::FillOp>();
target.addLegalDialect<arith::ArithmeticDialect,
bufferization::BufferizationDialect,
memref::MemRefDialect, scf::SCFDialect>();
target.addLegalOp<UnrealizedConversionCastOp>();
// Populate with rules and apply rewriting rules.
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
converter);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateSparseTensorCodegenPatterns(converter, patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Strategy flag methods.
//===----------------------------------------------------------------------===//
SparseToSparseConversionStrategy
mlir::sparseToSparseConversionStrategy(int32_t flag) {
switch (flag) {
default:
return SparseToSparseConversionStrategy::kAuto;
case 1:
return SparseToSparseConversionStrategy::kViaCOO;
case 2:
return SparseToSparseConversionStrategy::kDirect;
}
}
//===----------------------------------------------------------------------===//
// Pass creation methods.
//===----------------------------------------------------------------------===//
std::unique_ptr<Pass> mlir::createSparsificationPass() {
return std::make_unique<SparsificationPass>();
}
std::unique_ptr<Pass>
mlir::createSparsificationPass(const SparsificationOptions &options) {
return std::make_unique<SparsificationPass>(options);
}
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() {
return std::make_unique<SparseTensorConversionPass>();
}
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass(
const SparseTensorConversionOptions &options) {
return std::make_unique<SparseTensorConversionPass>(options);
}
std::unique_ptr<Pass> mlir::createSparseTensorCodegenPass() {
return std::make_unique<SparseTensorCodegenPass>();
}