The discussion on forum: https://llvm.discourse.group/t/bug-in-partial-dialect-conversion/4115 The `applyPartialConversion` didn't handle the operations, that were marked as illegal inside dynamic legality callback. Instead of reporting error, if such operation was not converted to legal set, the method just added it to `unconvertedSet` in the same way as unknown operations. This patch fixes that and handle dynamically illegal operations as well. The patch includes 2 fixes for existing passes: * `tensor-bufferize` - explicitly mark `std.return` as legal. * `convert-parallel-loops-to-gpu` - ugly fix with marking visited operations to avoid recursive legality checks. Reviewed By: rriddle Differential Revision: https://reviews.llvm.org/D108505
2862 lines
113 KiB
C++
2862 lines
113 KiB
C++
//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/IR/Block.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/FunctionSupport.h"
|
|
#include "mlir/Rewrite/PatternApplicator.h"
|
|
#include "mlir/Transforms/Utils.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
#define DEBUG_TYPE "dialect-conversion"
|
|
|
|
/// Recursively collect all of the operations to convert from within 'region'.
|
|
/// If 'target' is nonnull, operations that are recursively legal have their
|
|
/// regions pre-filtered to avoid considering them for legalization.
|
|
static LogicalResult
|
|
computeConversionSet(iterator_range<Region::iterator> region,
|
|
Location regionLoc, std::vector<Operation *> &toConvert,
|
|
ConversionTarget *target = nullptr) {
|
|
if (llvm::empty(region))
|
|
return success();
|
|
|
|
// Traverse starting from the entry block.
|
|
SmallVector<Block *, 16> worklist(1, &*region.begin());
|
|
DenseSet<Block *> visitedBlocks;
|
|
visitedBlocks.insert(worklist.front());
|
|
while (!worklist.empty()) {
|
|
Block *block = worklist.pop_back_val();
|
|
|
|
// Compute the conversion set of each of the nested operations.
|
|
for (Operation &op : *block) {
|
|
toConvert.emplace_back(&op);
|
|
|
|
// Don't check this operation's children for conversion if the operation
|
|
// is recursively legal.
|
|
auto legalityInfo = target ? target->isLegal(&op)
|
|
: Optional<ConversionTarget::LegalOpDetails>();
|
|
if (legalityInfo && legalityInfo->isRecursivelyLegal)
|
|
continue;
|
|
for (auto ®ion : op.getRegions()) {
|
|
if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
|
|
toConvert, target)))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Recurse to children that haven't been visited.
|
|
for (Block *succ : block->getSuccessors())
|
|
if (visitedBlocks.insert(succ).second)
|
|
worklist.push_back(succ);
|
|
}
|
|
|
|
// Check that all blocks in the region were visited.
|
|
if (llvm::any_of(llvm::drop_begin(region, 1),
|
|
[&](Block &block) { return !visitedBlocks.count(&block); }))
|
|
return emitError(regionLoc, "unreachable blocks were not converted");
|
|
return success();
|
|
}
|
|
|
|
/// A utility function to log a successful result for the given reason.
|
|
template <typename... Args>
|
|
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
|
|
LLVM_DEBUG({
|
|
os.unindent();
|
|
os.startLine() << "} -> SUCCESS";
|
|
if (!fmt.empty())
|
|
os.getOStream() << " : "
|
|
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...);
|
|
os.getOStream() << "\n";
|
|
});
|
|
}
|
|
|
|
/// A utility function to log a failure result for the given reason.
|
|
template <typename... Args>
|
|
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
|
|
LLVM_DEBUG({
|
|
os.unindent();
|
|
os.startLine() << "} -> FAILURE : "
|
|
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...)
|
|
<< "\n";
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionValueMapping
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class wraps a BlockAndValueMapping to provide recursive lookup
|
|
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
|
|
struct ConversionValueMapping {
|
|
/// Lookup a mapped value within the map. If a mapping for the provided value
|
|
/// does not exist then return the provided value. If `desiredType` is
|
|
/// non-null, returns the most recently mapped value with that type. If an
|
|
/// operand of that type does not exist, defaults to normal behavior.
|
|
Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
|
|
|
|
/// Lookup a mapped value within the map, or return null if a mapping does not
|
|
/// exist. If a mapping exists, this follows the same behavior of
|
|
/// `lookupOrDefault`.
|
|
Value lookupOrNull(Value from) const;
|
|
|
|
/// Map a value to the one provided.
|
|
void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); }
|
|
|
|
/// Drop the last mapping for the given value.
|
|
void erase(Value value) { mapping.erase(value); }
|
|
|
|
/// Returns the inverse raw value mapping (without recursive query support).
|
|
BlockAndValueMapping getInverse() const { return mapping.getInverse(); }
|
|
|
|
private:
|
|
/// Current value mappings.
|
|
BlockAndValueMapping mapping;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
Value ConversionValueMapping::lookupOrDefault(Value from,
|
|
Type desiredType) const {
|
|
// If there was no desired type, simply find the leaf value.
|
|
if (!desiredType) {
|
|
// If this value had a valid mapping, unmap that value as well in the case
|
|
// that it was also replaced.
|
|
while (auto mappedValue = mapping.lookupOrNull(from))
|
|
from = mappedValue;
|
|
return from;
|
|
}
|
|
|
|
// Otherwise, try to find the deepest value that has the desired type.
|
|
Value desiredValue;
|
|
do {
|
|
if (from.getType() == desiredType)
|
|
desiredValue = from;
|
|
|
|
Value mappedValue = mapping.lookupOrNull(from);
|
|
if (!mappedValue)
|
|
break;
|
|
from = mappedValue;
|
|
} while (true);
|
|
|
|
// If the desired value was found use it, otherwise default to the leaf value.
|
|
return desiredValue ? desiredValue : from;
|
|
}
|
|
|
|
Value ConversionValueMapping::lookupOrNull(Value from) const {
|
|
Value result = lookupOrDefault(from);
|
|
return result == from ? nullptr : result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ArgConverter
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// This class provides a simple interface for converting the types of block
|
|
/// arguments. This is done by creating a new block that contains the new legal
|
|
/// types and extracting the block that contains the old illegal types to allow
|
|
/// for undoing pending rewrites in the case of failure.
|
|
struct ArgConverter {
|
|
ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {}
|
|
|
|
/// This structure contains the information pertaining to an argument that has
|
|
/// been converted.
|
|
struct ConvertedArgInfo {
|
|
ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
|
|
Value castValue = nullptr)
|
|
: newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
|
|
|
|
/// The start index of in the new argument list that contains arguments that
|
|
/// replace the original.
|
|
unsigned newArgIdx;
|
|
|
|
/// The number of arguments that replaced the original argument.
|
|
unsigned newArgSize;
|
|
|
|
/// The cast value that was created to cast from the new arguments to the
|
|
/// old. This only used if 'newArgSize' > 1.
|
|
Value castValue;
|
|
};
|
|
|
|
/// This structure contains information pertaining to a block that has had its
|
|
/// signature converted.
|
|
struct ConvertedBlockInfo {
|
|
ConvertedBlockInfo(Block *origBlock, TypeConverter &converter)
|
|
: origBlock(origBlock), converter(&converter) {}
|
|
|
|
/// The original block that was requested to have its signature converted.
|
|
Block *origBlock;
|
|
|
|
/// The conversion information for each of the arguments. The information is
|
|
/// None if the argument was dropped during conversion.
|
|
SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
|
|
|
|
/// The type converter used to convert the arguments.
|
|
TypeConverter *converter;
|
|
};
|
|
|
|
/// Return if the signature of the given block has already been converted.
|
|
bool hasBeenConverted(Block *block) const {
|
|
return conversionInfo.count(block) || convertedBlocks.count(block);
|
|
}
|
|
|
|
/// Set the type converter to use for the given region.
|
|
void setConverter(Region *region, TypeConverter *typeConverter) {
|
|
assert(typeConverter && "expected valid type converter");
|
|
regionToConverter[region] = typeConverter;
|
|
}
|
|
|
|
/// Return the type converter to use for the given region, or null if there
|
|
/// isn't one.
|
|
TypeConverter *getConverter(Region *region) {
|
|
return regionToConverter.lookup(region);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Rewrite Application
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Erase any rewrites registered for the blocks within the given operation
|
|
/// which is about to be removed. This merely drops the rewrites without
|
|
/// undoing them.
|
|
void notifyOpRemoved(Operation *op);
|
|
|
|
/// Cleanup and undo any generated conversions for the arguments of block.
|
|
/// This method replaces the new block with the original, reverting the IR to
|
|
/// its original state.
|
|
void discardRewrites(Block *block);
|
|
|
|
/// Fully replace uses of the old arguments with the new.
|
|
void applyRewrites(ConversionValueMapping &mapping);
|
|
|
|
/// Materialize any necessary conversions for converted arguments that have
|
|
/// live users, using the provided `findLiveUser` to search for a user that
|
|
/// survives the conversion process.
|
|
LogicalResult
|
|
materializeLiveConversions(ConversionValueMapping &mapping,
|
|
OpBuilder &builder,
|
|
function_ref<Operation *(Value)> findLiveUser);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Conversion
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Attempt to convert the signature of the given block, if successful a new
|
|
/// block is returned containing the new arguments. Returns `block` if it did
|
|
/// not require conversion.
|
|
FailureOr<Block *>
|
|
convertSignature(Block *block, TypeConverter &converter,
|
|
ConversionValueMapping &mapping,
|
|
SmallVectorImpl<BlockArgument> &argReplacements);
|
|
|
|
/// Apply the given signature conversion on the given block. The new block
|
|
/// containing the updated signature is returned. If no conversions were
|
|
/// necessary, e.g. if the block has no arguments, `block` is returned.
|
|
/// `converter` is used to generate any necessary cast operations that
|
|
/// translate between the origin argument types and those specified in the
|
|
/// signature conversion.
|
|
Block *applySignatureConversion(
|
|
Block *block, TypeConverter &converter,
|
|
TypeConverter::SignatureConversion &signatureConversion,
|
|
ConversionValueMapping &mapping,
|
|
SmallVectorImpl<BlockArgument> &argReplacements);
|
|
|
|
/// Insert a new conversion into the cache.
|
|
void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
|
|
|
|
/// A collection of blocks that have had their arguments converted. This is a
|
|
/// map from the new replacement block, back to the original block.
|
|
llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
|
|
|
|
/// The set of original blocks that were converted.
|
|
DenseSet<Block *> convertedBlocks;
|
|
|
|
/// A mapping from valid regions, to those containing the original blocks of a
|
|
/// conversion.
|
|
DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
|
|
|
|
/// A mapping of regions to type converters that should be used when
|
|
/// converting the arguments of blocks within that region.
|
|
DenseMap<Region *, TypeConverter *> regionToConverter;
|
|
|
|
/// The pattern rewriter to use when materializing conversions.
|
|
PatternRewriter &rewriter;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewrite Application
|
|
|
|
void ArgConverter::notifyOpRemoved(Operation *op) {
|
|
if (conversionInfo.empty())
|
|
return;
|
|
|
|
for (Region ®ion : op->getRegions()) {
|
|
for (Block &block : region) {
|
|
// Drop any rewrites from within.
|
|
for (Operation &nestedOp : block)
|
|
if (nestedOp.getNumRegions())
|
|
notifyOpRemoved(&nestedOp);
|
|
|
|
// Check if this block was converted.
|
|
auto it = conversionInfo.find(&block);
|
|
if (it == conversionInfo.end())
|
|
continue;
|
|
|
|
// Drop all uses of the original arguments and delete the original block.
|
|
Block *origBlock = it->second.origBlock;
|
|
for (BlockArgument arg : origBlock->getArguments())
|
|
arg.dropAllUses();
|
|
conversionInfo.erase(it);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ArgConverter::discardRewrites(Block *block) {
|
|
auto it = conversionInfo.find(block);
|
|
if (it == conversionInfo.end())
|
|
return;
|
|
Block *origBlock = it->second.origBlock;
|
|
|
|
// Drop all uses of the new block arguments and replace uses of the new block.
|
|
for (int i = block->getNumArguments() - 1; i >= 0; --i)
|
|
block->getArgument(i).dropAllUses();
|
|
block->replaceAllUsesWith(origBlock);
|
|
|
|
// Move the operations back the original block and the delete the new block.
|
|
origBlock->getOperations().splice(origBlock->end(), block->getOperations());
|
|
origBlock->moveBefore(block);
|
|
block->erase();
|
|
|
|
convertedBlocks.erase(origBlock);
|
|
conversionInfo.erase(it);
|
|
}
|
|
|
|
void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
|
|
for (auto &info : conversionInfo) {
|
|
ConvertedBlockInfo &blockInfo = info.second;
|
|
Block *origBlock = blockInfo.origBlock;
|
|
|
|
// Process the remapping for each of the original arguments.
|
|
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
|
|
Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
|
|
BlockArgument origArg = origBlock->getArgument(i);
|
|
|
|
// Handle the case of a 1->0 value mapping.
|
|
if (!argInfo) {
|
|
if (Value newArg = mapping.lookupOrNull(origArg))
|
|
origArg.replaceAllUsesWith(newArg);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise this is a 1->1+ value mapping.
|
|
Value castValue = argInfo->castValue;
|
|
assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
|
|
|
|
// If the argument is still used, replace it with the generated cast.
|
|
if (!origArg.use_empty())
|
|
origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue));
|
|
}
|
|
}
|
|
}
|
|
|
|
LogicalResult ArgConverter::materializeLiveConversions(
|
|
ConversionValueMapping &mapping, OpBuilder &builder,
|
|
function_ref<Operation *(Value)> findLiveUser) {
|
|
for (auto &info : conversionInfo) {
|
|
Block *newBlock = info.first;
|
|
ConvertedBlockInfo &blockInfo = info.second;
|
|
Block *origBlock = blockInfo.origBlock;
|
|
|
|
// Process the remapping for each of the original arguments.
|
|
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
|
|
// FIXME: We should run the below checks even if the type conversion was
|
|
// 1->N, but a lot of existing lowering rely on the block argument being
|
|
// blindly replaced. Those usages should be updated, and this if should be
|
|
// removed.
|
|
if (blockInfo.argInfo[i])
|
|
continue;
|
|
|
|
// If the type of this argument changed and the argument is still live, we
|
|
// need to materialize a conversion.
|
|
BlockArgument origArg = origBlock->getArgument(i);
|
|
auto argReplacementValue = mapping.lookupOrDefault(origArg);
|
|
bool isDroppedArg = argReplacementValue == origArg;
|
|
if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg)
|
|
continue;
|
|
Operation *liveUser = findLiveUser(origArg);
|
|
if (!liveUser)
|
|
continue;
|
|
|
|
if (OpResult result = argReplacementValue.dyn_cast<OpResult>())
|
|
rewriter.setInsertionPointAfter(result.getOwner());
|
|
else
|
|
rewriter.setInsertionPointToStart(newBlock);
|
|
Value newArg = blockInfo.converter->materializeSourceConversion(
|
|
rewriter, origArg.getLoc(), origArg.getType(),
|
|
isDroppedArg ? ValueRange() : ValueRange(argReplacementValue));
|
|
if (!newArg) {
|
|
InFlightDiagnostic diag =
|
|
emitError(origArg.getLoc())
|
|
<< "failed to materialize conversion for block argument #" << i
|
|
<< " that remained live after conversion, type was "
|
|
<< origArg.getType();
|
|
if (!isDroppedArg)
|
|
diag << ", with target type " << argReplacementValue.getType();
|
|
diag.attachNote(liveUser->getLoc())
|
|
<< "see existing live user here: " << *liveUser;
|
|
return failure();
|
|
}
|
|
mapping.map(origArg, newArg);
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conversion
|
|
|
|
FailureOr<Block *> ArgConverter::convertSignature(
|
|
Block *block, TypeConverter &converter, ConversionValueMapping &mapping,
|
|
SmallVectorImpl<BlockArgument> &argReplacements) {
|
|
// Check if the block was already converted. If the block is detached,
|
|
// conservatively assume it is going to be deleted.
|
|
if (hasBeenConverted(block) || !block->getParent())
|
|
return block;
|
|
|
|
// Try to convert the signature for the block with the provided converter.
|
|
if (auto conversion = converter.convertBlockSignature(block))
|
|
return applySignatureConversion(block, converter, *conversion, mapping,
|
|
argReplacements);
|
|
return failure();
|
|
}
|
|
|
|
Block *ArgConverter::applySignatureConversion(
|
|
Block *block, TypeConverter &converter,
|
|
TypeConverter::SignatureConversion &signatureConversion,
|
|
ConversionValueMapping &mapping,
|
|
SmallVectorImpl<BlockArgument> &argReplacements) {
|
|
// If no arguments are being changed or added, there is nothing to do.
|
|
unsigned origArgCount = block->getNumArguments();
|
|
auto convertedTypes = signatureConversion.getConvertedTypes();
|
|
if (origArgCount == 0 && convertedTypes.empty())
|
|
return block;
|
|
|
|
// Split the block at the beginning to get a new block to use for the updated
|
|
// signature.
|
|
Block *newBlock = block->splitBlock(block->begin());
|
|
block->replaceAllUsesWith(newBlock);
|
|
|
|
SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
|
|
ArrayRef<Value> newArgs(newArgRange);
|
|
|
|
// Remap each of the original arguments as determined by the signature
|
|
// conversion.
|
|
ConvertedBlockInfo info(block, converter);
|
|
info.argInfo.resize(origArgCount);
|
|
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(newBlock);
|
|
for (unsigned i = 0; i != origArgCount; ++i) {
|
|
auto inputMap = signatureConversion.getInputMapping(i);
|
|
if (!inputMap)
|
|
continue;
|
|
BlockArgument origArg = block->getArgument(i);
|
|
|
|
// If inputMap->replacementValue is not nullptr, then the argument is
|
|
// dropped and a replacement value is provided to be the remappedValue.
|
|
if (inputMap->replacementValue) {
|
|
assert(inputMap->size == 0 &&
|
|
"invalid to provide a replacement value when the argument isn't "
|
|
"dropped");
|
|
mapping.map(origArg, inputMap->replacementValue);
|
|
argReplacements.push_back(origArg);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, this is a 1->1+ mapping. Call into the provided type converter
|
|
// to pack the new values. For 1->1 mappings, if there is no materialization
|
|
// provided, use the argument directly instead.
|
|
auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
|
|
Value newArg;
|
|
|
|
// If this is a 1->1 mapping and the types of new and replacement arguments
|
|
// match (i.e. it's an identity map), then the argument is mapped to its
|
|
// original type.
|
|
if (replArgs.size() == 1 && replArgs[0].getType() == origArg.getType())
|
|
newArg = replArgs[0];
|
|
else
|
|
newArg = converter.materializeArgumentConversion(
|
|
rewriter, origArg.getLoc(), origArg.getType(), replArgs);
|
|
|
|
if (!newArg) {
|
|
assert(replArgs.size() == 1 &&
|
|
"couldn't materialize the result of 1->N conversion");
|
|
newArg = replArgs.front();
|
|
}
|
|
mapping.map(origArg, newArg);
|
|
argReplacements.push_back(origArg);
|
|
info.argInfo[i] =
|
|
ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
|
|
}
|
|
|
|
// Remove the original block from the region and return the new one.
|
|
insertConversion(newBlock, std::move(info));
|
|
return newBlock;
|
|
}
|
|
|
|
void ArgConverter::insertConversion(Block *newBlock,
|
|
ConvertedBlockInfo &&info) {
|
|
// Get a region to insert the old block.
|
|
Region *region = newBlock->getParent();
|
|
std::unique_ptr<Region> &mappedRegion = regionMapping[region];
|
|
if (!mappedRegion)
|
|
mappedRegion = std::make_unique<Region>(region->getParentOp());
|
|
|
|
// Move the original block to the mapped region and emplace the conversion.
|
|
mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
|
|
info.origBlock->getIterator());
|
|
convertedBlocks.insert(info.origBlock);
|
|
conversionInfo.insert({newBlock, std::move(info)});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewriter and Translation State
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// This class contains a snapshot of the current conversion rewriter state.
|
|
/// This is useful when saving and undoing a set of rewrites.
|
|
struct RewriterState {
|
|
RewriterState(unsigned numCreatedOps, unsigned numReplacements,
|
|
unsigned numArgReplacements, unsigned numBlockActions,
|
|
unsigned numIgnoredOperations, unsigned numRootUpdates)
|
|
: numCreatedOps(numCreatedOps), numReplacements(numReplacements),
|
|
numArgReplacements(numArgReplacements),
|
|
numBlockActions(numBlockActions),
|
|
numIgnoredOperations(numIgnoredOperations),
|
|
numRootUpdates(numRootUpdates) {}
|
|
|
|
/// The current number of created operations.
|
|
unsigned numCreatedOps;
|
|
|
|
/// The current number of replacements queued.
|
|
unsigned numReplacements;
|
|
|
|
/// The current number of argument replacements queued.
|
|
unsigned numArgReplacements;
|
|
|
|
/// The current number of block actions performed.
|
|
unsigned numBlockActions;
|
|
|
|
/// The current number of ignored operations.
|
|
unsigned numIgnoredOperations;
|
|
|
|
/// The current number of operations that were updated in place.
|
|
unsigned numRootUpdates;
|
|
};
|
|
|
|
/// The state of an operation that was updated by a pattern in-place. This
|
|
/// contains all of the necessary information to reconstruct an operation that
|
|
/// was updated in place.
|
|
class OperationTransactionState {
|
|
public:
|
|
OperationTransactionState() = default;
|
|
OperationTransactionState(Operation *op)
|
|
: op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
|
|
operands(op->operand_begin(), op->operand_end()),
|
|
successors(op->successor_begin(), op->successor_end()) {}
|
|
|
|
/// Discard the transaction state and reset the state of the original
|
|
/// operation.
|
|
void resetOperation() const {
|
|
op->setLoc(loc);
|
|
op->setAttrs(attrs);
|
|
op->setOperands(operands);
|
|
for (auto it : llvm::enumerate(successors))
|
|
op->setSuccessor(it.value(), it.index());
|
|
}
|
|
|
|
/// Return the original operation of this state.
|
|
Operation *getOperation() const { return op; }
|
|
|
|
private:
|
|
Operation *op;
|
|
LocationAttr loc;
|
|
DictionaryAttr attrs;
|
|
SmallVector<Value, 8> operands;
|
|
SmallVector<Block *, 2> successors;
|
|
};
|
|
|
|
/// This class represents one requested operation replacement via 'replaceOp' or
|
|
/// 'eraseOp`.
|
|
struct OpReplacement {
|
|
OpReplacement() = default;
|
|
OpReplacement(TypeConverter *converter) : converter(converter) {}
|
|
|
|
/// An optional type converter that can be used to materialize conversions
|
|
/// between the new and old values if necessary.
|
|
TypeConverter *converter = nullptr;
|
|
};
|
|
|
|
/// The kind of the block action performed during the rewrite. Actions can be
|
|
/// undone if the conversion fails.
|
|
enum class BlockActionKind {
|
|
Create,
|
|
Erase,
|
|
Merge,
|
|
Move,
|
|
Split,
|
|
TypeConversion
|
|
};
|
|
|
|
/// Original position of the given block in its parent region. During undo
|
|
/// actions, the block needs to be placed after `insertAfterBlock`.
|
|
struct BlockPosition {
|
|
Region *region;
|
|
Block *insertAfterBlock;
|
|
};
|
|
|
|
/// Information needed to undo the merge actions.
|
|
/// - the source block, and
|
|
/// - the Operation that was the last operation in the dest block before the
|
|
/// merge (could be null if the dest block was empty).
|
|
struct MergeInfo {
|
|
Block *sourceBlock;
|
|
Operation *destBlockLastInst;
|
|
};
|
|
|
|
/// The storage class for an undoable block action (one of BlockActionKind),
|
|
/// contains the information necessary to undo this action.
|
|
struct BlockAction {
|
|
static BlockAction getCreate(Block *block) {
|
|
return {BlockActionKind::Create, block, {}};
|
|
}
|
|
static BlockAction getErase(Block *block, BlockPosition originalPosition) {
|
|
return {BlockActionKind::Erase, block, {originalPosition}};
|
|
}
|
|
static BlockAction getMerge(Block *block, Block *sourceBlock) {
|
|
BlockAction action{BlockActionKind::Merge, block, {}};
|
|
action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
|
|
return action;
|
|
}
|
|
static BlockAction getMove(Block *block, BlockPosition originalPosition) {
|
|
return {BlockActionKind::Move, block, {originalPosition}};
|
|
}
|
|
static BlockAction getSplit(Block *block, Block *originalBlock) {
|
|
BlockAction action{BlockActionKind::Split, block, {}};
|
|
action.originalBlock = originalBlock;
|
|
return action;
|
|
}
|
|
static BlockAction getTypeConversion(Block *block) {
|
|
return BlockAction{BlockActionKind::TypeConversion, block, {}};
|
|
}
|
|
|
|
// The action kind.
|
|
BlockActionKind kind;
|
|
|
|
// A pointer to the block that was created by the action.
|
|
Block *block;
|
|
|
|
union {
|
|
// In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
|
|
// contains a pointer to the region that originally contained the block as
|
|
// well as the position of the block in that region.
|
|
BlockPosition originalPosition;
|
|
// In use if kind == BlockActionKind::Split and contains a pointer to the
|
|
// block that was split into two parts.
|
|
Block *originalBlock;
|
|
// In use if kind == BlockActionKind::Merge, and contains the information
|
|
// needed to undo the merge.
|
|
MergeInfo mergeInfo;
|
|
};
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPatternRewriterImpl
|
|
//===----------------------------------------------------------------------===//
|
|
namespace mlir {
|
|
namespace detail {
|
|
struct ConversionPatternRewriterImpl {
|
|
ConversionPatternRewriterImpl(PatternRewriter &rewriter)
|
|
: argConverter(rewriter) {}
|
|
|
|
/// Cleanup and destroy any generated rewrite operations. This method is
|
|
/// invoked when the conversion process fails.
|
|
void discardRewrites();
|
|
|
|
/// Apply all requested operation rewrites. This method is invoked when the
|
|
/// conversion process succeeds.
|
|
void applyRewrites();
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// State Management
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return the current state of the rewriter.
|
|
RewriterState getCurrentState();
|
|
|
|
/// Reset the state of the rewriter to a previously saved point.
|
|
void resetState(RewriterState state);
|
|
|
|
/// Erase any blocks that were unlinked from their regions and stored in block
|
|
/// actions.
|
|
void eraseDanglingBlocks();
|
|
|
|
/// Undo the block actions (motions, splits) one by one in reverse order until
|
|
/// "numActionsToKeep" actions remains.
|
|
void undoBlockActions(unsigned numActionsToKeep = 0);
|
|
|
|
/// Remap the given operands to those with potentially different types. The
|
|
/// provided type converter is used to ensure that the remapped types are
|
|
/// legal. Returns success if the operands could be remapped, failure
|
|
/// otherwise.
|
|
LogicalResult remapValues(Location loc, PatternRewriter &rewriter,
|
|
TypeConverter *converter,
|
|
Operation::operand_range operands,
|
|
SmallVectorImpl<Value> &remapped);
|
|
|
|
/// Returns true if the given operation is ignored, and does not need to be
|
|
/// converted.
|
|
bool isOpIgnored(Operation *op) const;
|
|
|
|
/// Recursively marks the nested operations under 'op' as ignored. This
|
|
/// removes them from being considered for legalization.
|
|
void markNestedOpsIgnored(Operation *op);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Convert the signature of the given block.
|
|
FailureOr<Block *> convertBlockSignature(
|
|
Block *block, TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *conversion = nullptr);
|
|
|
|
/// Apply a signature conversion on the given region, using `converter` for
|
|
/// materializations if not null.
|
|
Block *
|
|
applySignatureConversion(Region *region,
|
|
TypeConverter::SignatureConversion &conversion,
|
|
TypeConverter *converter);
|
|
|
|
/// Convert the types of block arguments within the given region.
|
|
FailureOr<Block *>
|
|
convertRegionTypes(Region *region, TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion);
|
|
|
|
/// Convert the types of non-entry block arguments within the given region.
|
|
LogicalResult convertNonEntryRegionTypes(
|
|
Region *region, TypeConverter &converter,
|
|
ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Rewriter Notification Hooks
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// PatternRewriter hook for replacing the results of an operation.
|
|
void notifyOpReplaced(Operation *op, ValueRange newValues);
|
|
|
|
/// Notifies that a block is about to be erased.
|
|
void notifyBlockIsBeingErased(Block *block);
|
|
|
|
/// Notifies that a block was created.
|
|
void notifyCreatedBlock(Block *block);
|
|
|
|
/// Notifies that a block was split.
|
|
void notifySplitBlock(Block *block, Block *continuation);
|
|
|
|
/// Notifies that `block` is being merged with `srcBlock`.
|
|
void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
|
|
|
|
/// Notifies that the blocks of a region are about to be moved.
|
|
void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent,
|
|
Region::iterator before);
|
|
|
|
/// Notifies that the blocks of a region were cloned into another.
|
|
void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
|
|
Location origRegionLoc);
|
|
|
|
/// Notifies that a pattern match failed for the given reason.
|
|
LogicalResult
|
|
notifyMatchFailure(Location loc,
|
|
function_ref<void(Diagnostic &)> reasonCallback);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// State
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Mapping between replaced values that differ in type. This happens when
|
|
// replacing a value with one of a different type.
|
|
ConversionValueMapping mapping;
|
|
|
|
/// Utility used to convert block arguments.
|
|
ArgConverter argConverter;
|
|
|
|
/// Ordered vector of all of the newly created operations during conversion.
|
|
std::vector<Operation *> createdOps;
|
|
|
|
/// Ordered map of requested operation replacements.
|
|
llvm::MapVector<Operation *, OpReplacement> replacements;
|
|
|
|
/// Ordered vector of any requested block argument replacements.
|
|
SmallVector<BlockArgument, 4> argReplacements;
|
|
|
|
/// Ordered list of block operations (creations, splits, motions).
|
|
SmallVector<BlockAction, 4> blockActions;
|
|
|
|
/// A set of operations that should no longer be considered for legalization,
|
|
/// but were not directly replace/erased/etc. by a pattern. These are
|
|
/// generally child operations of other operations who were
|
|
/// replaced/erased/etc. This is not meant to be an exhaustive list of all
|
|
/// operations, but the minimal set that can be used to detect if a given
|
|
/// operation should be `ignored`. For example, we may add the operations that
|
|
/// define non-empty regions to the set, but not any of the others. This
|
|
/// simplifies the amount of memory needed as we can query if the parent
|
|
/// operation was ignored.
|
|
SetVector<Operation *> ignoredOps;
|
|
|
|
/// A transaction state for each of operations that were updated in-place.
|
|
SmallVector<OperationTransactionState, 4> rootUpdates;
|
|
|
|
/// A vector of indices into `replacements` of operations that were replaced
|
|
/// with values with different result types than the original operation, e.g.
|
|
/// 1->N conversion of some kind.
|
|
SmallVector<unsigned, 4> operationsWithChangedResults;
|
|
|
|
/// A default type converter, used when block conversions do not have one
|
|
/// explicitly provided.
|
|
TypeConverter defaultTypeConverter;
|
|
|
|
/// The current conversion pattern that is being rewritten, or nullptr if
|
|
/// called from outside of a conversion pattern rewrite.
|
|
const ConversionPattern *currentConversionPattern = nullptr;
|
|
|
|
#ifndef NDEBUG
|
|
/// A set of operations that have pending updates. This tracking isn't
|
|
/// strictly necessary, and is thus only active during debug builds for extra
|
|
/// verification.
|
|
SmallPtrSet<Operation *, 1> pendingRootUpdates;
|
|
|
|
/// A logger used to emit diagnostics during the conversion process.
|
|
llvm::ScopedPrinter logger{llvm::dbgs()};
|
|
#endif
|
|
};
|
|
} // end namespace detail
|
|
} // end namespace mlir
|
|
|
|
/// Detach any operations nested in the given operation from their parent
|
|
/// blocks, and erase the given operation. This can be used when the nested
|
|
/// operations are scheduled for erasure themselves, so deleting the regions of
|
|
/// the given operation together with their content would result in double-free.
|
|
/// This happens, for example, when rolling back op creation in the reverse
|
|
/// order and if the nested ops were created before the parent op. This function
|
|
/// does not need to collect nested ops recursively because it is expected to
|
|
/// also be called for each nested op when it is about to be deleted.
|
|
static void detachNestedAndErase(Operation *op) {
|
|
for (Region ®ion : op->getRegions()) {
|
|
for (Block &block : region.getBlocks()) {
|
|
while (!block.getOperations().empty())
|
|
block.getOperations().remove(block.getOperations().begin());
|
|
block.dropAllDefinedValueUses();
|
|
}
|
|
}
|
|
op->dropAllUses();
|
|
op->erase();
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::discardRewrites() {
|
|
// Reset any operations that were updated in place.
|
|
for (auto &state : rootUpdates)
|
|
state.resetOperation();
|
|
|
|
undoBlockActions();
|
|
|
|
// Remove any newly created ops.
|
|
for (auto *op : llvm::reverse(createdOps))
|
|
detachNestedAndErase(op);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::applyRewrites() {
|
|
// Apply all of the rewrites replacements requested during conversion.
|
|
for (auto &repl : replacements) {
|
|
for (OpResult result : repl.first->getResults())
|
|
if (Value newValue = mapping.lookupOrNull(result))
|
|
result.replaceAllUsesWith(newValue);
|
|
|
|
// If this operation defines any regions, drop any pending argument
|
|
// rewrites.
|
|
if (repl.first->getNumRegions())
|
|
argConverter.notifyOpRemoved(repl.first);
|
|
}
|
|
|
|
// Apply all of the requested argument replacements.
|
|
for (BlockArgument arg : argReplacements) {
|
|
Value repl = mapping.lookupOrDefault(arg);
|
|
if (repl.isa<BlockArgument>()) {
|
|
arg.replaceAllUsesWith(repl);
|
|
continue;
|
|
}
|
|
|
|
// If the replacement value is an operation, we check to make sure that we
|
|
// don't replace uses that are within the parent operation of the
|
|
// replacement value.
|
|
Operation *replOp = repl.cast<OpResult>().getOwner();
|
|
Block *replBlock = replOp->getBlock();
|
|
arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
|
|
Operation *user = operand.getOwner();
|
|
return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
|
|
});
|
|
}
|
|
|
|
// In a second pass, erase all of the replaced operations in reverse. This
|
|
// allows processing nested operations before their parent region is
|
|
// destroyed. Because we process in reverse order, producers may be deleted
|
|
// before their users (a pattern deleting a producer and then the consumer)
|
|
// so we first drop all uses explicitly.
|
|
for (auto &repl : llvm::reverse(replacements)) {
|
|
repl.first->dropAllUses();
|
|
repl.first->erase();
|
|
}
|
|
|
|
argConverter.applyRewrites(mapping);
|
|
|
|
// Now that the ops have been erased, also erase dangling blocks.
|
|
eraseDanglingBlocks();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// State Management
|
|
|
|
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
|
|
return RewriterState(createdOps.size(), replacements.size(),
|
|
argReplacements.size(), blockActions.size(),
|
|
ignoredOps.size(), rootUpdates.size());
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
|
|
// Reset any operations that were updated in place.
|
|
for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
|
|
rootUpdates[i].resetOperation();
|
|
rootUpdates.resize(state.numRootUpdates);
|
|
|
|
// Reset any replaced arguments.
|
|
for (BlockArgument replacedArg :
|
|
llvm::drop_begin(argReplacements, state.numArgReplacements))
|
|
mapping.erase(replacedArg);
|
|
argReplacements.resize(state.numArgReplacements);
|
|
|
|
// Undo any block actions.
|
|
undoBlockActions(state.numBlockActions);
|
|
|
|
// Reset any replaced operations and undo any saved mappings.
|
|
for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
|
|
for (auto result : repl.first->getResults())
|
|
mapping.erase(result);
|
|
while (replacements.size() != state.numReplacements)
|
|
replacements.pop_back();
|
|
|
|
// Pop all of the newly created operations.
|
|
while (createdOps.size() != state.numCreatedOps) {
|
|
detachNestedAndErase(createdOps.back());
|
|
createdOps.pop_back();
|
|
}
|
|
|
|
// Pop all of the recorded ignored operations that are no longer valid.
|
|
while (ignoredOps.size() != state.numIgnoredOperations)
|
|
ignoredOps.pop_back();
|
|
|
|
// Reset operations with changed results.
|
|
while (!operationsWithChangedResults.empty() &&
|
|
operationsWithChangedResults.back() >= state.numReplacements)
|
|
operationsWithChangedResults.pop_back();
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
|
|
for (auto &action : blockActions)
|
|
if (action.kind == BlockActionKind::Erase)
|
|
delete action.block;
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::undoBlockActions(
|
|
unsigned numActionsToKeep) {
|
|
for (auto &action :
|
|
llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
|
|
switch (action.kind) {
|
|
// Delete the created block.
|
|
case BlockActionKind::Create: {
|
|
// Unlink all of the operations within this block, they will be deleted
|
|
// separately.
|
|
auto &blockOps = action.block->getOperations();
|
|
while (!blockOps.empty())
|
|
blockOps.remove(blockOps.begin());
|
|
action.block->dropAllDefinedValueUses();
|
|
action.block->erase();
|
|
break;
|
|
}
|
|
// Put the block (owned by action) back into its original position.
|
|
case BlockActionKind::Erase: {
|
|
auto &blockList = action.originalPosition.region->getBlocks();
|
|
Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
|
|
blockList.insert((insertAfterBlock
|
|
? std::next(Region::iterator(insertAfterBlock))
|
|
: blockList.begin()),
|
|
action.block);
|
|
break;
|
|
}
|
|
// Split the block at the position which was originally the end of the
|
|
// destination block (owned by action), and put the instructions back into
|
|
// the block used before the merge.
|
|
case BlockActionKind::Merge: {
|
|
Block *sourceBlock = action.mergeInfo.sourceBlock;
|
|
Block::iterator splitPoint =
|
|
(action.mergeInfo.destBlockLastInst
|
|
? ++Block::iterator(action.mergeInfo.destBlockLastInst)
|
|
: action.block->begin());
|
|
sourceBlock->getOperations().splice(sourceBlock->begin(),
|
|
action.block->getOperations(),
|
|
splitPoint, action.block->end());
|
|
break;
|
|
}
|
|
// Move the block back to its original position.
|
|
case BlockActionKind::Move: {
|
|
Region *originalRegion = action.originalPosition.region;
|
|
Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
|
|
originalRegion->getBlocks().splice(
|
|
(insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
|
|
: originalRegion->end()),
|
|
action.block->getParent()->getBlocks(), action.block);
|
|
break;
|
|
}
|
|
// Merge back the block that was split out.
|
|
case BlockActionKind::Split: {
|
|
action.originalBlock->getOperations().splice(
|
|
action.originalBlock->end(), action.block->getOperations());
|
|
action.block->dropAllDefinedValueUses();
|
|
action.block->erase();
|
|
break;
|
|
}
|
|
// Undo the type conversion.
|
|
case BlockActionKind::TypeConversion: {
|
|
argConverter.discardRewrites(action.block);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
blockActions.resize(numActionsToKeep);
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriterImpl::remapValues(
|
|
Location loc, PatternRewriter &rewriter, TypeConverter *converter,
|
|
Operation::operand_range operands, SmallVectorImpl<Value> &remapped) {
|
|
remapped.reserve(llvm::size(operands));
|
|
|
|
SmallVector<Type, 1> legalTypes;
|
|
for (auto it : llvm::enumerate(operands)) {
|
|
Value operand = it.value();
|
|
Type origType = operand.getType();
|
|
|
|
// If a converter was provided, get the desired legal types for this
|
|
// operand.
|
|
Type desiredType;
|
|
if (converter) {
|
|
// If there is no legal conversion, fail to match this pattern.
|
|
legalTypes.clear();
|
|
if (failed(converter->convertType(origType, legalTypes))) {
|
|
return notifyMatchFailure(loc, [=](Diagnostic &diag) {
|
|
diag << "unable to convert type for operand #" << it.index()
|
|
<< ", type was " << origType;
|
|
});
|
|
}
|
|
// TODO: There currently isn't any mechanism to do 1->N type conversion
|
|
// via the PatternRewriter replacement API, so for now we just ignore it.
|
|
if (legalTypes.size() == 1)
|
|
desiredType = legalTypes.front();
|
|
} else {
|
|
// TODO: What we should do here is just set `desiredType` to `origType`
|
|
// and then handle the necessary type conversions after the conversion
|
|
// process has finished. Unfortunately a lot of patterns currently rely on
|
|
// receiving the new operands even if the types change, so we keep the
|
|
// original behavior here for now until all of the patterns relying on
|
|
// this get updated.
|
|
}
|
|
Value newOperand = mapping.lookupOrDefault(operand, desiredType);
|
|
|
|
// Handle the case where the conversion was 1->1 and the new operand type
|
|
// isn't legal.
|
|
Type newOperandType = newOperand.getType();
|
|
if (converter && desiredType && newOperandType != desiredType) {
|
|
// Attempt to materialize a conversion for this new value.
|
|
newOperand = converter->materializeTargetConversion(
|
|
rewriter, loc, desiredType, newOperand);
|
|
if (!newOperand) {
|
|
return notifyMatchFailure(loc, [=](Diagnostic &diag) {
|
|
diag << "unable to materialize a conversion for "
|
|
"operand #"
|
|
<< it.index() << ", from " << newOperandType << " to "
|
|
<< desiredType;
|
|
});
|
|
}
|
|
}
|
|
remapped.push_back(newOperand);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
|
|
// Check to see if this operation was replaced or its parent ignored.
|
|
return replacements.count(op) || ignoredOps.count(op->getParentOp());
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
|
|
// Walk this operation and collect nested operations that define non-empty
|
|
// regions. We mark such operations as 'ignored' so that we know we don't have
|
|
// to convert them, or their nested ops.
|
|
if (op->getNumRegions() == 0)
|
|
return;
|
|
op->walk([&](Operation *op) {
|
|
if (llvm::any_of(op->getRegions(),
|
|
[](Region ®ion) { return !region.empty(); }))
|
|
ignoredOps.insert(op);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
|
|
FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
|
|
Block *block, TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *conversion) {
|
|
FailureOr<Block *> result =
|
|
conversion ? argConverter.applySignatureConversion(
|
|
block, converter, *conversion, mapping, argReplacements)
|
|
: argConverter.convertSignature(block, converter, mapping,
|
|
argReplacements);
|
|
if (Block *newBlock = result.getValue()) {
|
|
if (newBlock != block)
|
|
blockActions.push_back(BlockAction::getTypeConversion(newBlock));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Block *ConversionPatternRewriterImpl::applySignatureConversion(
|
|
Region *region, TypeConverter::SignatureConversion &conversion,
|
|
TypeConverter *converter) {
|
|
if (!region->empty()) {
|
|
return *convertBlockSignature(®ion->front(),
|
|
converter ? *converter : defaultTypeConverter,
|
|
&conversion);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
|
|
Region *region, TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion) {
|
|
argConverter.setConverter(region, &converter);
|
|
if (region->empty())
|
|
return nullptr;
|
|
|
|
if (failed(convertNonEntryRegionTypes(region, converter)))
|
|
return failure();
|
|
|
|
FailureOr<Block *> newEntry =
|
|
convertBlockSignature(®ion->front(), converter, entryConversion);
|
|
return newEntry;
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
|
|
Region *region, TypeConverter &converter,
|
|
ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
|
|
argConverter.setConverter(region, &converter);
|
|
if (region->empty())
|
|
return success();
|
|
|
|
// Convert the arguments of each block within the region.
|
|
int blockIdx = 0;
|
|
assert((blockConversions.empty() ||
|
|
blockConversions.size() == region->getBlocks().size() - 1) &&
|
|
"expected either to provide no SignatureConversions at all or to "
|
|
"provide a SignatureConversion for each non-entry block");
|
|
|
|
for (Block &block :
|
|
llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
|
|
TypeConverter::SignatureConversion *blockConversion =
|
|
blockConversions.empty()
|
|
? nullptr
|
|
: const_cast<TypeConverter::SignatureConversion *>(
|
|
&blockConversions[blockIdx++]);
|
|
|
|
if (failed(convertBlockSignature(&block, converter, blockConversion)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewriter Notification Hooks
|
|
|
|
void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
|
|
ValueRange newValues) {
|
|
assert(newValues.size() == op->getNumResults());
|
|
assert(!replacements.count(op) && "operation was already replaced");
|
|
|
|
// Track if any of the results changed, e.g. erased and replaced with null.
|
|
bool resultChanged = false;
|
|
|
|
// Create mappings for each of the new result values.
|
|
Value newValue, result;
|
|
for (auto it : llvm::zip(newValues, op->getResults())) {
|
|
std::tie(newValue, result) = it;
|
|
if (!newValue) {
|
|
resultChanged = true;
|
|
continue;
|
|
}
|
|
// Remap, and check for any result type changes.
|
|
mapping.map(result, newValue);
|
|
resultChanged |= (newValue.getType() != result.getType());
|
|
}
|
|
if (resultChanged)
|
|
operationsWithChangedResults.push_back(replacements.size());
|
|
|
|
// Record the requested operation replacement.
|
|
TypeConverter *converter = nullptr;
|
|
if (currentConversionPattern)
|
|
converter = currentConversionPattern->getTypeConverter();
|
|
replacements.insert(std::make_pair(op, OpReplacement(converter)));
|
|
|
|
// Mark this operation as recursively ignored so that we don't need to
|
|
// convert any nested operations.
|
|
markNestedOpsIgnored(op);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
|
|
Region *region = block->getParent();
|
|
Block *origPrevBlock = block->getPrevNode();
|
|
blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
|
|
blockActions.push_back(BlockAction::getCreate(block));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
|
|
Block *continuation) {
|
|
blockActions.push_back(BlockAction::getSplit(continuation, block));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
|
|
Block *srcBlock) {
|
|
blockActions.push_back(BlockAction::getMerge(block, srcBlock));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
|
|
Region ®ion, Region &parent, Region::iterator before) {
|
|
if (region.empty())
|
|
return;
|
|
Block *laterBlock = ®ion.back();
|
|
for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
|
|
blockActions.push_back(
|
|
BlockAction::getMove(laterBlock, {®ion, &earlierBlock}));
|
|
laterBlock = &earlierBlock;
|
|
}
|
|
blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr}));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
|
|
iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
|
|
for (Block &block : blocks)
|
|
blockActions.push_back(BlockAction::getCreate(&block));
|
|
|
|
// Compute the conversion set for the inlined region.
|
|
auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
|
|
|
|
// This original region has already had its conversion set computed, so there
|
|
// shouldn't be any new failures.
|
|
(void)result;
|
|
assert(succeeded(result) && "expected region to have no unreachable blocks");
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
|
|
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
|
|
LLVM_DEBUG({
|
|
Diagnostic diag(loc, DiagnosticSeverity::Remark);
|
|
reasonCallback(diag);
|
|
logger.startLine() << "** Failure : " << diag.str() << "\n";
|
|
});
|
|
return failure();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPatternRewriter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
|
|
: PatternRewriter(ctx),
|
|
impl(new detail::ConversionPatternRewriterImpl(*this)) {}
|
|
ConversionPatternRewriter::~ConversionPatternRewriter() {}
|
|
|
|
/// PatternRewriter hook for replacing the results of an operation when the
|
|
/// given functor returns true.
|
|
void ConversionPatternRewriter::replaceOpWithIf(
|
|
Operation *op, ValueRange newValues, bool *allUsesReplaced,
|
|
llvm::unique_function<bool(OpOperand &) const> functor) {
|
|
// TODO: To support this we will need to rework a bit of how replacements are
|
|
// tracked, given that this isn't guranteed to replace all of the uses of an
|
|
// operation. The main change is that now an operation can be replaced
|
|
// multiple times, in parts. The current "set" based tracking is mainly useful
|
|
// for tracking if a replaced operation should be ignored, i.e. if all of the
|
|
// uses will be replaced.
|
|
llvm_unreachable(
|
|
"replaceOpWithIf is currently not supported by DialectConversion");
|
|
}
|
|
|
|
/// PatternRewriter hook for replacing the results of an operation.
|
|
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
impl->notifyOpReplaced(op, newValues);
|
|
}
|
|
|
|
/// PatternRewriter hook for erasing a dead operation. The uses of this
|
|
/// operation *must* be made dead by the end of the conversion process,
|
|
/// otherwise an assert will be issued.
|
|
void ConversionPatternRewriter::eraseOp(Operation *op) {
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Erase : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
|
|
impl->notifyOpReplaced(op, nullRepls);
|
|
}
|
|
|
|
void ConversionPatternRewriter::eraseBlock(Block *block) {
|
|
impl->notifyBlockIsBeingErased(block);
|
|
|
|
// Mark all ops for erasure.
|
|
for (Operation &op : *block)
|
|
eraseOp(&op);
|
|
|
|
// Unlink the block from its parent region. The block is kept in the block
|
|
// action and will be actually destroyed when rewrites are applied. This
|
|
// allows us to keep the operations in the block live and undo the removal by
|
|
// re-inserting the block.
|
|
block->getParent()->getBlocks().remove(block);
|
|
}
|
|
|
|
Block *ConversionPatternRewriter::applySignatureConversion(
|
|
Region *region, TypeConverter::SignatureConversion &conversion,
|
|
TypeConverter *converter) {
|
|
return impl->applySignatureConversion(region, conversion, converter);
|
|
}
|
|
|
|
FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
|
|
Region *region, TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion) {
|
|
return impl->convertRegionTypes(region, converter, entryConversion);
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
|
|
Region *region, TypeConverter &converter,
|
|
ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
|
|
return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
|
|
}
|
|
|
|
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
|
|
Value to) {
|
|
LLVM_DEBUG({
|
|
Operation *parentOp = from.getOwner()->getParentOp();
|
|
impl->logger.startLine() << "** Replace Argument : '" << from
|
|
<< "'(in region of '" << parentOp->getName()
|
|
<< "'(" << from.getOwner()->getParentOp() << ")\n";
|
|
});
|
|
impl->argReplacements.push_back(from);
|
|
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
|
|
}
|
|
|
|
/// Return the converted value that replaces 'key'. Return 'key' if there is
|
|
/// no such a converted value.
|
|
Value ConversionPatternRewriter::getRemappedValue(Value key) {
|
|
return impl->mapping.lookupOrDefault(key);
|
|
}
|
|
|
|
/// PatternRewriter hook for creating a new block with the given arguments.
|
|
void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
|
|
impl->notifyCreatedBlock(block);
|
|
}
|
|
|
|
/// PatternRewriter hook for splitting a block into two parts.
|
|
Block *ConversionPatternRewriter::splitBlock(Block *block,
|
|
Block::iterator before) {
|
|
auto *continuation = PatternRewriter::splitBlock(block, before);
|
|
impl->notifySplitBlock(block, continuation);
|
|
return continuation;
|
|
}
|
|
|
|
/// PatternRewriter hook for merging a block into another.
|
|
void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
|
|
ValueRange argValues) {
|
|
impl->notifyBlocksBeingMerged(dest, source);
|
|
assert(llvm::all_of(source->getPredecessors(),
|
|
[dest](Block *succ) { return succ == dest; }) &&
|
|
"expected 'source' to have no predecessors or only 'dest'");
|
|
assert(argValues.size() == source->getNumArguments() &&
|
|
"incorrect # of argument replacement values");
|
|
for (auto it : llvm::zip(source->getArguments(), argValues))
|
|
replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
|
|
dest->getOperations().splice(dest->end(), source->getOperations());
|
|
eraseBlock(source);
|
|
}
|
|
|
|
/// PatternRewriter hook for moving blocks out of a region.
|
|
void ConversionPatternRewriter::inlineRegionBefore(Region ®ion,
|
|
Region &parent,
|
|
Region::iterator before) {
|
|
impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
|
|
PatternRewriter::inlineRegionBefore(region, parent, before);
|
|
}
|
|
|
|
/// PatternRewriter hook for cloning blocks of one region into another.
|
|
void ConversionPatternRewriter::cloneRegionBefore(
|
|
Region ®ion, Region &parent, Region::iterator before,
|
|
BlockAndValueMapping &mapping) {
|
|
if (region.empty())
|
|
return;
|
|
PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
|
|
|
|
// Collect the range of the cloned blocks.
|
|
auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator();
|
|
auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
|
|
impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
|
|
}
|
|
|
|
/// PatternRewriter hook for creating a new operation.
|
|
void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Insert : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
impl->createdOps.push_back(op);
|
|
}
|
|
|
|
/// PatternRewriter hook for updating the root operation in-place.
|
|
void ConversionPatternRewriter::startRootUpdate(Operation *op) {
|
|
#ifndef NDEBUG
|
|
impl->pendingRootUpdates.insert(op);
|
|
#endif
|
|
impl->rootUpdates.emplace_back(op);
|
|
}
|
|
|
|
/// PatternRewriter hook for updating the root operation in-place.
|
|
void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
|
|
// There is nothing to do here, we only need to track the operation at the
|
|
// start of the update.
|
|
#ifndef NDEBUG
|
|
assert(impl->pendingRootUpdates.erase(op) &&
|
|
"operation did not have a pending in-place update");
|
|
#endif
|
|
}
|
|
|
|
/// PatternRewriter hook for updating the root operation in-place.
|
|
void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
|
|
#ifndef NDEBUG
|
|
assert(impl->pendingRootUpdates.erase(op) &&
|
|
"operation did not have a pending in-place update");
|
|
#endif
|
|
// Erase the last update for this operation.
|
|
auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
|
|
auto &rootUpdates = impl->rootUpdates;
|
|
auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
|
|
assert(it != rootUpdates.rend() && "no root update started on op");
|
|
int updateIdx = std::prev(rootUpdates.rend()) - it;
|
|
rootUpdates.erase(rootUpdates.begin() + updateIdx);
|
|
}
|
|
|
|
/// PatternRewriter hook for notifying match failure reasons.
|
|
LogicalResult ConversionPatternRewriter::notifyMatchFailure(
|
|
Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
|
|
return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
|
|
}
|
|
|
|
/// Return a reference to the internal implementation.
|
|
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
|
|
return *impl;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPattern
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Attempt to match and rewrite the IR root at the specified operation.
|
|
LogicalResult
|
|
ConversionPattern::matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const {
|
|
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
|
|
auto &rewriterImpl = dialectRewriter.getImpl();
|
|
|
|
// Track the current conversion pattern in the rewriter.
|
|
assert(!rewriterImpl.currentConversionPattern &&
|
|
"already inside of a pattern rewrite");
|
|
llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard(
|
|
rewriterImpl.currentConversionPattern, this);
|
|
|
|
// Remap the operands of the operation.
|
|
SmallVector<Value, 4> operands;
|
|
if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter,
|
|
getTypeConverter(), op->getOperands(),
|
|
operands))) {
|
|
return failure();
|
|
}
|
|
return matchAndRewrite(op, operands, dialectRewriter);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationLegalizer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// A set of rewrite patterns that can be used to legalize a given operation.
|
|
using LegalizationPatterns = SmallVector<const Pattern *, 1>;
|
|
|
|
/// This class defines a recursive operation legalizer.
|
|
class OperationLegalizer {
|
|
public:
|
|
using LegalizationAction = ConversionTarget::LegalizationAction;
|
|
|
|
OperationLegalizer(ConversionTarget &targetInfo,
|
|
const FrozenRewritePatternSet &patterns);
|
|
|
|
/// Returns true if the given operation is known to be illegal on the target.
|
|
bool isIllegal(Operation *op) const;
|
|
|
|
/// Attempt to legalize the given operation. Returns success if the operation
|
|
/// was legalized, failure otherwise.
|
|
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
|
|
|
|
/// Returns the conversion target in use by the legalizer.
|
|
ConversionTarget &getTarget() { return target; }
|
|
|
|
private:
|
|
/// Attempt to legalize the given operation by folding it.
|
|
LogicalResult legalizeWithFold(Operation *op,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Attempt to legalize the given operation by applying a pattern. Returns
|
|
/// success if the operation was legalized, failure otherwise.
|
|
LogicalResult legalizeWithPattern(Operation *op,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Return true if the given pattern may be applied to the given operation,
|
|
/// false otherwise.
|
|
bool canApplyPattern(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Legalize the resultant IR after successfully applying the given pattern.
|
|
LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter,
|
|
RewriterState &curState);
|
|
|
|
/// Legalizes the actions registered during the execution of a pattern.
|
|
LogicalResult legalizePatternBlockActions(Operation *op,
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state,
|
|
RewriterState &newState);
|
|
LogicalResult legalizePatternCreatedOperations(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState);
|
|
LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state,
|
|
RewriterState &newState);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Cost Model
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Build an optimistic legalization graph given the provided patterns. This
|
|
/// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
|
|
/// patterns for operations that are not directly legal, but may be
|
|
/// transitively legal for the current target given the provided patterns.
|
|
void buildLegalizationGraph(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Compute the benefit of each node within the computed legalization graph.
|
|
/// This orders the patterns within 'legalizerPatterns' based upon two
|
|
/// criteria:
|
|
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
|
|
/// represent the more direct mapping to the target.
|
|
/// 2) When comparing patterns with the same legalization depth, prefer the
|
|
/// pattern with the highest PatternBenefit. This allows for users to
|
|
/// prefer specific legalizations over others.
|
|
void computeLegalizationGraphBenefit(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Compute the legalization depth when legalizing an operation of the given
|
|
/// type.
|
|
unsigned computeOpLegalizationDepth(
|
|
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Apply the conversion cost model to the given set of patterns, and return
|
|
/// the smallest legalization depth of any of the patterns. See
|
|
/// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
|
|
unsigned applyCostModelToPatterns(
|
|
LegalizationPatterns &patterns,
|
|
DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// The current set of patterns that have been applied.
|
|
SmallPtrSet<const Pattern *, 8> appliedPatterns;
|
|
|
|
/// The legalization information provided by the target.
|
|
ConversionTarget ⌖
|
|
|
|
/// The pattern applicator to use for conversions.
|
|
PatternApplicator applicator;
|
|
};
|
|
} // namespace
|
|
|
|
OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
|
|
const FrozenRewritePatternSet &patterns)
|
|
: target(targetInfo), applicator(patterns) {
|
|
// The set of patterns that can be applied to illegal operations to transform
|
|
// them into legal ones.
|
|
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
|
|
LegalizationPatterns anyOpLegalizerPatterns;
|
|
|
|
buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
|
|
computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
|
|
}
|
|
|
|
bool OperationLegalizer::isIllegal(Operation *op) const {
|
|
// Check if the target explicitly marked this operation as illegal.
|
|
if (auto info = target.getOpAction(op->getName())) {
|
|
if (*info == LegalizationAction::Dynamic)
|
|
return !target.isLegal(op);
|
|
return *info == LegalizationAction::Illegal;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalize(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
#ifndef NDEBUG
|
|
const char *logLineComment =
|
|
"//===-------------------------------------------===//\n";
|
|
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
#endif
|
|
LLVM_DEBUG({
|
|
auto &os = rewriterImpl.logger;
|
|
os.getOStream() << "\n";
|
|
os.startLine() << logLineComment;
|
|
os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op
|
|
<< ") {\n";
|
|
os.indent();
|
|
|
|
// If the operation has no regions, just print it here.
|
|
if (op->getNumRegions() == 0) {
|
|
op->print(os.startLine(), OpPrintingFlags().printGenericOpForm());
|
|
os.getOStream() << "\n\n";
|
|
}
|
|
});
|
|
|
|
// Check if this operation is legal on the target.
|
|
if (auto legalityInfo = target.isLegal(op)) {
|
|
LLVM_DEBUG({
|
|
logSuccess(
|
|
rewriterImpl.logger, "operation marked legal by the target{0}",
|
|
legalityInfo->isRecursivelyLegal
|
|
? "; NOTE: operation is recursively legal; skipping internals"
|
|
: "");
|
|
rewriterImpl.logger.startLine() << logLineComment;
|
|
});
|
|
|
|
// If this operation is recursively legal, mark its children as ignored so
|
|
// that we don't consider them for legalization.
|
|
if (legalityInfo->isRecursivelyLegal)
|
|
rewriter.getImpl().markNestedOpsIgnored(op);
|
|
return success();
|
|
}
|
|
|
|
// Check to see if the operation is ignored and doesn't need to be converted.
|
|
if (rewriter.getImpl().isOpIgnored(op)) {
|
|
LLVM_DEBUG({
|
|
logSuccess(rewriterImpl.logger,
|
|
"operation marked 'ignored' during conversion");
|
|
rewriterImpl.logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
// If the operation isn't legal, try to fold it in-place.
|
|
// TODO: Should we always try to do this, even if the op is
|
|
// already legal?
|
|
if (succeeded(legalizeWithFold(op, rewriter))) {
|
|
LLVM_DEBUG({
|
|
logSuccess(rewriterImpl.logger, "operation was folded");
|
|
rewriterImpl.logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, we need to apply a legalization pattern to this operation.
|
|
if (succeeded(legalizeWithPattern(op, rewriter))) {
|
|
LLVM_DEBUG({
|
|
logSuccess(rewriterImpl.logger, "");
|
|
rewriterImpl.logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
logFailure(rewriterImpl.logger, "no matched legalization pattern");
|
|
rewriterImpl.logger.startLine() << logLineComment;
|
|
});
|
|
return failure();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizeWithFold(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
RewriterState curState = rewriterImpl.getCurrentState();
|
|
|
|
LLVM_DEBUG({
|
|
rewriterImpl.logger.startLine() << "* Fold {\n";
|
|
rewriterImpl.logger.indent();
|
|
});
|
|
|
|
// Try to fold the operation.
|
|
SmallVector<Value, 2> replacementValues;
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(rewriter.tryFold(op, replacementValues))) {
|
|
LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
|
|
return failure();
|
|
}
|
|
|
|
// Insert a replacement for 'op' with the folded replacement values.
|
|
rewriter.replaceOp(op, replacementValues);
|
|
|
|
// Recursively legalize any new constant operations.
|
|
for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
|
|
i != e; ++i) {
|
|
Operation *cstOp = rewriterImpl.createdOps[i];
|
|
if (failed(legalize(cstOp, rewriter))) {
|
|
LLVM_DEBUG(logFailure(rewriterImpl.logger,
|
|
"generated constant '{0}' was illegal",
|
|
cstOp->getName()));
|
|
rewriterImpl.resetState(curState);
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizeWithPattern(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
|
|
// Functor that returns if the given pattern may be applied.
|
|
auto canApply = [&](const Pattern &pattern) {
|
|
return canApplyPattern(op, pattern, rewriter);
|
|
};
|
|
|
|
// Functor that cleans up the rewriter state after a pattern failed to match.
|
|
RewriterState curState = rewriterImpl.getCurrentState();
|
|
auto onFailure = [&](const Pattern &pattern) {
|
|
LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
|
|
rewriterImpl.resetState(curState);
|
|
appliedPatterns.erase(&pattern);
|
|
};
|
|
|
|
// Functor that performs additional legalization when a pattern is
|
|
// successfully applied.
|
|
auto onSuccess = [&](const Pattern &pattern) {
|
|
auto result = legalizePatternResult(op, pattern, rewriter, curState);
|
|
appliedPatterns.erase(&pattern);
|
|
if (failed(result))
|
|
rewriterImpl.resetState(curState);
|
|
return result;
|
|
};
|
|
|
|
// Try to match and rewrite a pattern on this operation.
|
|
return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
|
|
onSuccess);
|
|
}
|
|
|
|
bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter) {
|
|
LLVM_DEBUG({
|
|
auto &os = rewriter.getImpl().logger;
|
|
os.getOStream() << "\n";
|
|
os.startLine() << "* Pattern : '" << op->getName() << " -> (";
|
|
llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs());
|
|
os.getOStream() << ")' {\n";
|
|
os.indent();
|
|
});
|
|
|
|
// Ensure that we don't cycle by not allowing the same pattern to be
|
|
// applied twice in the same recursion stack if it is not known to be safe.
|
|
if (!pattern.hasBoundedRewriteRecursion() &&
|
|
!appliedPatterns.insert(&pattern).second) {
|
|
LLVM_DEBUG(
|
|
logFailure(rewriter.getImpl().logger, "pattern was already applied"));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter,
|
|
RewriterState &curState) {
|
|
auto &impl = rewriter.getImpl();
|
|
|
|
#ifndef NDEBUG
|
|
assert(impl.pendingRootUpdates.empty() && "dangling root updates");
|
|
#endif
|
|
|
|
// Check that the root was either replaced or updated in place.
|
|
auto replacedRoot = [&] {
|
|
return llvm::any_of(
|
|
llvm::drop_begin(impl.replacements, curState.numReplacements),
|
|
[op](auto &it) { return it.first == op; });
|
|
};
|
|
auto updatedRootInPlace = [&] {
|
|
return llvm::any_of(
|
|
llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
|
|
[op](auto &state) { return state.getOperation() == op; });
|
|
};
|
|
(void)replacedRoot;
|
|
(void)updatedRootInPlace;
|
|
assert((replacedRoot() || updatedRootInPlace()) &&
|
|
"expected pattern to replace the root operation");
|
|
|
|
// Legalize each of the actions registered during application.
|
|
RewriterState newState = impl.getCurrentState();
|
|
if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
|
|
newState)) ||
|
|
failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
|
|
failed(legalizePatternCreatedOperations(rewriter, impl, curState,
|
|
newState))) {
|
|
return failure();
|
|
}
|
|
|
|
LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationLegalizer::legalizePatternBlockActions(
|
|
Operation *op, ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl, RewriterState &state,
|
|
RewriterState &newState) {
|
|
SmallPtrSet<Operation *, 16> operationsToIgnore;
|
|
|
|
// If the pattern moved or created any blocks, make sure the types of block
|
|
// arguments get legalized.
|
|
for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
|
|
++i) {
|
|
auto &action = impl.blockActions[i];
|
|
if (action.kind == BlockActionKind::TypeConversion ||
|
|
action.kind == BlockActionKind::Erase)
|
|
continue;
|
|
// Only check blocks outside of the current operation.
|
|
Operation *parentOp = action.block->getParentOp();
|
|
if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
|
|
continue;
|
|
|
|
// If the region of the block has a type converter, try to convert the block
|
|
// directly.
|
|
if (auto *converter =
|
|
impl.argConverter.getConverter(action.block->getParent())) {
|
|
if (failed(impl.convertBlockSignature(action.block, *converter))) {
|
|
LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
|
|
"block"));
|
|
return failure();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, check that this operation isn't one generated by this pattern.
|
|
// This is because we will attempt to legalize the parent operation, and
|
|
// blocks in regions created by this pattern will already be legalized later
|
|
// on. If we haven't built the set yet, build it now.
|
|
if (operationsToIgnore.empty()) {
|
|
auto createdOps = ArrayRef<Operation *>(impl.createdOps)
|
|
.drop_front(state.numCreatedOps);
|
|
operationsToIgnore.insert(createdOps.begin(), createdOps.end());
|
|
}
|
|
|
|
// If this operation should be considered for re-legalization, try it.
|
|
if (operationsToIgnore.insert(parentOp).second &&
|
|
failed(legalize(parentOp, rewriter))) {
|
|
LLVM_DEBUG(logFailure(
|
|
impl.logger, "operation '{0}'({1}) became illegal after block action",
|
|
parentOp->getName(), parentOp));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState) {
|
|
for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
|
|
Operation *op = impl.createdOps[i];
|
|
if (failed(legalize(op, rewriter))) {
|
|
LLVM_DEBUG(logFailure(impl.logger,
|
|
"generated operation '{0}'({1}) was illegal",
|
|
op->getName(), op));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
LogicalResult OperationLegalizer::legalizePatternRootUpdates(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState) {
|
|
for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
|
|
Operation *op = impl.rootUpdates[i].getOperation();
|
|
if (failed(legalize(op, rewriter))) {
|
|
LLVM_DEBUG(logFailure(impl.logger,
|
|
"operation updated in-place '{0}' was illegal",
|
|
op->getName()));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Cost Model
|
|
|
|
void OperationLegalizer::buildLegalizationGraph(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// A mapping between an operation and a set of operations that can be used to
|
|
// generate it.
|
|
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
|
|
// A mapping between an operation and any currently invalid patterns it has.
|
|
DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
|
|
// A worklist of patterns to consider for legality.
|
|
SetVector<const Pattern *> patternWorklist;
|
|
|
|
// Build the mapping from operations to the parent ops that may generate them.
|
|
applicator.walkAllPatterns([&](const Pattern &pattern) {
|
|
Optional<OperationName> root = pattern.getRootKind();
|
|
|
|
// If the pattern has no specific root, we can't analyze the relationship
|
|
// between the root op and generated operations. Given that, add all such
|
|
// patterns to the legalization set.
|
|
if (!root) {
|
|
anyOpLegalizerPatterns.push_back(&pattern);
|
|
return;
|
|
}
|
|
|
|
// Skip operations that are always known to be legal.
|
|
if (target.getOpAction(*root) == LegalizationAction::Legal)
|
|
return;
|
|
|
|
// Add this pattern to the invalid set for the root op and record this root
|
|
// as a parent for any generated operations.
|
|
invalidPatterns[*root].insert(&pattern);
|
|
for (auto op : pattern.getGeneratedOps())
|
|
parentOps[op].insert(*root);
|
|
|
|
// Add this pattern to the worklist.
|
|
patternWorklist.insert(&pattern);
|
|
});
|
|
|
|
// If there are any patterns that don't have a specific root kind, we can't
|
|
// make direct assumptions about what operations will never be legalized.
|
|
// Note: Technically we could, but it would require an analysis that may
|
|
// recurse into itself. It would be better to perform this kind of filtering
|
|
// at a higher level than here anyways.
|
|
if (!anyOpLegalizerPatterns.empty()) {
|
|
for (const Pattern *pattern : patternWorklist)
|
|
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
|
|
return;
|
|
}
|
|
|
|
while (!patternWorklist.empty()) {
|
|
auto *pattern = patternWorklist.pop_back_val();
|
|
|
|
// Check to see if any of the generated operations are invalid.
|
|
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
|
|
Optional<LegalizationAction> action = target.getOpAction(op);
|
|
return !legalizerPatterns.count(op) &&
|
|
(!action || action == LegalizationAction::Illegal);
|
|
}))
|
|
continue;
|
|
|
|
// Otherwise, if all of the generated operation are valid, this op is now
|
|
// legal so add all of the child patterns to the worklist.
|
|
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
|
|
invalidPatterns[*pattern->getRootKind()].erase(pattern);
|
|
|
|
// Add any invalid patterns of the parent operations to see if they have now
|
|
// become legal.
|
|
for (auto op : parentOps[*pattern->getRootKind()])
|
|
patternWorklist.set_union(invalidPatterns[op]);
|
|
}
|
|
}
|
|
|
|
void OperationLegalizer::computeLegalizationGraphBenefit(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// The smallest pattern depth, when legalizing an operation.
|
|
DenseMap<OperationName, unsigned> minOpPatternDepth;
|
|
|
|
// For each operation that is transitively legal, compute a cost for it.
|
|
for (auto &opIt : legalizerPatterns)
|
|
if (!minOpPatternDepth.count(opIt.first))
|
|
computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
|
|
legalizerPatterns);
|
|
|
|
// Apply the cost model to the patterns that can match any operation. Those
|
|
// with a specific operation type are already resolved when computing the op
|
|
// legalization depth.
|
|
if (!anyOpLegalizerPatterns.empty())
|
|
applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
|
|
legalizerPatterns);
|
|
|
|
// Apply a cost model to the pattern applicator. We order patterns first by
|
|
// depth then benefit. `legalizerPatterns` contains per-op patterns by
|
|
// decreasing benefit.
|
|
applicator.applyCostModel([&](const Pattern &pattern) {
|
|
ArrayRef<const Pattern *> orderedPatternList;
|
|
if (Optional<OperationName> rootName = pattern.getRootKind())
|
|
orderedPatternList = legalizerPatterns[*rootName];
|
|
else
|
|
orderedPatternList = anyOpLegalizerPatterns;
|
|
|
|
// If the pattern is not found, then it was removed and cannot be matched.
|
|
auto *it = llvm::find(orderedPatternList, &pattern);
|
|
if (it == orderedPatternList.end())
|
|
return PatternBenefit::impossibleToMatch();
|
|
|
|
// Patterns found earlier in the list have higher benefit.
|
|
return PatternBenefit(std::distance(it, orderedPatternList.end()));
|
|
});
|
|
}
|
|
|
|
unsigned OperationLegalizer::computeOpLegalizationDepth(
|
|
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// Check for existing depth.
|
|
auto depthIt = minOpPatternDepth.find(op);
|
|
if (depthIt != minOpPatternDepth.end())
|
|
return depthIt->second;
|
|
|
|
// If a mapping for this operation does not exist, then this operation
|
|
// is always legal. Return 0 as the depth for a directly legal operation.
|
|
auto opPatternsIt = legalizerPatterns.find(op);
|
|
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
|
|
return 0u;
|
|
|
|
// Record this initial depth in case we encounter this op again when
|
|
// recursively computing the depth.
|
|
minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
|
|
|
|
// Apply the cost model to the operation patterns, and update the minimum
|
|
// depth.
|
|
unsigned minDepth = applyCostModelToPatterns(
|
|
opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
|
|
minOpPatternDepth[op] = minDepth;
|
|
return minDepth;
|
|
}
|
|
|
|
unsigned OperationLegalizer::applyCostModelToPatterns(
|
|
LegalizationPatterns &patterns,
|
|
DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
unsigned minDepth = std::numeric_limits<unsigned>::max();
|
|
|
|
// Compute the depth for each pattern within the set.
|
|
SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
|
|
patternsByDepth.reserve(patterns.size());
|
|
for (const Pattern *pattern : patterns) {
|
|
unsigned depth = 0;
|
|
for (auto generatedOp : pattern->getGeneratedOps()) {
|
|
unsigned generatedOpDepth = computeOpLegalizationDepth(
|
|
generatedOp, minOpPatternDepth, legalizerPatterns);
|
|
depth = std::max(depth, generatedOpDepth + 1);
|
|
}
|
|
patternsByDepth.emplace_back(pattern, depth);
|
|
|
|
// Update the minimum depth of the pattern list.
|
|
minDepth = std::min(minDepth, depth);
|
|
}
|
|
|
|
// If the operation only has one legalization pattern, there is no need to
|
|
// sort them.
|
|
if (patternsByDepth.size() == 1)
|
|
return minDepth;
|
|
|
|
// Sort the patterns by those likely to be the most beneficial.
|
|
llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
|
|
[](const std::pair<const Pattern *, unsigned> *lhs,
|
|
const std::pair<const Pattern *, unsigned> *rhs) {
|
|
// First sort by the smaller pattern legalization
|
|
// depth.
|
|
if (lhs->second != rhs->second)
|
|
return llvm::array_pod_sort_comparator<unsigned>(
|
|
&lhs->second, &rhs->second);
|
|
|
|
// Then sort by the larger pattern benefit.
|
|
auto lhsBenefit = lhs->first->getBenefit();
|
|
auto rhsBenefit = rhs->first->getBenefit();
|
|
return llvm::array_pod_sort_comparator<PatternBenefit>(
|
|
&rhsBenefit, &lhsBenefit);
|
|
});
|
|
|
|
// Update the legalization pattern to use the new sorted list.
|
|
patterns.clear();
|
|
for (auto &patternIt : patternsByDepth)
|
|
patterns.push_back(patternIt.first);
|
|
return minDepth;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationConverter
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
enum OpConversionMode {
|
|
// In this mode, the conversion will ignore failed conversions to allow
|
|
// illegal operations to co-exist in the IR.
|
|
Partial,
|
|
|
|
// In this mode, all operations must be legal for the given target for the
|
|
// conversion to succeed.
|
|
Full,
|
|
|
|
// In this mode, operations are analyzed for legality. No actual rewrites are
|
|
// applied to the operations on success.
|
|
Analysis,
|
|
};
|
|
|
|
// This class converts operations to a given conversion target via a set of
|
|
// rewrite patterns. The conversion behaves differently depending on the
|
|
// conversion mode.
|
|
struct OperationConverter {
|
|
explicit OperationConverter(ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
OpConversionMode mode,
|
|
DenseSet<Operation *> *trackedOps = nullptr)
|
|
: opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
|
|
|
|
/// Converts the given operations to the conversion target.
|
|
LogicalResult convertOperations(ArrayRef<Operation *> ops);
|
|
|
|
private:
|
|
/// Converts an operation with the given rewriter.
|
|
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
|
|
|
|
/// This method is called after the conversion process to legalize any
|
|
/// remaining artifacts and complete the conversion.
|
|
LogicalResult finalize(ConversionPatternRewriter &rewriter);
|
|
|
|
/// Legalize the types of converted block arguments.
|
|
LogicalResult
|
|
legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl);
|
|
|
|
/// Legalize an operation result that was marked as "erased".
|
|
LogicalResult
|
|
legalizeErasedResult(Operation *op, OpResult result,
|
|
ConversionPatternRewriterImpl &rewriterImpl);
|
|
|
|
/// Legalize an operation result that was replaced with a value of a different
|
|
/// type.
|
|
LogicalResult
|
|
legalizeChangedResultType(Operation *op, OpResult result, Value newValue,
|
|
TypeConverter *replConverter,
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
const BlockAndValueMapping &inverseMapping);
|
|
|
|
/// The legalizer to use when converting operations.
|
|
OperationLegalizer opLegalizer;
|
|
|
|
/// The conversion mode to use when legalizing operations.
|
|
OpConversionMode mode;
|
|
|
|
/// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
|
|
/// this is populated with ops found to be legalizable to the target.
|
|
/// When mode == OpConversionMode::Partial, this is populated with ops found
|
|
/// *not* to be legalizable to the target.
|
|
DenseSet<Operation *> *trackedOps;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
|
|
Operation *op) {
|
|
// Legalize the given operation.
|
|
if (failed(opLegalizer.legalize(op, rewriter))) {
|
|
// Handle the case of a failed conversion for each of the different modes.
|
|
// Full conversions expect all operations to be converted.
|
|
if (mode == OpConversionMode::Full)
|
|
return op->emitError()
|
|
<< "failed to legalize operation '" << op->getName() << "'";
|
|
// Partial conversions allow conversions to fail iff the operation was not
|
|
// explicitly marked as illegal. If the user provided a nonlegalizableOps
|
|
// set, non-legalizable ops are included.
|
|
if (mode == OpConversionMode::Partial) {
|
|
if (opLegalizer.isIllegal(op))
|
|
return op->emitError()
|
|
<< "failed to legalize operation '" << op->getName()
|
|
<< "' that was explicitly marked illegal";
|
|
if (trackedOps)
|
|
trackedOps->insert(op);
|
|
}
|
|
} else if (mode == OpConversionMode::Analysis) {
|
|
// Analysis conversions don't fail if any operations fail to legalize,
|
|
// they are only interested in the operations that were successfully
|
|
// legalized.
|
|
trackedOps->insert(op);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
|
|
if (ops.empty())
|
|
return success();
|
|
ConversionTarget &target = opLegalizer.getTarget();
|
|
|
|
// Compute the set of operations and blocks to convert.
|
|
std::vector<Operation *> toConvert;
|
|
for (auto *op : ops) {
|
|
toConvert.emplace_back(op);
|
|
for (auto ®ion : op->getRegions())
|
|
if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
|
|
toConvert, &target)))
|
|
return failure();
|
|
}
|
|
|
|
// Convert each operation and discard rewrites on failure.
|
|
ConversionPatternRewriter rewriter(ops.front()->getContext());
|
|
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
|
|
for (auto *op : toConvert)
|
|
if (failed(convert(rewriter, op)))
|
|
return rewriterImpl.discardRewrites(), failure();
|
|
|
|
// Now that all of the operations have been converted, finalize the conversion
|
|
// process to ensure any lingering conversion artifacts are cleaned up and
|
|
// legalized.
|
|
if (failed(finalize(rewriter)))
|
|
return rewriterImpl.discardRewrites(), failure();
|
|
// After a successful conversion, apply rewrites if this is not an analysis
|
|
// conversion.
|
|
if (mode == OpConversionMode::Analysis)
|
|
rewriterImpl.discardRewrites();
|
|
else {
|
|
rewriterImpl.applyRewrites();
|
|
|
|
// It is possible for a later pattern to erase an op that was originally
|
|
// identified as illegal and added to the trackedOps, remove it now after
|
|
// replacements have been computed.
|
|
if (trackedOps)
|
|
for (auto &repl : rewriterImpl.replacements)
|
|
trackedOps->erase(repl.first);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
|
|
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
|
|
|
|
// Legalize converted block arguments.
|
|
if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
|
|
return failure();
|
|
|
|
if (rewriterImpl.operationsWithChangedResults.empty())
|
|
return success();
|
|
|
|
Optional<BlockAndValueMapping> inverseMapping;
|
|
|
|
// Process requested operation replacements.
|
|
for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
|
|
i != e; ++i) {
|
|
unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
|
|
auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
|
|
for (OpResult result : repl.first->getResults()) {
|
|
Value newValue = rewriterImpl.mapping.lookupOrNull(result);
|
|
|
|
// If the operation result was replaced with null, all of the uses of this
|
|
// value should be replaced.
|
|
if (!newValue) {
|
|
if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
|
|
return failure();
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, check to see if the type of the result changed.
|
|
if (result.getType() == newValue.getType())
|
|
continue;
|
|
|
|
// Compute the inverse mapping only if it is really needed.
|
|
if (!inverseMapping)
|
|
inverseMapping = rewriterImpl.mapping.getInverse();
|
|
|
|
// Legalize this result.
|
|
rewriter.setInsertionPoint(repl.first);
|
|
if (failed(legalizeChangedResultType(repl.first, result, newValue,
|
|
repl.second.converter, rewriter,
|
|
rewriterImpl, *inverseMapping)))
|
|
return failure();
|
|
|
|
// Update the end iterator for this loop in the case it was updated
|
|
// when legalizing generated conversion operations.
|
|
e = rewriterImpl.operationsWithChangedResults.size();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl) {
|
|
// Functor used to check if all users of a value will be dead after
|
|
// conversion.
|
|
auto findLiveUser = [&](Value val) {
|
|
auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
|
|
return rewriterImpl.isOpIgnored(user);
|
|
});
|
|
return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
|
|
};
|
|
|
|
// Materialize any necessary conversions for converted block arguments that
|
|
// are still live.
|
|
size_t numCreatedOps = rewriterImpl.createdOps.size();
|
|
if (failed(rewriterImpl.argConverter.materializeLiveConversions(
|
|
rewriterImpl.mapping, rewriter, findLiveUser)))
|
|
return failure();
|
|
|
|
// Legalize any newly created operations during argument materialization.
|
|
for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
|
|
if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
|
|
return rewriterImpl.createdOps[i]->emitError()
|
|
<< "failed to legalize conversion operation generated for block "
|
|
"argument that remained live after conversion";
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeErasedResult(
|
|
Operation *op, OpResult result,
|
|
ConversionPatternRewriterImpl &rewriterImpl) {
|
|
// If the operation result was replaced with null, all of the uses of this
|
|
// value should be replaced.
|
|
auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
|
|
return rewriterImpl.isOpIgnored(user);
|
|
});
|
|
if (liveUserIt != result.user_end()) {
|
|
InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
|
|
<< op->getName() << "' marked as erased";
|
|
diag.attachNote(liveUserIt->getLoc())
|
|
<< "found live user of result #" << result.getResultNumber() << ": "
|
|
<< *liveUserIt;
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Finds a user of the given value, or of any other value that the given value
|
|
/// replaced, that was not replaced in the conversion process.
|
|
static Operation *
|
|
findLiveUserOfReplaced(Value value, ConversionPatternRewriterImpl &rewriterImpl,
|
|
const BlockAndValueMapping &inverseMapping) {
|
|
do {
|
|
// Walk the users of this value to see if there are any live users that
|
|
// weren't replaced during conversion.
|
|
auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
|
|
return rewriterImpl.isOpIgnored(user);
|
|
});
|
|
if (liveUserIt != value.user_end())
|
|
return *liveUserIt;
|
|
value = inverseMapping.lookupOrNull(value);
|
|
} while (value != nullptr);
|
|
return nullptr;
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeChangedResultType(
|
|
Operation *op, OpResult result, Value newValue,
|
|
TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
const BlockAndValueMapping &inverseMapping) {
|
|
Operation *liveUser =
|
|
findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
|
|
if (!liveUser)
|
|
return success();
|
|
|
|
// If the replacement has a type converter, attempt to materialize a
|
|
// conversion back to the original type.
|
|
if (!replConverter) {
|
|
// TODO: We should emit an error here, similarly to the case where the
|
|
// result is replaced with null. Unfortunately a lot of existing
|
|
// patterns rely on this behavior, so until those patterns are updated
|
|
// we keep the legacy behavior here of just forwarding the new value.
|
|
return success();
|
|
}
|
|
|
|
// Track the number of created operations so that new ones can be legalized.
|
|
size_t numCreatedOps = rewriterImpl.createdOps.size();
|
|
|
|
// Materialize a conversion for this live result value.
|
|
Type resultType = result.getType();
|
|
Value convertedValue = replConverter->materializeSourceConversion(
|
|
rewriter, op->getLoc(), resultType, newValue);
|
|
if (!convertedValue) {
|
|
InFlightDiagnostic diag = op->emitError()
|
|
<< "failed to materialize conversion for result #"
|
|
<< result.getResultNumber() << " of operation '"
|
|
<< op->getName()
|
|
<< "' that remained live after conversion";
|
|
diag.attachNote(liveUser->getLoc())
|
|
<< "see existing live user here: " << *liveUser;
|
|
return failure();
|
|
}
|
|
|
|
// Legalize all of the newly created conversion operations.
|
|
for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
|
|
if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
|
|
return op->emitError("failed to legalize conversion operation generated ")
|
|
<< "for result #" << result.getResultNumber() << " of operation '"
|
|
<< op->getName() << "' that remained live after conversion";
|
|
}
|
|
}
|
|
|
|
rewriterImpl.mapping.map(result, convertedValue);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Remap an input of the original signature with a new set of types. The
|
|
/// new types are appended to the new signature conversion.
|
|
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
|
|
ArrayRef<Type> types) {
|
|
assert(!types.empty() && "expected valid types");
|
|
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
|
|
addInputs(types);
|
|
}
|
|
|
|
/// Append new input types to the signature conversion, this should only be
|
|
/// used if the new types are not intended to remap an existing input.
|
|
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
|
|
assert(!types.empty() &&
|
|
"1->0 type remappings don't need to be added explicitly");
|
|
argTypes.append(types.begin(), types.end());
|
|
}
|
|
|
|
/// Remap an input of the original signature with a range of types in the
|
|
/// new signature.
|
|
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
|
|
unsigned newInputNo,
|
|
unsigned newInputCount) {
|
|
assert(!remappedInputs[origInputNo] && "input has already been remapped");
|
|
assert(newInputCount != 0 && "expected valid input count");
|
|
remappedInputs[origInputNo] =
|
|
InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
|
|
}
|
|
|
|
/// Remap an input of the original signature to another `replacementValue`
|
|
/// value. This would make the signature converter drop this argument.
|
|
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
|
|
Value replacementValue) {
|
|
assert(!remappedInputs[origInputNo] && "input has already been remapped");
|
|
remappedInputs[origInputNo] =
|
|
InputMapping{origInputNo, /*size=*/0, replacementValue};
|
|
}
|
|
|
|
/// This hooks allows for converting a type.
|
|
LogicalResult TypeConverter::convertType(Type t,
|
|
SmallVectorImpl<Type> &results) {
|
|
auto existingIt = cachedDirectConversions.find(t);
|
|
if (existingIt != cachedDirectConversions.end()) {
|
|
if (existingIt->second)
|
|
results.push_back(existingIt->second);
|
|
return success(existingIt->second != nullptr);
|
|
}
|
|
auto multiIt = cachedMultiConversions.find(t);
|
|
if (multiIt != cachedMultiConversions.end()) {
|
|
results.append(multiIt->second.begin(), multiIt->second.end());
|
|
return success();
|
|
}
|
|
|
|
// Walk the added converters in reverse order to apply the most recently
|
|
// registered first.
|
|
size_t currentCount = results.size();
|
|
for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
|
|
if (Optional<LogicalResult> result = converter(t, results)) {
|
|
if (!succeeded(*result)) {
|
|
cachedDirectConversions.try_emplace(t, nullptr);
|
|
return failure();
|
|
}
|
|
auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
|
|
if (newTypes.size() == 1)
|
|
cachedDirectConversions.try_emplace(t, newTypes.front());
|
|
else
|
|
cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
|
|
return success();
|
|
}
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
/// This hook simplifies defining 1-1 type conversions. This function returns
|
|
/// the type to convert to on success, and a null type on failure.
|
|
Type TypeConverter::convertType(Type t) {
|
|
// Use the multi-type result version to convert the type.
|
|
SmallVector<Type, 1> results;
|
|
if (failed(convertType(t, results)))
|
|
return nullptr;
|
|
|
|
// Check to ensure that only one type was produced.
|
|
return results.size() == 1 ? results.front() : nullptr;
|
|
}
|
|
|
|
/// Convert the given set of types, filling 'results' as necessary. This
|
|
/// returns failure if the conversion of any of the types fails, success
|
|
/// otherwise.
|
|
LogicalResult TypeConverter::convertTypes(TypeRange types,
|
|
SmallVectorImpl<Type> &results) {
|
|
for (Type type : types)
|
|
if (failed(convertType(type, results)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
/// Return true if the given type is legal for this type converter, i.e. the
|
|
/// type converts to itself.
|
|
bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
|
|
/// Return true if the given operation has legal operand and result types.
|
|
bool TypeConverter::isLegal(Operation *op) {
|
|
return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
|
|
}
|
|
|
|
/// Return true if the types of block arguments within the region are legal.
|
|
bool TypeConverter::isLegal(Region *region) {
|
|
return llvm::all_of(*region, [this](Block &block) {
|
|
return isLegal(block.getArgumentTypes());
|
|
});
|
|
}
|
|
|
|
/// Return true if the inputs and outputs of the given function type are
|
|
/// legal.
|
|
bool TypeConverter::isSignatureLegal(FunctionType ty) {
|
|
return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
|
|
}
|
|
|
|
/// This hook allows for converting a specific argument of a signature.
|
|
LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
|
|
SignatureConversion &result) {
|
|
// Try to convert the given input type.
|
|
SmallVector<Type, 1> convertedTypes;
|
|
if (failed(convertType(type, convertedTypes)))
|
|
return failure();
|
|
|
|
// If this argument is being dropped, there is nothing left to do.
|
|
if (convertedTypes.empty())
|
|
return success();
|
|
|
|
// Otherwise, add the new inputs.
|
|
result.addInputs(inputNo, convertedTypes);
|
|
return success();
|
|
}
|
|
LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
|
|
SignatureConversion &result,
|
|
unsigned origInputOffset) {
|
|
for (unsigned i = 0, e = types.size(); i != e; ++i)
|
|
if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
Value TypeConverter::materializeConversion(
|
|
MutableArrayRef<MaterializationCallbackFn> materializations,
|
|
OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
|
|
for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
|
|
if (Optional<Value> result = fn(builder, resultType, inputs, loc))
|
|
return result.getValue();
|
|
return nullptr;
|
|
}
|
|
|
|
/// This function converts the type signature of the given block, by invoking
|
|
/// 'convertSignatureArg' for each argument. This function should return a valid
|
|
/// conversion for the signature on success, None otherwise.
|
|
auto TypeConverter::convertBlockSignature(Block *block)
|
|
-> Optional<SignatureConversion> {
|
|
SignatureConversion conversion(block->getNumArguments());
|
|
if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
|
|
return llvm::None;
|
|
return conversion;
|
|
}
|
|
|
|
/// Create a default conversion pattern that rewrites the type signature of a
|
|
/// FunctionLike op. This only supports FunctionLike ops which use FunctionType
|
|
/// to represent their type.
|
|
namespace {
|
|
struct FunctionLikeSignatureConversion : public ConversionPattern {
|
|
FunctionLikeSignatureConversion(StringRef functionLikeOpName,
|
|
MLIRContext *ctx, TypeConverter &converter)
|
|
: ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
|
|
|
|
/// Hook to implement combined matching and rewriting for FunctionLike ops.
|
|
LogicalResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
FunctionType type = function_like_impl::getFunctionType(op);
|
|
|
|
// Convert the original function types.
|
|
TypeConverter::SignatureConversion result(type.getNumInputs());
|
|
SmallVector<Type, 1> newResults;
|
|
if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
|
|
failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
|
|
failed(rewriter.convertRegionTypes(
|
|
&function_like_impl::getFunctionBody(op), *typeConverter, &result)))
|
|
return failure();
|
|
|
|
// Update the function signature in-place.
|
|
auto newType = FunctionType::get(rewriter.getContext(),
|
|
result.getConvertedTypes(), newResults);
|
|
|
|
rewriter.updateRootInPlace(
|
|
op, [&] { function_like_impl::setFunctionType(op, newType); });
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void mlir::populateFunctionLikeTypeConversionPattern(
|
|
StringRef functionLikeOpName, RewritePatternSet &patterns,
|
|
TypeConverter &converter) {
|
|
patterns.add<FunctionLikeSignatureConversion>(
|
|
functionLikeOpName, patterns.getContext(), converter);
|
|
}
|
|
|
|
void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns,
|
|
TypeConverter &converter) {
|
|
populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionTarget
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Register a legality action for the given operation.
|
|
void ConversionTarget::setOpAction(OperationName op,
|
|
LegalizationAction action) {
|
|
legalOperations[op] = {action, /*isRecursivelyLegal=*/false, nullptr};
|
|
}
|
|
|
|
/// Register a legality action for the given dialects.
|
|
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
|
|
LegalizationAction action) {
|
|
for (StringRef dialect : dialectNames)
|
|
legalDialects[dialect] = action;
|
|
}
|
|
|
|
/// Get the legality action for the given operation.
|
|
auto ConversionTarget::getOpAction(OperationName op) const
|
|
-> Optional<LegalizationAction> {
|
|
Optional<LegalizationInfo> info = getOpInfo(op);
|
|
return info ? info->action : Optional<LegalizationAction>();
|
|
}
|
|
|
|
/// If the given operation instance is legal on this target, a structure
|
|
/// containing legality information is returned. If the operation is not legal,
|
|
/// None is returned.
|
|
auto ConversionTarget::isLegal(Operation *op) const
|
|
-> Optional<LegalOpDetails> {
|
|
Optional<LegalizationInfo> info = getOpInfo(op->getName());
|
|
if (!info)
|
|
return llvm::None;
|
|
|
|
// Returns true if this operation instance is known to be legal.
|
|
auto isOpLegal = [&] {
|
|
// Handle dynamic legality either with the provided legality function.
|
|
if (info->action == LegalizationAction::Dynamic)
|
|
return info->legalityFn(op);
|
|
|
|
// Otherwise, the operation is only legal if it was marked 'Legal'.
|
|
return info->action == LegalizationAction::Legal;
|
|
};
|
|
if (!isOpLegal())
|
|
return llvm::None;
|
|
|
|
// This operation is legal, compute any additional legality information.
|
|
LegalOpDetails legalityDetails;
|
|
if (info->isRecursivelyLegal) {
|
|
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
|
|
if (legalityFnIt != opRecursiveLegalityFns.end())
|
|
legalityDetails.isRecursivelyLegal = legalityFnIt->second(op);
|
|
else
|
|
legalityDetails.isRecursivelyLegal = true;
|
|
}
|
|
return legalityDetails;
|
|
}
|
|
|
|
/// Set the dynamic legality callback for the given operation.
|
|
void ConversionTarget::setLegalityCallback(
|
|
OperationName name, const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
auto infoIt = legalOperations.find(name);
|
|
assert(infoIt != legalOperations.end() &&
|
|
infoIt->second.action == LegalizationAction::Dynamic &&
|
|
"expected operation to already be marked as dynamically legal");
|
|
infoIt->second.legalityFn = callback;
|
|
}
|
|
|
|
/// Set the recursive legality callback for the given operation and mark the
|
|
/// operation as recursively legal.
|
|
void ConversionTarget::markOpRecursivelyLegal(
|
|
OperationName name, const DynamicLegalityCallbackFn &callback) {
|
|
auto infoIt = legalOperations.find(name);
|
|
assert(infoIt != legalOperations.end() &&
|
|
infoIt->second.action != LegalizationAction::Illegal &&
|
|
"expected operation to already be marked as legal");
|
|
infoIt->second.isRecursivelyLegal = true;
|
|
if (callback)
|
|
opRecursiveLegalityFns[name] = callback;
|
|
else
|
|
opRecursiveLegalityFns.erase(name);
|
|
}
|
|
|
|
/// Set the dynamic legality callback for the given dialects.
|
|
void ConversionTarget::setLegalityCallback(
|
|
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
for (StringRef dialect : dialects)
|
|
dialectLegalityFns[dialect] = callback;
|
|
}
|
|
|
|
/// Set the dynamic legality callback for the unknown ops.
|
|
void ConversionTarget::setLegalityCallback(
|
|
const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
unknownLegalityFn = callback;
|
|
}
|
|
|
|
/// Get the legalization information for the given operation.
|
|
auto ConversionTarget::getOpInfo(OperationName op) const
|
|
-> Optional<LegalizationInfo> {
|
|
// Check for info for this specific operation.
|
|
auto it = legalOperations.find(op);
|
|
if (it != legalOperations.end())
|
|
return it->second;
|
|
// Check for info for the parent dialect.
|
|
auto dialectIt = legalDialects.find(op.getDialectNamespace());
|
|
if (dialectIt != legalDialects.end()) {
|
|
DynamicLegalityCallbackFn callback;
|
|
auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
|
|
if (dialectFn != dialectLegalityFns.end())
|
|
callback = dialectFn->second;
|
|
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
|
|
callback};
|
|
}
|
|
// Otherwise, check if we mark unknown operations as dynamic.
|
|
if (unknownLegalityFn)
|
|
return LegalizationInfo{LegalizationAction::Dynamic,
|
|
/*isRecursivelyLegal=*/false, unknownLegalityFn};
|
|
return llvm::None;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Op Conversion Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Apply a partial conversion on the given operations and all nested
|
|
/// operations. This method converts as many operations to the target as
|
|
/// possible, ignoring operations that failed to legalize. This method only
|
|
/// returns failure if there ops explicitly marked as illegal.
|
|
/// If an `unconvertedOps` set is provided, all operations that are found not
|
|
/// to be legalizable to the given `target` are placed within that set. (Note
|
|
/// that if there is an op explicitly marked as illegal, the conversion
|
|
/// terminates and the `unconvertedOps` set will not necessarily be complete.)
|
|
LogicalResult
|
|
mlir::applyPartialConversion(ArrayRef<Operation *> ops,
|
|
ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
DenseSet<Operation *> *unconvertedOps) {
|
|
OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
|
|
unconvertedOps);
|
|
return opConverter.convertOperations(ops);
|
|
}
|
|
LogicalResult
|
|
mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
DenseSet<Operation *> *unconvertedOps) {
|
|
return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
|
|
unconvertedOps);
|
|
}
|
|
|
|
/// Apply a complete conversion on the given operations, and all nested
|
|
/// operations. This method will return failure if the conversion of any
|
|
/// operation fails.
|
|
LogicalResult
|
|
mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns) {
|
|
OperationConverter opConverter(target, patterns, OpConversionMode::Full);
|
|
return opConverter.convertOperations(ops);
|
|
}
|
|
LogicalResult
|
|
mlir::applyFullConversion(Operation *op, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns) {
|
|
return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
|
|
}
|
|
|
|
/// Apply an analysis conversion on the given operations, and all nested
|
|
/// operations. This method analyzes which operations would be successfully
|
|
/// converted to the target if a conversion was applied. All operations that
|
|
/// were found to be legalizable to the given 'target' are placed within the
|
|
/// provided 'convertedOps' set; note that no actual rewrites are applied to the
|
|
/// operations on success and only pre-existing operations are added to the set.
|
|
LogicalResult
|
|
mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
|
|
ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
DenseSet<Operation *> &convertedOps) {
|
|
OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
|
|
&convertedOps);
|
|
return opConverter.convertOperations(ops);
|
|
}
|
|
LogicalResult
|
|
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
DenseSet<Operation *> &convertedOps) {
|
|
return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
|
|
convertedOps);
|
|
}
|