Files
clang-p2996/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp
Jeffrey Byrnes 16f7e961c6 [AMDGPU] Allow rematerialization of instructions with virtual register uses (#124327)
Remove the restriction that scheduling rematerialization candidates
cannot have virtual reg uses.

Currently, this only allows for virtual reg uses which are already live
at the rematerialization point, so bring in allUsesAvailableAt to check
for this condition. Because of this condition, the uses of the remats
will already be live in to the region, so the remat won't increase
live-in pressure.

Add an expensive check to check this condition.
2025-02-06 10:16:28 -08:00

2062 lines
76 KiB
C++

//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This contains a MachineSchedStrategy implementation for maximizing wave
/// occupancy on GCN hardware.
///
/// This pass will apply multiple scheduling stages to the same function.
/// Regions are first recorded in GCNScheduleDAGMILive::schedule. The actual
/// entry point for the scheduling of those regions is
/// GCNScheduleDAGMILive::runSchedStages.
/// Generally, the reason for having multiple scheduling stages is to account
/// for the kernel-wide effect of register usage on occupancy. Usually, only a
/// few scheduling regions will have register pressure high enough to limit
/// occupancy for the kernel, so constraints can be relaxed to improve ILP in
/// other regions.
///
//===----------------------------------------------------------------------===//
#include "GCNSchedStrategy.h"
#include "AMDGPUIGroupLP.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#define DEBUG_TYPE "machine-scheduler"
using namespace llvm;
static cl::opt<bool> DisableUnclusterHighRP(
"amdgpu-disable-unclustered-high-rp-reschedule", cl::Hidden,
cl::desc("Disable unclustered high register pressure "
"reduction scheduling stage."),
cl::init(false));
static cl::opt<bool> DisableClusteredLowOccupancy(
"amdgpu-disable-clustered-low-occupancy-reschedule", cl::Hidden,
cl::desc("Disable clustered low occupancy "
"rescheduling for ILP scheduling stage."),
cl::init(false));
static cl::opt<unsigned> ScheduleMetricBias(
"amdgpu-schedule-metric-bias", cl::Hidden,
cl::desc(
"Sets the bias which adds weight to occupancy vs latency. Set it to "
"100 to chase the occupancy only."),
cl::init(10));
static cl::opt<bool>
RelaxedOcc("amdgpu-schedule-relaxed-occupancy", cl::Hidden,
cl::desc("Relax occupancy targets for kernels which are memory "
"bound (amdgpu-membound-threshold), or "
"Wave Limited (amdgpu-limit-wave-threshold)."),
cl::init(false));
static cl::opt<bool> GCNTrackers(
"amdgpu-use-amdgpu-trackers", cl::Hidden,
cl::desc("Use the AMDGPU specific RPTrackers during scheduling"),
cl::init(false));
const unsigned ScheduleMetrics::ScaleFactor = 100;
GCNSchedStrategy::GCNSchedStrategy(const MachineSchedContext *C)
: GenericScheduler(C), TargetOccupancy(0), MF(nullptr),
DownwardTracker(*C->LIS), UpwardTracker(*C->LIS), HasHighPressure(false) {
}
void GCNSchedStrategy::initialize(ScheduleDAGMI *DAG) {
GenericScheduler::initialize(DAG);
MF = &DAG->MF;
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
SGPRExcessLimit =
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
VGPRExcessLimit =
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);
SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
// Set the initial TargetOccupnacy to the maximum occupancy that we can
// achieve for this function. This effectively sets a lower bound on the
// 'Critical' register limits in the scheduler.
// Allow for lower occupancy targets if kernel is wave limited or memory
// bound, and using the relaxed occupancy feature.
TargetOccupancy =
RelaxedOcc ? MFI.getMinAllowedOccupancy() : MFI.getOccupancy();
SGPRCriticalLimit =
std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit);
if (!KnownExcessRP) {
VGPRCriticalLimit =
std::min(ST.getMaxNumVGPRs(TargetOccupancy), VGPRExcessLimit);
} else {
// This is similar to ST.getMaxNumVGPRs(TargetOccupancy) result except
// returns a reasonably small number for targets with lots of VGPRs, such
// as GFX10 and GFX11.
LLVM_DEBUG(dbgs() << "Region is known to spill, use alternative "
"VGPRCriticalLimit calculation method.\n");
unsigned Granule = AMDGPU::IsaInfo::getVGPRAllocGranule(&ST);
unsigned Addressable = AMDGPU::IsaInfo::getAddressableNumVGPRs(&ST);
unsigned VGPRBudget = alignDown(Addressable / TargetOccupancy, Granule);
VGPRBudget = std::max(VGPRBudget, Granule);
VGPRCriticalLimit = std::min(VGPRBudget, VGPRExcessLimit);
}
// Subtract error margin and bias from register limits and avoid overflow.
SGPRCriticalLimit -= std::min(SGPRLimitBias + ErrorMargin, SGPRCriticalLimit);
VGPRCriticalLimit -= std::min(VGPRLimitBias + ErrorMargin, VGPRCriticalLimit);
SGPRExcessLimit -= std::min(SGPRLimitBias + ErrorMargin, SGPRExcessLimit);
VGPRExcessLimit -= std::min(VGPRLimitBias + ErrorMargin, VGPRExcessLimit);
LLVM_DEBUG(dbgs() << "VGPRCriticalLimit = " << VGPRCriticalLimit
<< ", VGPRExcessLimit = " << VGPRExcessLimit
<< ", SGPRCriticalLimit = " << SGPRCriticalLimit
<< ", SGPRExcessLimit = " << SGPRExcessLimit << "\n\n");
}
/// Checks whether \p SU can use the cached DAG pressure diffs to compute the
/// current register pressure.
///
/// This works for the common case, but it has a few exceptions that have been
/// observed through trial and error:
/// - Explicit physical register operands
/// - Subregister definitions
///
/// In both of those cases, PressureDiff doesn't represent the actual pressure,
/// and querying LiveIntervals through the RegPressureTracker is needed to get
/// an accurate value.
///
/// We should eventually only use PressureDiff for maximum performance, but this
/// already allows 80% of SUs to take the fast path without changing scheduling
/// at all. Further changes would either change scheduling, or require a lot
/// more logic to recover an accurate pressure estimate from the PressureDiffs.
static bool canUsePressureDiffs(const SUnit &SU) {
if (!SU.isInstr())
return false;
// Cannot use pressure diffs for subregister defs or with physregs, it's
// imprecise in both cases.
for (const auto &Op : SU.getInstr()->operands()) {
if (!Op.isReg() || Op.isImplicit())
continue;
if (Op.getReg().isPhysical() ||
(Op.isDef() && Op.getSubReg() != AMDGPU::NoSubRegister))
return false;
}
return true;
}
static void getRegisterPressures(
bool AtTop, const RegPressureTracker &RPTracker, SUnit *SU,
std::vector<unsigned> &Pressure, std::vector<unsigned> &MaxPressure,
GCNDownwardRPTracker &DownwardTracker, GCNUpwardRPTracker &UpwardTracker,
ScheduleDAGMI *DAG, const SIRegisterInfo *SRI) {
// getDownwardPressure() and getUpwardPressure() make temporary changes to
// the tracker, so we need to pass those function a non-const copy.
RegPressureTracker &TempTracker = const_cast<RegPressureTracker &>(RPTracker);
if (!GCNTrackers) {
AtTop
? TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure)
: TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
return;
}
// GCNTrackers
Pressure.resize(4, 0);
MachineInstr *MI = SU->getInstr();
GCNRegPressure NewPressure;
if (AtTop) {
GCNDownwardRPTracker TempDownwardTracker(DownwardTracker);
NewPressure = TempDownwardTracker.bumpDownwardPressure(MI, SRI);
} else {
GCNUpwardRPTracker TempUpwardTracker(UpwardTracker);
TempUpwardTracker.recede(*MI);
NewPressure = TempUpwardTracker.getPressure();
}
Pressure[AMDGPU::RegisterPressureSets::SReg_32] = NewPressure.getSGPRNum();
Pressure[AMDGPU::RegisterPressureSets::VGPR_32] =
NewPressure.getArchVGPRNum();
Pressure[AMDGPU::RegisterPressureSets::AGPR_32] = NewPressure.getAGPRNum();
}
// Return true if the instruction is mutually exclusive with all non-IGLP DAG
// mutations, requiring all other mutations to be disabled.
static bool isIGLPMutationOnly(unsigned Opcode) {
return Opcode == AMDGPU::SCHED_GROUP_BARRIER || Opcode == AMDGPU::IGLP_OPT;
}
void GCNSchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
bool AtTop,
const RegPressureTracker &RPTracker,
const SIRegisterInfo *SRI,
unsigned SGPRPressure,
unsigned VGPRPressure, bool IsBottomUp) {
Cand.SU = SU;
Cand.AtTop = AtTop;
if (!DAG->isTrackingPressure())
return;
Pressure.clear();
MaxPressure.clear();
// We try to use the cached PressureDiffs in the ScheduleDAG whenever
// possible over querying the RegPressureTracker.
//
// RegPressureTracker will make a lot of LIS queries which are very
// expensive, it is considered a slow function in this context.
//
// PressureDiffs are precomputed and cached, and getPressureDiff is just a
// trivial lookup into an array. It is pretty much free.
//
// In EXPENSIVE_CHECKS, we always query RPTracker to verify the results of
// PressureDiffs.
if (AtTop || !canUsePressureDiffs(*SU) || GCNTrackers) {
getRegisterPressures(AtTop, RPTracker, SU, Pressure, MaxPressure,
DownwardTracker, UpwardTracker, DAG, SRI);
} else {
// Reserve 4 slots.
Pressure.resize(4, 0);
Pressure[AMDGPU::RegisterPressureSets::SReg_32] = SGPRPressure;
Pressure[AMDGPU::RegisterPressureSets::VGPR_32] = VGPRPressure;
for (const auto &Diff : DAG->getPressureDiff(SU)) {
if (!Diff.isValid())
continue;
// PressureDiffs is always bottom-up so if we're working top-down we need
// to invert its sign.
Pressure[Diff.getPSet()] +=
(IsBottomUp ? Diff.getUnitInc() : -Diff.getUnitInc());
}
#ifdef EXPENSIVE_CHECKS
std::vector<unsigned> CheckPressure, CheckMaxPressure;
getRegisterPressures(AtTop, RPTracker, SU, CheckPressure, CheckMaxPressure,
DownwardTracker, UpwardTracker, DAG, SRI);
if (Pressure[AMDGPU::RegisterPressureSets::SReg_32] !=
CheckPressure[AMDGPU::RegisterPressureSets::SReg_32] ||
Pressure[AMDGPU::RegisterPressureSets::VGPR_32] !=
CheckPressure[AMDGPU::RegisterPressureSets::VGPR_32]) {
errs() << "Register Pressure is inaccurate when calculated through "
"PressureDiff\n"
<< "SGPR got " << Pressure[AMDGPU::RegisterPressureSets::SReg_32]
<< ", expected "
<< CheckPressure[AMDGPU::RegisterPressureSets::SReg_32] << "\n"
<< "VGPR got " << Pressure[AMDGPU::RegisterPressureSets::VGPR_32]
<< ", expected "
<< CheckPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n";
report_fatal_error("inaccurate register pressure calculation");
}
#endif
}
unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
// If two instructions increase the pressure of different register sets
// by the same amount, the generic scheduler will prefer to schedule the
// instruction that increases the set with the least amount of registers,
// which in our case would be SGPRs. This is rarely what we want, so
// when we report excess/critical register pressure, we do it either
// only for VGPRs or only for SGPRs.
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
const unsigned MaxVGPRPressureInc = 16;
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
// to increase the likelihood we don't go over the limits. We should improve
// the analysis to look through dependencies to find the path with the least
// register pressure.
// We only need to update the RPDelta for instructions that increase register
// pressure. Instructions that decrease or keep reg pressure the same will be
// marked as RegExcess in tryCandidate() when they are compared with
// instructions that increase the register pressure.
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
HasHighPressure = true;
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
}
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
HasHighPressure = true;
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
}
// Register pressure is considered 'CRITICAL' if it is approaching a value
// that would reduce the wave occupancy for the execution unit. When
// register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both
// has the same cost, so we don't need to prefer one over the other.
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
HasHighPressure = true;
if (SGPRDelta > VGPRDelta) {
Cand.RPDelta.CriticalMax =
PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
} else {
Cand.RPDelta.CriticalMax =
PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
}
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeFromQueue()
void GCNSchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
const CandPolicy &ZonePolicy,
const RegPressureTracker &RPTracker,
SchedCandidate &Cand,
bool IsBottomUp) {
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
unsigned SGPRPressure = 0;
unsigned VGPRPressure = 0;
if (DAG->isTrackingPressure()) {
if (!GCNTrackers) {
SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
} else {
GCNRPTracker *T = IsBottomUp
? static_cast<GCNRPTracker *>(&UpwardTracker)
: static_cast<GCNRPTracker *>(&DownwardTracker);
SGPRPressure = T->getPressure().getSGPRNum();
VGPRPressure = T->getPressure().getArchVGPRNum();
}
}
ReadyQueue &Q = Zone.Available;
for (SUnit *SU : Q) {
SchedCandidate TryCand(ZonePolicy);
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, SGPRPressure,
VGPRPressure, IsBottomUp);
// Pass SchedBoundary only when comparing nodes from the same boundary.
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
tryCandidate(Cand, TryCand, ZoneArg);
if (TryCand.Reason != NoCand) {
// Initialize resource delta if needed in case future heuristics query it.
if (TryCand.ResDelta == SchedResourceDelta())
TryCand.initResourceDelta(Zone.DAG, SchedModel);
Cand.setBest(TryCand);
LLVM_DEBUG(traceCandidate(Cand));
}
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeBidirectional()
SUnit *GCNSchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
// Schedule as far as possible in the direction of no choice. This is most
// efficient, but also provides the best heuristics for CriticalPSets.
if (SUnit *SU = Bot.pickOnlyChoice()) {
IsTopNode = false;
return SU;
}
if (SUnit *SU = Top.pickOnlyChoice()) {
IsTopNode = true;
return SU;
}
// Set the bottom-up policy based on the state of the current bottom zone and
// the instructions outside the zone, including the top zone.
CandPolicy BotPolicy;
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
// Set the top-down policy based on the state of the current top zone and
// the instructions outside the zone, including the bottom zone.
CandPolicy TopPolicy;
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
// See if BotCand is still valid (because we previously scheduled from Top).
LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
BotCand.Policy != BotPolicy) {
BotCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand,
/*IsBottomUp=*/true);
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
} else {
LLVM_DEBUG(traceCandidate(BotCand));
#ifndef NDEBUG
if (VerifyScheduling) {
SchedCandidate TCand;
TCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand,
/*IsBottomUp=*/true);
assert(TCand.SU == BotCand.SU &&
"Last pick result should correspond to re-picking right now");
}
#endif
}
// Check if the top Q has a better candidate.
LLVM_DEBUG(dbgs() << "Picking from Top:\n");
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
TopCand.Policy != TopPolicy) {
TopCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand,
/*IsBottomUp=*/false);
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
} else {
LLVM_DEBUG(traceCandidate(TopCand));
#ifndef NDEBUG
if (VerifyScheduling) {
SchedCandidate TCand;
TCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand,
/*IsBottomUp=*/false);
assert(TCand.SU == TopCand.SU &&
"Last pick result should correspond to re-picking right now");
}
#endif
}
// Pick best from BotCand and TopCand.
LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
dbgs() << "Bot Cand: "; traceCandidate(BotCand););
SchedCandidate Cand = BotCand;
TopCand.Reason = NoCand;
tryCandidate(Cand, TopCand, nullptr);
if (TopCand.Reason != NoCand) {
Cand.setBest(TopCand);
}
LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
IsTopNode = Cand.AtTop;
return Cand.SU;
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNode()
SUnit *GCNSchedStrategy::pickNode(bool &IsTopNode) {
if (DAG->top() == DAG->bottom()) {
assert(Top.Available.empty() && Top.Pending.empty() &&
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
return nullptr;
}
SUnit *SU;
do {
if (RegionPolicy.OnlyTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
TopCand.reset(NoPolicy);
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand,
/*IsBottomUp=*/false);
assert(TopCand.Reason != NoCand && "failed to find a candidate");
SU = TopCand.SU;
}
IsTopNode = true;
} else if (RegionPolicy.OnlyBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
BotCand.reset(NoPolicy);
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand,
/*IsBottomUp=*/true);
assert(BotCand.Reason != NoCand && "failed to find a candidate");
SU = BotCand.SU;
}
IsTopNode = false;
} else {
SU = pickNodeBidirectional(IsTopNode);
}
} while (SU->isScheduled);
if (SU->isTopReady())
Top.removeReady(SU);
if (SU->isBottomReady())
Bot.removeReady(SU);
LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
<< *SU->getInstr());
return SU;
}
void GCNSchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
if (GCNTrackers) {
MachineInstr *MI = SU->getInstr();
IsTopNode ? (void)DownwardTracker.advance(MI, false)
: UpwardTracker.recede(*MI);
}
return GenericScheduler::schedNode(SU, IsTopNode);
}
GCNSchedStageID GCNSchedStrategy::getCurrentStage() {
assert(CurrentStage && CurrentStage != SchedStages.end());
return *CurrentStage;
}
bool GCNSchedStrategy::advanceStage() {
assert(CurrentStage != SchedStages.end());
if (!CurrentStage)
CurrentStage = SchedStages.begin();
else
CurrentStage++;
return CurrentStage != SchedStages.end();
}
bool GCNSchedStrategy::hasNextStage() const {
assert(CurrentStage);
return std::next(CurrentStage) != SchedStages.end();
}
GCNSchedStageID GCNSchedStrategy::getNextStage() const {
assert(CurrentStage && std::next(CurrentStage) != SchedStages.end());
return *std::next(CurrentStage);
}
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
const MachineSchedContext *C, bool IsLegacyScheduler)
: GCNSchedStrategy(C) {
SchedStages.push_back(GCNSchedStageID::OccInitialSchedule);
SchedStages.push_back(GCNSchedStageID::UnclusteredHighRPReschedule);
SchedStages.push_back(GCNSchedStageID::ClusteredLowOccupancyReschedule);
SchedStages.push_back(GCNSchedStageID::PreRARematerialize);
GCNTrackers = GCNTrackers & !IsLegacyScheduler;
}
GCNMaxILPSchedStrategy::GCNMaxILPSchedStrategy(const MachineSchedContext *C)
: GCNSchedStrategy(C) {
SchedStages.push_back(GCNSchedStageID::ILPInitialSchedule);
}
bool GCNMaxILPSchedStrategy::tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary *Zone) const {
// Initialize the candidate if needed.
if (!Cand.isValid()) {
TryCand.Reason = NodeOrder;
return true;
}
// Avoid spilling by exceeding the register limit.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
RegExcess, TRI, DAG->MF))
return TryCand.Reason != NoCand;
// Bias PhysReg Defs and copies to their uses and defined respectively.
if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
return TryCand.Reason != NoCand;
bool SameBoundary = Zone != nullptr;
if (SameBoundary) {
// Prioritize instructions that read unbuffered resources by stall cycles.
if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
return TryCand.Reason != NoCand;
// Avoid critical resource consumption and balance the schedule.
TryCand.initResourceDelta(DAG, SchedModel);
if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
TryCand, Cand, ResourceReduce))
return TryCand.Reason != NoCand;
if (tryGreater(TryCand.ResDelta.DemandedResources,
Cand.ResDelta.DemandedResources, TryCand, Cand,
ResourceDemand))
return TryCand.Reason != NoCand;
// Unconditionally try to reduce latency.
if (tryLatency(TryCand, Cand, *Zone))
return TryCand.Reason != NoCand;
// Weak edges are for clustering and other constraints.
if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
getWeakLeft(Cand.SU, Cand.AtTop), TryCand, Cand, Weak))
return TryCand.Reason != NoCand;
}
// Keep clustered nodes together to encourage downstream peephole
// optimizations which may reduce resource requirements.
//
// This is a best effort to set things up for a post-RA pass. Optimizations
// like generating loads of multiple registers should ideally be done within
// the scheduler pass by combining the loads during DAG postprocessing.
const SUnit *CandNextClusterSU =
Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
const SUnit *TryCandNextClusterSU =
TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
if (tryGreater(TryCand.SU == TryCandNextClusterSU,
Cand.SU == CandNextClusterSU, TryCand, Cand, Cluster))
return TryCand.Reason != NoCand;
// Avoid increasing the max critical pressure in the scheduled region.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
TryCand, Cand, RegCritical, TRI, DAG->MF))
return TryCand.Reason != NoCand;
// Avoid increasing the max pressure of the entire region.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, TryCand,
Cand, RegMax, TRI, DAG->MF))
return TryCand.Reason != NoCand;
if (SameBoundary) {
// Fall through to original instruction order.
if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) ||
(!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
TryCand.Reason = NodeOrder;
return true;
}
}
return false;
}
GCNMaxMemoryClauseSchedStrategy::GCNMaxMemoryClauseSchedStrategy(
const MachineSchedContext *C)
: GCNSchedStrategy(C) {
SchedStages.push_back(GCNSchedStageID::MemoryClauseInitialSchedule);
}
/// GCNMaxMemoryClauseSchedStrategy tries best to clause memory instructions as
/// much as possible. This is achieved by:
// 1. Prioritize clustered operations before stall latency heuristic.
// 2. Prioritize long-latency-load before stall latency heuristic.
///
/// \param Cand provides the policy and current best candidate.
/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
/// \param Zone describes the scheduled zone that we are extending, or nullptr
/// if Cand is from a different zone than TryCand.
/// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
bool GCNMaxMemoryClauseSchedStrategy::tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary *Zone) const {
// Initialize the candidate if needed.
if (!Cand.isValid()) {
TryCand.Reason = NodeOrder;
return true;
}
// Bias PhysReg Defs and copies to their uses and defined respectively.
if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
return TryCand.Reason != NoCand;
if (DAG->isTrackingPressure()) {
// Avoid exceeding the target's limit.
if (tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
RegExcess, TRI, DAG->MF))
return TryCand.Reason != NoCand;
// Avoid increasing the max critical pressure in the scheduled region.
if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
TryCand, Cand, RegCritical, TRI, DAG->MF))
return TryCand.Reason != NoCand;
}
// MaxMemoryClause-specific: We prioritize clustered instructions as we would
// get more benefit from clausing these memory instructions.
const SUnit *CandNextClusterSU =
Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
const SUnit *TryCandNextClusterSU =
TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
if (tryGreater(TryCand.SU == TryCandNextClusterSU,
Cand.SU == CandNextClusterSU, TryCand, Cand, Cluster))
return TryCand.Reason != NoCand;
// We only compare a subset of features when comparing nodes between
// Top and Bottom boundary. Some properties are simply incomparable, in many
// other instances we should only override the other boundary if something
// is a clear good pick on one boundary. Skip heuristics that are more
// "tie-breaking" in nature.
bool SameBoundary = Zone != nullptr;
if (SameBoundary) {
// For loops that are acyclic path limited, aggressively schedule for
// latency. Within an single cycle, whenever CurrMOps > 0, allow normal
// heuristics to take precedence.
if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
tryLatency(TryCand, Cand, *Zone))
return TryCand.Reason != NoCand;
// MaxMemoryClause-specific: Prioritize long latency memory load
// instructions in top-bottom order to hide more latency. The mayLoad check
// is used to exclude store-like instructions, which we do not want to
// scheduler them too early.
bool TryMayLoad =
TryCand.SU->isInstr() && TryCand.SU->getInstr()->mayLoad();
bool CandMayLoad = Cand.SU->isInstr() && Cand.SU->getInstr()->mayLoad();
if (TryMayLoad || CandMayLoad) {
bool TryLongLatency =
TryCand.SU->Latency > 10 * Cand.SU->Latency && TryMayLoad;
bool CandLongLatency =
10 * TryCand.SU->Latency < Cand.SU->Latency && CandMayLoad;
if (tryGreater(Zone->isTop() ? TryLongLatency : CandLongLatency,
Zone->isTop() ? CandLongLatency : TryLongLatency, TryCand,
Cand, Stall))
return TryCand.Reason != NoCand;
}
// Prioritize instructions that read unbuffered resources by stall cycles.
if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
return TryCand.Reason != NoCand;
}
if (SameBoundary) {
// Weak edges are for clustering and other constraints.
if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
getWeakLeft(Cand.SU, Cand.AtTop), TryCand, Cand, Weak))
return TryCand.Reason != NoCand;
}
// Avoid increasing the max pressure of the entire region.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, TryCand,
Cand, RegMax, TRI, DAG->MF))
return TryCand.Reason != NoCand;
if (SameBoundary) {
// Avoid critical resource consumption and balance the schedule.
TryCand.initResourceDelta(DAG, SchedModel);
if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
TryCand, Cand, ResourceReduce))
return TryCand.Reason != NoCand;
if (tryGreater(TryCand.ResDelta.DemandedResources,
Cand.ResDelta.DemandedResources, TryCand, Cand,
ResourceDemand))
return TryCand.Reason != NoCand;
// Avoid serializing long latency dependence chains.
// For acyclic path limited loops, latency was already checked above.
if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
!Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
return TryCand.Reason != NoCand;
// Fall through to original instruction order.
if (Zone->isTop() == (TryCand.SU->NodeNum < Cand.SU->NodeNum)) {
assert(TryCand.SU->NodeNum != Cand.SU->NodeNum);
TryCand.Reason = NodeOrder;
return true;
}
}
return false;
}
GCNScheduleDAGMILive::GCNScheduleDAGMILive(
MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S)
: ScheduleDAGMILive(C, std::move(S)), ST(MF.getSubtarget<GCNSubtarget>()),
MFI(*MF.getInfo<SIMachineFunctionInfo>()),
StartingOccupancy(MFI.getOccupancy()), MinOccupancy(StartingOccupancy),
RegionLiveOuts(this, /*IsLiveOut=*/true) {
LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
if (RelaxedOcc) {
MinOccupancy = std::min(MFI.getMinAllowedOccupancy(), StartingOccupancy);
if (MinOccupancy != StartingOccupancy)
LLVM_DEBUG(dbgs() << "Allowing Occupancy drops to " << MinOccupancy
<< ".\n");
}
}
std::unique_ptr<GCNSchedStage>
GCNScheduleDAGMILive::createSchedStage(GCNSchedStageID SchedStageID) {
switch (SchedStageID) {
case GCNSchedStageID::OccInitialSchedule:
return std::make_unique<OccInitialScheduleStage>(SchedStageID, *this);
case GCNSchedStageID::UnclusteredHighRPReschedule:
return std::make_unique<UnclusteredHighRPStage>(SchedStageID, *this);
case GCNSchedStageID::ClusteredLowOccupancyReschedule:
return std::make_unique<ClusteredLowOccStage>(SchedStageID, *this);
case GCNSchedStageID::PreRARematerialize:
return std::make_unique<PreRARematStage>(SchedStageID, *this);
case GCNSchedStageID::ILPInitialSchedule:
return std::make_unique<ILPInitialScheduleStage>(SchedStageID, *this);
case GCNSchedStageID::MemoryClauseInitialSchedule:
return std::make_unique<MemoryClauseInitialScheduleStage>(SchedStageID,
*this);
}
llvm_unreachable("Unknown SchedStageID.");
}
void GCNScheduleDAGMILive::schedule() {
// Collect all scheduling regions. The actual scheduling is performed in
// GCNScheduleDAGMILive::finalizeSchedule.
Regions.push_back(std::pair(RegionBegin, RegionEnd));
}
GCNRegPressure
GCNScheduleDAGMILive::getRealRegPressure(unsigned RegionIdx) const {
GCNDownwardRPTracker RPTracker(*LIS);
RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
return RPTracker.moveMaxPressure();
}
static MachineInstr *getLastMIForRegion(MachineBasicBlock::iterator RegionBegin,
MachineBasicBlock::iterator RegionEnd) {
auto REnd = RegionEnd == RegionBegin->getParent()->end()
? std::prev(RegionEnd)
: RegionEnd;
return &*skipDebugInstructionsBackward(REnd, RegionBegin);
}
void GCNScheduleDAGMILive::computeBlockPressure(unsigned RegionIdx,
const MachineBasicBlock *MBB) {
GCNDownwardRPTracker RPTracker(*LIS);
// If the block has the only successor then live-ins of that successor are
// live-outs of the current block. We can reuse calculated live set if the
// successor will be sent to scheduling past current block.
// However, due to the bug in LiveInterval analysis it may happen that two
// predecessors of the same successor block have different lane bitmasks for
// a live-out register. Workaround that by sticking to one-to-one relationship
// i.e. one predecessor with one successor block.
const MachineBasicBlock *OnlySucc = nullptr;
if (MBB->succ_size() == 1) {
auto *Candidate = *MBB->succ_begin();
if (!Candidate->empty() && Candidate->pred_size() == 1) {
SlotIndexes *Ind = LIS->getSlotIndexes();
if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(Candidate))
OnlySucc = Candidate;
}
}
// Scheduler sends regions from the end of the block upwards.
size_t CurRegion = RegionIdx;
for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
if (Regions[CurRegion].first->getParent() != MBB)
break;
--CurRegion;
auto I = MBB->begin();
auto LiveInIt = MBBLiveIns.find(MBB);
auto &Rgn = Regions[CurRegion];
auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
if (LiveInIt != MBBLiveIns.end()) {
auto LiveIn = std::move(LiveInIt->second);
RPTracker.reset(*MBB->begin(), &LiveIn);
MBBLiveIns.erase(LiveInIt);
} else {
I = Rgn.first;
auto LRS = BBLiveInMap.lookup(NonDbgMI);
#ifdef EXPENSIVE_CHECKS
assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
#endif
RPTracker.reset(*I, &LRS);
}
for (;;) {
I = RPTracker.getNext();
if (Regions[CurRegion].first == I || NonDbgMI == I) {
LiveIns[CurRegion] = RPTracker.getLiveRegs();
RPTracker.clearMaxPressure();
}
if (Regions[CurRegion].second == I) {
Pressure[CurRegion] = RPTracker.moveMaxPressure();
if (CurRegion-- == RegionIdx)
break;
}
RPTracker.advanceToNext();
RPTracker.advanceBeforeNext();
}
if (OnlySucc) {
if (I != MBB->end()) {
RPTracker.advanceToNext();
RPTracker.advance(MBB->end());
}
RPTracker.advanceBeforeNext();
MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
}
}
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
GCNScheduleDAGMILive::getRegionLiveInMap() const {
assert(!Regions.empty());
std::vector<MachineInstr *> RegionFirstMIs;
RegionFirstMIs.reserve(Regions.size());
auto I = Regions.rbegin(), E = Regions.rend();
auto *BB = I->first->getParent();
do {
auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
RegionFirstMIs.push_back(MI);
do {
++I;
} while (I != E && I->first->getParent() == BB);
} while (I != E);
return getLiveRegMap(RegionFirstMIs, /*After=*/false, *LIS);
}
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
GCNScheduleDAGMILive::getRegionLiveOutMap() const {
assert(!Regions.empty());
std::vector<MachineInstr *> RegionLastMIs;
RegionLastMIs.reserve(Regions.size());
for (auto &[RegionBegin, RegionEnd] : reverse(Regions))
RegionLastMIs.push_back(getLastMIForRegion(RegionBegin, RegionEnd));
return getLiveRegMap(RegionLastMIs, /*After=*/true, *LIS);
}
void RegionPressureMap::buildLiveRegMap() {
IdxToInstruction.clear();
RegionLiveRegMap =
IsLiveOut ? DAG->getRegionLiveOutMap() : DAG->getRegionLiveInMap();
for (unsigned I = 0; I < DAG->Regions.size(); I++) {
MachineInstr *RegionKey =
IsLiveOut
? getLastMIForRegion(DAG->Regions[I].first, DAG->Regions[I].second)
: &*DAG->Regions[I].first;
IdxToInstruction[I] = RegionKey;
}
}
void GCNScheduleDAGMILive::finalizeSchedule() {
// Start actual scheduling here. This function is called by the base
// MachineScheduler after all regions have been recorded by
// GCNScheduleDAGMILive::schedule().
LiveIns.resize(Regions.size());
Pressure.resize(Regions.size());
RescheduleRegions.resize(Regions.size());
RegionsWithHighRP.resize(Regions.size());
RegionsWithExcessRP.resize(Regions.size());
RegionsWithMinOcc.resize(Regions.size());
RegionsWithIGLPInstrs.resize(Regions.size());
RescheduleRegions.set();
RegionsWithHighRP.reset();
RegionsWithExcessRP.reset();
RegionsWithMinOcc.reset();
RegionsWithIGLPInstrs.reset();
runSchedStages();
}
void GCNScheduleDAGMILive::runSchedStages() {
LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
if (!Regions.empty()) {
BBLiveInMap = getRegionLiveInMap();
if (GCNTrackers)
RegionLiveOuts.buildLiveRegMap();
}
GCNSchedStrategy &S = static_cast<GCNSchedStrategy &>(*SchedImpl);
while (S.advanceStage()) {
auto Stage = createSchedStage(S.getCurrentStage());
if (!Stage->initGCNSchedStage())
continue;
for (auto Region : Regions) {
RegionBegin = Region.first;
RegionEnd = Region.second;
// Setup for scheduling the region and check whether it should be skipped.
if (!Stage->initGCNRegion()) {
Stage->advanceRegion();
exitRegion();
continue;
}
if (GCNTrackers) {
GCNDownwardRPTracker *DownwardTracker = S.getDownwardTracker();
GCNUpwardRPTracker *UpwardTracker = S.getUpwardTracker();
GCNRPTracker::LiveRegSet *RegionLiveIns =
&LiveIns[Stage->getRegionIdx()];
reinterpret_cast<GCNRPTracker *>(DownwardTracker)
->reset(MRI, *RegionLiveIns);
reinterpret_cast<GCNRPTracker *>(UpwardTracker)
->reset(MRI, RegionLiveOuts.getLiveRegsForRegionIdx(
Stage->getRegionIdx()));
}
ScheduleDAGMILive::schedule();
Stage->finalizeGCNRegion();
}
Stage->finalizeGCNSchedStage();
}
}
#ifndef NDEBUG
raw_ostream &llvm::operator<<(raw_ostream &OS, const GCNSchedStageID &StageID) {
switch (StageID) {
case GCNSchedStageID::OccInitialSchedule:
OS << "Max Occupancy Initial Schedule";
break;
case GCNSchedStageID::UnclusteredHighRPReschedule:
OS << "Unclustered High Register Pressure Reschedule";
break;
case GCNSchedStageID::ClusteredLowOccupancyReschedule:
OS << "Clustered Low Occupancy Reschedule";
break;
case GCNSchedStageID::PreRARematerialize:
OS << "Pre-RA Rematerialize";
break;
case GCNSchedStageID::ILPInitialSchedule:
OS << "Max ILP Initial Schedule";
break;
case GCNSchedStageID::MemoryClauseInitialSchedule:
OS << "Max memory clause Initial Schedule";
break;
}
return OS;
}
#endif
GCNSchedStage::GCNSchedStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG)
: DAG(DAG), S(static_cast<GCNSchedStrategy &>(*DAG.SchedImpl)), MF(DAG.MF),
MFI(DAG.MFI), ST(DAG.ST), StageID(StageID) {}
bool GCNSchedStage::initGCNSchedStage() {
if (!DAG.LIS)
return false;
LLVM_DEBUG(dbgs() << "Starting scheduling stage: " << StageID << "\n");
return true;
}
bool UnclusteredHighRPStage::initGCNSchedStage() {
if (DisableUnclusterHighRP)
return false;
if (!GCNSchedStage::initGCNSchedStage())
return false;
if (DAG.RegionsWithHighRP.none() && DAG.RegionsWithExcessRP.none())
return false;
SavedMutations.swap(DAG.Mutations);
DAG.addMutation(
createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::PreRAReentry));
InitialOccupancy = DAG.MinOccupancy;
// Aggressivly try to reduce register pressure in the unclustered high RP
// stage. Temporarily increase occupancy target in the region.
S.SGPRLimitBias = S.HighRPSGPRBias;
S.VGPRLimitBias = S.HighRPVGPRBias;
if (MFI.getMaxWavesPerEU() > DAG.MinOccupancy)
MFI.increaseOccupancy(MF, ++DAG.MinOccupancy);
LLVM_DEBUG(
dbgs()
<< "Retrying function scheduling without clustering. "
"Aggressivly try to reduce register pressure to achieve occupancy "
<< DAG.MinOccupancy << ".\n");
return true;
}
bool ClusteredLowOccStage::initGCNSchedStage() {
if (DisableClusteredLowOccupancy)
return false;
if (!GCNSchedStage::initGCNSchedStage())
return false;
// Don't bother trying to improve ILP in lower RP regions if occupancy has not
// been dropped. All regions will have already been scheduled with the ideal
// occupancy targets.
if (DAG.StartingOccupancy <= DAG.MinOccupancy)
return false;
LLVM_DEBUG(
dbgs() << "Retrying function scheduling with lowest recorded occupancy "
<< DAG.MinOccupancy << ".\n");
return true;
}
bool PreRARematStage::initGCNSchedStage() {
if (!GCNSchedStage::initGCNSchedStage())
return false;
if (DAG.RegionsWithMinOcc.none() || DAG.Regions.size() == 1)
return false;
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
// Rematerialization will not help if occupancy is not limited by reg usage.
if (ST.getOccupancyWithWorkGroupSizes(MF).second == DAG.MinOccupancy)
return false;
// FIXME: This pass will invalidate cached MBBLiveIns for regions
// inbetween the defs and region we sinked the def to. Cached pressure
// for regions where a def is sinked from will also be invalidated. Will
// need to be fixed if there is another pass after this pass.
assert(!S.hasNextStage());
collectRematerializableInstructions();
if (RematerializableInsts.empty() || !sinkTriviallyRematInsts(ST, TII))
return false;
LLVM_DEBUG(
dbgs() << "Retrying function scheduling with improved occupancy of "
<< DAG.MinOccupancy << " from rematerializing\n");
return true;
}
void GCNSchedStage::finalizeGCNSchedStage() {
DAG.finishBlock();
LLVM_DEBUG(dbgs() << "Ending scheduling stage: " << StageID << "\n");
}
void UnclusteredHighRPStage::finalizeGCNSchedStage() {
SavedMutations.swap(DAG.Mutations);
S.SGPRLimitBias = S.VGPRLimitBias = 0;
if (DAG.MinOccupancy > InitialOccupancy) {
for (unsigned IDX = 0; IDX < DAG.Pressure.size(); ++IDX)
DAG.RegionsWithMinOcc[IDX] =
DAG.Pressure[IDX].getOccupancy(DAG.ST) == DAG.MinOccupancy;
LLVM_DEBUG(dbgs() << StageID
<< " stage successfully increased occupancy to "
<< DAG.MinOccupancy << '\n');
}
GCNSchedStage::finalizeGCNSchedStage();
}
bool GCNSchedStage::initGCNRegion() {
// Check whether this new region is also a new block.
if (DAG.RegionBegin->getParent() != CurrentMBB)
setupNewBlock();
unsigned NumRegionInstrs = std::distance(DAG.begin(), DAG.end());
DAG.enterRegion(CurrentMBB, DAG.begin(), DAG.end(), NumRegionInstrs);
// Skip empty scheduling regions (0 or 1 schedulable instructions).
if (DAG.begin() == DAG.end() || DAG.begin() == std::prev(DAG.end()))
return false;
LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*CurrentMBB)
<< " " << CurrentMBB->getName()
<< "\n From: " << *DAG.begin() << " To: ";
if (DAG.RegionEnd != CurrentMBB->end()) dbgs() << *DAG.RegionEnd;
else dbgs() << "End";
dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
// Save original instruction order before scheduling for possible revert.
Unsched.clear();
Unsched.reserve(DAG.NumRegionInstrs);
if (StageID == GCNSchedStageID::OccInitialSchedule ||
StageID == GCNSchedStageID::ILPInitialSchedule) {
for (auto &I : DAG) {
Unsched.push_back(&I);
if (isIGLPMutationOnly(I.getOpcode()))
DAG.RegionsWithIGLPInstrs[RegionIdx] = true;
}
} else {
for (auto &I : DAG)
Unsched.push_back(&I);
}
PressureBefore = DAG.Pressure[RegionIdx];
LLVM_DEBUG(
dbgs() << "Pressure before scheduling:\nRegion live-ins:"
<< print(DAG.LiveIns[RegionIdx], DAG.MRI)
<< "Region live-in pressure: "
<< print(llvm::getRegPressure(DAG.MRI, DAG.LiveIns[RegionIdx]))
<< "Region register pressure: " << print(PressureBefore));
S.HasHighPressure = false;
S.KnownExcessRP = isRegionWithExcessRP();
if (DAG.RegionsWithIGLPInstrs[RegionIdx] &&
StageID != GCNSchedStageID::UnclusteredHighRPReschedule) {
SavedMutations.clear();
SavedMutations.swap(DAG.Mutations);
bool IsInitialStage = StageID == GCNSchedStageID::OccInitialSchedule ||
StageID == GCNSchedStageID::ILPInitialSchedule;
DAG.addMutation(createIGroupLPDAGMutation(
IsInitialStage ? AMDGPU::SchedulingPhase::Initial
: AMDGPU::SchedulingPhase::PreRAReentry));
}
return true;
}
bool UnclusteredHighRPStage::initGCNRegion() {
// Only reschedule regions with the minimum occupancy or regions that may have
// spilling (excess register pressure).
if ((!DAG.RegionsWithMinOcc[RegionIdx] ||
DAG.MinOccupancy <= InitialOccupancy) &&
!DAG.RegionsWithExcessRP[RegionIdx])
return false;
return GCNSchedStage::initGCNRegion();
}
bool ClusteredLowOccStage::initGCNRegion() {
// We may need to reschedule this region if it wasn't rescheduled in the last
// stage, or if we found it was testing critical register pressure limits in
// the unclustered reschedule stage. The later is because we may not have been
// able to raise the min occupancy in the previous stage so the region may be
// overly constrained even if it was already rescheduled.
if (!DAG.RegionsWithHighRP[RegionIdx])
return false;
return GCNSchedStage::initGCNRegion();
}
bool PreRARematStage::initGCNRegion() {
if (!DAG.RescheduleRegions[RegionIdx])
return false;
return GCNSchedStage::initGCNRegion();
}
void GCNSchedStage::setupNewBlock() {
if (CurrentMBB)
DAG.finishBlock();
CurrentMBB = DAG.RegionBegin->getParent();
DAG.startBlock(CurrentMBB);
// Get real RP for the region if it hasn't be calculated before. After the
// initial schedule stage real RP will be collected after scheduling.
if (StageID == GCNSchedStageID::OccInitialSchedule ||
StageID == GCNSchedStageID::ILPInitialSchedule ||
StageID == GCNSchedStageID::MemoryClauseInitialSchedule)
DAG.computeBlockPressure(RegionIdx, CurrentMBB);
}
void GCNSchedStage::finalizeGCNRegion() {
DAG.Regions[RegionIdx] = std::pair(DAG.RegionBegin, DAG.RegionEnd);
DAG.RescheduleRegions[RegionIdx] = false;
if (S.HasHighPressure)
DAG.RegionsWithHighRP[RegionIdx] = true;
// Revert scheduling if we have dropped occupancy or there is some other
// reason that the original schedule is better.
checkScheduling();
if (DAG.RegionsWithIGLPInstrs[RegionIdx] &&
StageID != GCNSchedStageID::UnclusteredHighRPReschedule)
SavedMutations.swap(DAG.Mutations);
DAG.exitRegion();
RegionIdx++;
}
void GCNSchedStage::checkScheduling() {
// Check the results of scheduling.
PressureAfter = DAG.getRealRegPressure(RegionIdx);
LLVM_DEBUG(dbgs() << "Pressure after scheduling: " << print(PressureAfter));
LLVM_DEBUG(dbgs() << "Region: " << RegionIdx << ".\n");
if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
DAG.Pressure[RegionIdx] = PressureAfter;
DAG.RegionsWithMinOcc[RegionIdx] =
PressureAfter.getOccupancy(ST) == DAG.MinOccupancy;
// Early out if we have achieved the occupancy target.
LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
return;
}
unsigned TargetOccupancy = std::min(
S.getTargetOccupancy(), ST.getOccupancyWithWorkGroupSizes(MF).second);
unsigned WavesAfter =
std::min(TargetOccupancy, PressureAfter.getOccupancy(ST));
unsigned WavesBefore =
std::min(TargetOccupancy, PressureBefore.getOccupancy(ST));
LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
<< ", after " << WavesAfter << ".\n");
// We may not be able to keep the current target occupancy because of the just
// scheduled region. We might still be able to revert scheduling if the
// occupancy before was higher, or if the current schedule has register
// pressure higher than the excess limits which could lead to more spilling.
unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
// Allow memory bound functions to drop to 4 waves if not limited by an
// attribute.
if (WavesAfter < WavesBefore && WavesAfter < DAG.MinOccupancy &&
WavesAfter >= MFI.getMinAllowedOccupancy()) {
LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
<< MFI.getMinAllowedOccupancy() << " waves\n");
NewOccupancy = WavesAfter;
}
if (NewOccupancy < DAG.MinOccupancy) {
DAG.MinOccupancy = NewOccupancy;
MFI.limitOccupancy(DAG.MinOccupancy);
DAG.RegionsWithMinOcc.reset();
LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
<< DAG.MinOccupancy << ".\n");
}
// The maximum number of arch VGPR on non-unified register file, or the
// maximum VGPR + AGPR in the unified register file case.
unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
// The maximum number of arch VGPR for both unified and non-unified register
// file.
unsigned MaxArchVGPRs = std::min(MaxVGPRs, ST.getAddressableNumArchVGPRs());
unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
if (PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) > MaxVGPRs ||
PressureAfter.getVGPRNum(false) > MaxArchVGPRs ||
PressureAfter.getAGPRNum() > MaxArchVGPRs ||
PressureAfter.getSGPRNum() > MaxSGPRs) {
DAG.RescheduleRegions[RegionIdx] = true;
DAG.RegionsWithHighRP[RegionIdx] = true;
DAG.RegionsWithExcessRP[RegionIdx] = true;
}
// Revert if this region's schedule would cause a drop in occupancy or
// spilling.
if (shouldRevertScheduling(WavesAfter)) {
revertScheduling();
} else {
DAG.Pressure[RegionIdx] = PressureAfter;
DAG.RegionsWithMinOcc[RegionIdx] =
PressureAfter.getOccupancy(ST) == DAG.MinOccupancy;
}
}
unsigned
GCNSchedStage::computeSUnitReadyCycle(const SUnit &SU, unsigned CurrCycle,
DenseMap<unsigned, unsigned> &ReadyCycles,
const TargetSchedModel &SM) {
unsigned ReadyCycle = CurrCycle;
for (auto &D : SU.Preds) {
if (D.isAssignedRegDep()) {
MachineInstr *DefMI = D.getSUnit()->getInstr();
unsigned Latency = SM.computeInstrLatency(DefMI);
unsigned DefReady = ReadyCycles[DAG.getSUnit(DefMI)->NodeNum];
ReadyCycle = std::max(ReadyCycle, DefReady + Latency);
}
}
ReadyCycles[SU.NodeNum] = ReadyCycle;
return ReadyCycle;
}
#ifndef NDEBUG
struct EarlierIssuingCycle {
bool operator()(std::pair<MachineInstr *, unsigned> A,
std::pair<MachineInstr *, unsigned> B) const {
return A.second < B.second;
}
};
static void printScheduleModel(std::set<std::pair<MachineInstr *, unsigned>,
EarlierIssuingCycle> &ReadyCycles) {
if (ReadyCycles.empty())
return;
unsigned BBNum = ReadyCycles.begin()->first->getParent()->getNumber();
dbgs() << "\n################## Schedule time ReadyCycles for MBB : " << BBNum
<< " ##################\n# Cycle #\t\t\tInstruction "
" "
" \n";
unsigned IPrev = 1;
for (auto &I : ReadyCycles) {
if (I.second > IPrev + 1)
dbgs() << "****************************** BUBBLE OF " << I.second - IPrev
<< " CYCLES DETECTED ******************************\n\n";
dbgs() << "[ " << I.second << " ] : " << *I.first << "\n";
IPrev = I.second;
}
}
#endif
ScheduleMetrics
GCNSchedStage::getScheduleMetrics(const std::vector<SUnit> &InputSchedule) {
#ifndef NDEBUG
std::set<std::pair<MachineInstr *, unsigned>, EarlierIssuingCycle>
ReadyCyclesSorted;
#endif
const TargetSchedModel &SM = ST.getInstrInfo()->getSchedModel();
unsigned SumBubbles = 0;
DenseMap<unsigned, unsigned> ReadyCycles;
unsigned CurrCycle = 0;
for (auto &SU : InputSchedule) {
unsigned ReadyCycle =
computeSUnitReadyCycle(SU, CurrCycle, ReadyCycles, SM);
SumBubbles += ReadyCycle - CurrCycle;
#ifndef NDEBUG
ReadyCyclesSorted.insert(std::make_pair(SU.getInstr(), ReadyCycle));
#endif
CurrCycle = ++ReadyCycle;
}
#ifndef NDEBUG
LLVM_DEBUG(
printScheduleModel(ReadyCyclesSorted);
dbgs() << "\n\t"
<< "Metric: "
<< (SumBubbles
? (SumBubbles * ScheduleMetrics::ScaleFactor) / CurrCycle
: 1)
<< "\n\n");
#endif
return ScheduleMetrics(CurrCycle, SumBubbles);
}
ScheduleMetrics
GCNSchedStage::getScheduleMetrics(const GCNScheduleDAGMILive &DAG) {
#ifndef NDEBUG
std::set<std::pair<MachineInstr *, unsigned>, EarlierIssuingCycle>
ReadyCyclesSorted;
#endif
const TargetSchedModel &SM = ST.getInstrInfo()->getSchedModel();
unsigned SumBubbles = 0;
DenseMap<unsigned, unsigned> ReadyCycles;
unsigned CurrCycle = 0;
for (auto &MI : DAG) {
SUnit *SU = DAG.getSUnit(&MI);
if (!SU)
continue;
unsigned ReadyCycle =
computeSUnitReadyCycle(*SU, CurrCycle, ReadyCycles, SM);
SumBubbles += ReadyCycle - CurrCycle;
#ifndef NDEBUG
ReadyCyclesSorted.insert(std::make_pair(SU->getInstr(), ReadyCycle));
#endif
CurrCycle = ++ReadyCycle;
}
#ifndef NDEBUG
LLVM_DEBUG(
printScheduleModel(ReadyCyclesSorted);
dbgs() << "\n\t"
<< "Metric: "
<< (SumBubbles
? (SumBubbles * ScheduleMetrics::ScaleFactor) / CurrCycle
: 1)
<< "\n\n");
#endif
return ScheduleMetrics(CurrCycle, SumBubbles);
}
bool GCNSchedStage::shouldRevertScheduling(unsigned WavesAfter) {
if (WavesAfter < DAG.MinOccupancy)
return true;
return false;
}
bool OccInitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
if (PressureAfter == PressureBefore)
return false;
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
return true;
if (mayCauseSpilling(WavesAfter))
return true;
return false;
}
bool UnclusteredHighRPStage::shouldRevertScheduling(unsigned WavesAfter) {
// If RP is not reduced in the unclustered reschedule stage, revert to the
// old schedule.
if ((WavesAfter <= PressureBefore.getOccupancy(ST) &&
mayCauseSpilling(WavesAfter)) ||
GCNSchedStage::shouldRevertScheduling(WavesAfter)) {
LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
return true;
}
// Do not attempt to relax schedule even more if we are already spilling.
if (isRegionWithExcessRP())
return false;
LLVM_DEBUG(
dbgs()
<< "\n\t *** In shouldRevertScheduling ***\n"
<< " *********** BEFORE UnclusteredHighRPStage ***********\n");
ScheduleMetrics MBefore =
getScheduleMetrics(DAG.SUnits);
LLVM_DEBUG(
dbgs()
<< "\n *********** AFTER UnclusteredHighRPStage ***********\n");
ScheduleMetrics MAfter = getScheduleMetrics(DAG);
unsigned OldMetric = MBefore.getMetric();
unsigned NewMetric = MAfter.getMetric();
unsigned WavesBefore =
std::min(S.getTargetOccupancy(), PressureBefore.getOccupancy(ST));
unsigned Profit =
((WavesAfter * ScheduleMetrics::ScaleFactor) / WavesBefore *
((OldMetric + ScheduleMetricBias) * ScheduleMetrics::ScaleFactor) /
NewMetric) /
ScheduleMetrics::ScaleFactor;
LLVM_DEBUG(dbgs() << "\tMetric before " << MBefore << "\tMetric after "
<< MAfter << "Profit: " << Profit << "\n");
return Profit < ScheduleMetrics::ScaleFactor;
}
bool ClusteredLowOccStage::shouldRevertScheduling(unsigned WavesAfter) {
if (PressureAfter == PressureBefore)
return false;
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
return true;
if (mayCauseSpilling(WavesAfter))
return true;
return false;
}
bool PreRARematStage::shouldRevertScheduling(unsigned WavesAfter) {
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
return true;
if (mayCauseSpilling(WavesAfter))
return true;
return false;
}
bool ILPInitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
if (mayCauseSpilling(WavesAfter))
return true;
return false;
}
bool MemoryClauseInitialScheduleStage::shouldRevertScheduling(
unsigned WavesAfter) {
return mayCauseSpilling(WavesAfter);
}
bool GCNSchedStage::mayCauseSpilling(unsigned WavesAfter) {
if (WavesAfter <= MFI.getMinWavesPerEU() && isRegionWithExcessRP() &&
!PressureAfter.less(MF, PressureBefore)) {
LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
return true;
}
return false;
}
void GCNSchedStage::revertScheduling() {
DAG.RegionsWithMinOcc[RegionIdx] =
PressureBefore.getOccupancy(ST) == DAG.MinOccupancy;
LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
DAG.RescheduleRegions[RegionIdx] =
S.hasNextStage() &&
S.getNextStage() != GCNSchedStageID::UnclusteredHighRPReschedule;
DAG.RegionEnd = DAG.RegionBegin;
int SkippedDebugInstr = 0;
for (MachineInstr *MI : Unsched) {
if (MI->isDebugInstr()) {
++SkippedDebugInstr;
continue;
}
if (MI->getIterator() != DAG.RegionEnd) {
DAG.BB->remove(MI);
DAG.BB->insert(DAG.RegionEnd, MI);
if (!MI->isDebugInstr())
DAG.LIS->handleMove(*MI, true);
}
// Reset read-undef flags and update them later.
for (auto &Op : MI->all_defs())
Op.setIsUndef(false);
RegisterOperands RegOpers;
RegOpers.collect(*MI, *DAG.TRI, DAG.MRI, DAG.ShouldTrackLaneMasks, false);
if (!MI->isDebugInstr()) {
if (DAG.ShouldTrackLaneMasks) {
// Adjust liveness and add missing dead+read-undef flags.
SlotIndex SlotIdx = DAG.LIS->getInstructionIndex(*MI).getRegSlot();
RegOpers.adjustLaneLiveness(*DAG.LIS, DAG.MRI, SlotIdx, MI);
} else {
// Adjust for missing dead-def flags.
RegOpers.detectDeadDefs(*MI, *DAG.LIS);
}
}
DAG.RegionEnd = MI->getIterator();
++DAG.RegionEnd;
LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
}
// After reverting schedule, debug instrs will now be at the end of the block
// and RegionEnd will point to the first debug instr. Increment RegionEnd
// pass debug instrs to the actual end of the scheduling region.
while (SkippedDebugInstr-- > 0)
++DAG.RegionEnd;
// If Unsched.front() instruction is a debug instruction, this will actually
// shrink the region since we moved all debug instructions to the end of the
// block. Find the first instruction that is not a debug instruction.
DAG.RegionBegin = Unsched.front()->getIterator();
if (DAG.RegionBegin->isDebugInstr()) {
for (MachineInstr *MI : Unsched) {
if (MI->isDebugInstr())
continue;
DAG.RegionBegin = MI->getIterator();
break;
}
}
// Then move the debug instructions back into their correct place and set
// RegionBegin and RegionEnd if needed.
DAG.placeDebugValues();
DAG.Regions[RegionIdx] = std::pair(DAG.RegionBegin, DAG.RegionEnd);
}
bool PreRARematStage::allUsesAvailableAt(const MachineInstr *InstToRemat,
SlotIndex OriginalIdx,
SlotIndex RematIdx) const {
LiveIntervals *LIS = DAG.LIS;
MachineRegisterInfo &MRI = DAG.MRI;
OriginalIdx = OriginalIdx.getRegSlot(true);
RematIdx = std::max(RematIdx, RematIdx.getRegSlot(true));
for (const MachineOperand &MO : InstToRemat->operands()) {
if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
continue;
if (!MO.getReg().isVirtual()) {
// Do not attempt to reason about PhysRegs
// TODO: better analysis of PhysReg livness
if (!DAG.MRI.isConstantPhysReg(MO.getReg()) &&
!DAG.TII->isIgnorableUse(MO))
return false;
// Constant PhysRegs and IgnorableUses are okay
continue;
}
LiveInterval &LI = LIS->getInterval(MO.getReg());
const VNInfo *OVNI = LI.getVNInfoAt(OriginalIdx);
assert(OVNI);
// Don't allow rematerialization immediately after the original def.
// It would be incorrect if InstToRemat redefines the register.
// See PR14098.
if (SlotIndex::isSameInstr(OriginalIdx, RematIdx))
return false;
if (OVNI != LI.getVNInfoAt(RematIdx))
return false;
// Check that subrange is live at RematIdx.
if (LI.hasSubRanges()) {
const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
unsigned SubReg = MO.getSubReg();
LaneBitmask LM = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
: MRI.getMaxLaneMaskForVReg(MO.getReg());
for (LiveInterval::SubRange &SR : LI.subranges()) {
if ((SR.LaneMask & LM).none())
continue;
if (!SR.liveAt(RematIdx))
return false;
// Early exit if all used lanes are checked. No need to continue.
LM &= ~SR.LaneMask;
if (LM.none())
break;
}
}
}
return true;
}
void PreRARematStage::collectRematerializableInstructions() {
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo *>(DAG.TRI);
for (unsigned I = 0, E = DAG.MRI.getNumVirtRegs(); I != E; ++I) {
Register Reg = Register::index2VirtReg(I);
if (!DAG.LIS->hasInterval(Reg))
continue;
// TODO: Handle AGPR and SGPR rematerialization
if (!SRI->isVGPRClass(DAG.MRI.getRegClass(Reg)) ||
!DAG.MRI.hasOneDef(Reg) || !DAG.MRI.hasOneNonDBGUse(Reg))
continue;
MachineOperand *Op = DAG.MRI.getOneDef(Reg);
MachineInstr *Def = Op->getParent();
if (Op->getSubReg() != 0 || !isTriviallyReMaterializable(*Def))
continue;
MachineInstr *UseI = &*DAG.MRI.use_instr_nodbg_begin(Reg);
if (Def->getParent() == UseI->getParent())
continue;
bool HasRematDependency = false;
// Check if this instruction uses any registers that are planned to be
// rematerialized
for (auto &RematEntry : RematerializableInsts) {
if (find_if(RematEntry.second,
[&Def](std::pair<MachineInstr *, MachineInstr *> &Remat) {
for (MachineOperand &MO : Def->operands()) {
if (!MO.isReg())
continue;
if (MO.getReg() == Remat.first->getOperand(0).getReg())
return true;
}
return false;
}) != RematEntry.second.end()) {
HasRematDependency = true;
break;
}
}
// Do not rematerialize an instruction if it uses an instruction that we
// have designated for rematerialization.
// FIXME: Allow for rematerialization chains: this requires 1. updating
// remat points to account for uses that are rematerialized, and 2. either
// rematerializing the candidates in careful ordering, or deferring the MBB
// RP walk until the entire chain has been rematerialized.
if (HasRematDependency)
continue;
// Similarly, check if the UseI is planned to be remat.
for (auto &RematEntry : RematerializableInsts) {
if (find_if(RematEntry.second,
[&UseI](std::pair<MachineInstr *, MachineInstr *> &Remat) {
return Remat.first == UseI;
}) != RematEntry.second.end()) {
HasRematDependency = true;
break;
}
}
if (HasRematDependency)
break;
// We are only collecting defs that are defined in another block and are
// live-through or used inside regions at MinOccupancy. This means that the
// register must be in the live-in set for the region.
bool AddedToRematList = false;
for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) {
auto It = DAG.LiveIns[I].find(Reg);
if (It != DAG.LiveIns[I].end() && !It->second.none()) {
if (DAG.RegionsWithMinOcc[I]) {
SlotIndex DefIdx = DAG.LIS->getInstructionIndex(*Def);
SlotIndex UseIdx =
DAG.LIS->getInstructionIndex(*UseI).getRegSlot(true);
if (allUsesAvailableAt(Def, DefIdx, UseIdx)) {
RematerializableInsts[I][Def] = UseI;
AddedToRematList = true;
}
}
// Collect regions with rematerializable reg as live-in to avoid
// searching later when updating RP.
RematDefToLiveInRegions[Def].push_back(I);
}
}
if (!AddedToRematList)
RematDefToLiveInRegions.erase(Def);
}
}
bool PreRARematStage::sinkTriviallyRematInsts(const GCNSubtarget &ST,
const TargetInstrInfo *TII) {
// Temporary copies of cached variables we will be modifying and replacing if
// sinking succeeds.
SmallVector<
std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>, 32>
NewRegions;
DenseMap<unsigned, GCNRPTracker::LiveRegSet> NewLiveIns;
DenseMap<unsigned, GCNRegPressure> NewPressure;
BitVector NewRescheduleRegions;
LiveIntervals *LIS = DAG.LIS;
NewRegions.resize(DAG.Regions.size());
NewRescheduleRegions.resize(DAG.Regions.size());
// Collect only regions that has a rematerializable def as a live-in.
SmallSet<unsigned, 16> ImpactedRegions;
for (const auto &It : RematDefToLiveInRegions)
ImpactedRegions.insert(It.second.begin(), It.second.end());
// Make copies of register pressure and live-ins cache that will be updated
// as we rematerialize.
for (auto Idx : ImpactedRegions) {
NewPressure[Idx] = DAG.Pressure[Idx];
NewLiveIns[Idx] = DAG.LiveIns[Idx];
}
NewRegions = DAG.Regions;
NewRescheduleRegions.reset();
DenseMap<MachineInstr *, MachineInstr *> InsertedMIToOldDef;
bool Improved = false;
for (auto I : ImpactedRegions) {
if (!DAG.RegionsWithMinOcc[I])
continue;
Improved = false;
int VGPRUsage = NewPressure[I].getVGPRNum(ST.hasGFX90AInsts());
int SGPRUsage = NewPressure[I].getSGPRNum();
// TODO: Handle occupancy drop due to AGPR and SGPR.
// Check if cause of occupancy drop is due to VGPR usage and not SGPR.
if (ST.getOccupancyWithNumSGPRs(SGPRUsage) == DAG.MinOccupancy)
break;
// The occupancy of this region could have been improved by a previous
// iteration's sinking of defs.
if (NewPressure[I].getOccupancy(ST) > DAG.MinOccupancy) {
NewRescheduleRegions[I] = true;
Improved = true;
continue;
}
// First check if we have enough trivially rematerializable instructions to
// improve occupancy. Optimistically assume all instructions we are able to
// sink decreased RP.
int TotalSinkableRegs = 0;
for (const auto &It : RematerializableInsts[I]) {
MachineInstr *Def = It.first;
Register DefReg = Def->getOperand(0).getReg();
TotalSinkableRegs +=
SIRegisterInfo::getNumCoveredRegs(NewLiveIns[I][DefReg]);
#ifdef EXPENSIVE_CHECKS
// All uses are known to be available / live at the remat point. Thus, the
// uses should already be live in to the region.
for (MachineOperand &MO : Def->operands()) {
if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
continue;
Register UseReg = MO.getReg();
if (!UseReg.isVirtual())
continue;
LiveInterval &LI = LIS->getInterval(UseReg);
LaneBitmask LM = DAG.MRI.getMaxLaneMaskForVReg(MO.getReg());
if (LI.hasSubRanges() && MO.getSubReg())
LM = DAG.TRI->getSubRegIndexLaneMask(MO.getSubReg());
assert(NewLiveIns[I].contains(UseReg));
LaneBitmask LiveInMask = NewLiveIns[I][UseReg];
LaneBitmask UncoveredLanes = LM & ~(LiveInMask & LM);
// If this register has lanes not covered by the LiveIns, be sure they
// do not map to any subrange. ref:
// machine-scheduler-sink-trivial-remats.mir::omitted_subrange
if (UncoveredLanes.any()) {
assert(LI.hasSubRanges());
for (LiveInterval::SubRange &SR : LI.subranges())
assert((SR.LaneMask & UncoveredLanes).none());
}
}
#endif
}
int VGPRsAfterSink = VGPRUsage - TotalSinkableRegs;
unsigned OptimisticOccupancy = ST.getOccupancyWithNumVGPRs(VGPRsAfterSink);
// If in the most optimistic scenario, we cannot improve occupancy, then do
// not attempt to sink any instructions.
if (OptimisticOccupancy <= DAG.MinOccupancy)
break;
unsigned ImproveOccupancy = 0;
SmallVector<MachineInstr *, 4> SinkedDefs;
for (auto &It : RematerializableInsts[I]) {
MachineInstr *Def = It.first;
MachineBasicBlock::iterator InsertPos =
MachineBasicBlock::iterator(It.second);
Register Reg = Def->getOperand(0).getReg();
// Rematerialize MI to its use block.
TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg,
Def->getOperand(0).getSubReg(), *Def, *DAG.TRI);
MachineInstr *NewMI = &*std::prev(InsertPos);
LIS->InsertMachineInstrInMaps(*NewMI);
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
InsertedMIToOldDef[NewMI] = Def;
// Update region boundaries in scheduling region we sinked from since we
// may sink an instruction that was at the beginning or end of its region
DAG.updateRegionBoundaries(NewRegions, Def, /*NewMI =*/nullptr,
/*Removing =*/true);
// Update region boundaries in region we sinked to.
DAG.updateRegionBoundaries(NewRegions, InsertPos, NewMI);
LaneBitmask PrevMask = NewLiveIns[I][Reg];
// FIXME: Also update cached pressure for where the def was sinked from.
// Update RP for all regions that has this reg as a live-in and remove
// the reg from all regions as a live-in.
for (auto Idx : RematDefToLiveInRegions[Def]) {
NewLiveIns[Idx].erase(Reg);
if (InsertPos->getParent() != DAG.Regions[Idx].first->getParent()) {
// Def is live-through and not used in this block.
NewPressure[Idx].inc(Reg, PrevMask, LaneBitmask::getNone(), DAG.MRI);
} else {
// Def is used and rematerialized into this block.
GCNDownwardRPTracker RPT(*LIS);
auto *NonDbgMI = &*skipDebugInstructionsForward(
NewRegions[Idx].first, NewRegions[Idx].second);
RPT.reset(*NonDbgMI, &NewLiveIns[Idx]);
RPT.advance(NewRegions[Idx].second);
NewPressure[Idx] = RPT.moveMaxPressure();
}
}
SinkedDefs.push_back(Def);
ImproveOccupancy = NewPressure[I].getOccupancy(ST);
if (ImproveOccupancy > DAG.MinOccupancy)
break;
}
// Remove defs we just sinked from all regions' list of sinkable defs
for (auto &Def : SinkedDefs)
for (auto TrackedIdx : RematDefToLiveInRegions[Def])
RematerializableInsts[TrackedIdx].erase(Def);
if (ImproveOccupancy <= DAG.MinOccupancy)
break;
NewRescheduleRegions[I] = true;
Improved = true;
}
if (!Improved) {
// Occupancy was not improved for all regions that were at MinOccupancy.
// Undo sinking and remove newly rematerialized instructions.
for (auto &Entry : InsertedMIToOldDef) {
MachineInstr *MI = Entry.first;
MachineInstr *OldMI = Entry.second;
Register Reg = MI->getOperand(0).getReg();
LIS->RemoveMachineInstrFromMaps(*MI);
MI->eraseFromParent();
OldMI->clearRegisterDeads(Reg);
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
}
return false;
}
// Occupancy was improved for all regions.
for (auto &Entry : InsertedMIToOldDef) {
MachineInstr *MI = Entry.first;
MachineInstr *OldMI = Entry.second;
// Remove OldMI from BBLiveInMap since we are sinking it from its MBB.
DAG.BBLiveInMap.erase(OldMI);
// Remove OldMI and update LIS
Register Reg = MI->getOperand(0).getReg();
LIS->RemoveMachineInstrFromMaps(*OldMI);
OldMI->eraseFromParent();
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
}
// Update live-ins, register pressure, and regions caches.
for (auto Idx : ImpactedRegions) {
DAG.LiveIns[Idx] = NewLiveIns[Idx];
DAG.Pressure[Idx] = NewPressure[Idx];
DAG.MBBLiveIns.erase(DAG.Regions[Idx].first->getParent());
}
DAG.Regions = NewRegions;
DAG.RescheduleRegions = NewRescheduleRegions;
if (GCNTrackers)
DAG.RegionLiveOuts.buildLiveRegMap();
SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
MFI.increaseOccupancy(MF, ++DAG.MinOccupancy);
return true;
}
bool PreRARematStage::isTriviallyReMaterializable(const MachineInstr &MI) {
if (!DAG.TII->isTriviallyReMaterializable(MI))
return false;
for (const MachineOperand &MO : MI.all_uses()) {
// We can't remat physreg uses, unless it is a constant or an ignorable
// use (e.g. implicit exec use on VALU instructions)
if (MO.getReg().isPhysical()) {
if (DAG.MRI.isConstantPhysReg(MO.getReg()) || DAG.TII->isIgnorableUse(MO))
continue;
return false;
}
}
return true;
}
// When removing, we will have to check both beginning and ending of the region.
// When inserting, we will only have to check if we are inserting NewMI in front
// of a scheduling region and do not need to check the ending since we will only
// ever be inserting before an already existing MI.
void GCNScheduleDAGMILive::updateRegionBoundaries(
SmallVectorImpl<std::pair<MachineBasicBlock::iterator,
MachineBasicBlock::iterator>> &RegionBoundaries,
MachineBasicBlock::iterator MI, MachineInstr *NewMI, bool Removing) {
unsigned I = 0, E = RegionBoundaries.size();
// Search for first region of the block where MI is located
while (I != E && MI->getParent() != RegionBoundaries[I].first->getParent())
++I;
for (; I != E; ++I) {
if (MI->getParent() != RegionBoundaries[I].first->getParent())
return;
if (Removing && MI == RegionBoundaries[I].first &&
MI == RegionBoundaries[I].second) {
// MI is in a region with size 1, after removing, the region will be
// size 0, set RegionBegin and RegionEnd to pass end of block iterator.
RegionBoundaries[I] =
std::pair(MI->getParent()->end(), MI->getParent()->end());
return;
}
if (MI == RegionBoundaries[I].first) {
if (Removing)
RegionBoundaries[I] =
std::pair(std::next(MI), RegionBoundaries[I].second);
else
// Inserted NewMI in front of region, set new RegionBegin to NewMI
RegionBoundaries[I] = std::pair(MachineBasicBlock::iterator(NewMI),
RegionBoundaries[I].second);
return;
}
if (Removing && MI == RegionBoundaries[I].second) {
RegionBoundaries[I] = std::pair(RegionBoundaries[I].first, std::prev(MI));
return;
}
}
}
static bool hasIGLPInstrs(ScheduleDAGInstrs *DAG) {
return any_of(*DAG, [](MachineBasicBlock::iterator MI) {
return isIGLPMutationOnly(MI->getOpcode());
});
}
GCNPostScheduleDAGMILive::GCNPostScheduleDAGMILive(
MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
bool RemoveKillFlags)
: ScheduleDAGMI(C, std::move(S), RemoveKillFlags) {}
void GCNPostScheduleDAGMILive::schedule() {
HasIGLPInstrs = hasIGLPInstrs(this);
if (HasIGLPInstrs) {
SavedMutations.clear();
SavedMutations.swap(Mutations);
addMutation(createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::PostRA));
}
ScheduleDAGMI::schedule();
}
void GCNPostScheduleDAGMILive::finalizeSchedule() {
if (HasIGLPInstrs)
SavedMutations.swap(Mutations);
ScheduleDAGMI::finalizeSchedule();
}