Files
clang-p2996/mlir/examples/transform/Ch4/lib/MyExtension.cpp
Nikhil Kalra 84cc1865ef [mlir] Support DialectRegistry extension comparison (#101119)
`PassManager::run` loads the dependent dialects for each pass into the
current context prior to invoking the individual passes. If the
dependent dialect is already loaded into the context, this should be a
no-op. However, if there are extensions registered in the
`DialectRegistry`, the dependent dialects are unconditionally registered
into the context.

This poses a problem for dynamic pass pipelines, however, because they
will likely be executing while the context is in an immutable state
(because of the parent pass pipeline being run).

To solve this, we'll update the extension registration API on
`DialectRegistry` to require a type ID for each extension that is
registered. Then, instead of unconditionally registered dialects into a
context if extensions are present, we'll check against the extension
type IDs already present in the context's internal `DialectRegistry`.
The context will only be marked as dirty if there are net-new extension
types present in the `DialectRegistry` populated by
`PassManager::getDependentDialects`.

Note: this PR removes the `addExtension` overload that utilizes
`std::function` as the parameter. This is because `std::function` is
copyable and potentially allocates memory for the contained function so
we can't use the function pointer as the unique type ID for the
extension.

Downstream changes required:
- Existing `DialectExtension` subclasses will need a type ID to be
registered for each subclass. More details on how to register a type ID
can be found here:
8b68e06731/mlir/include/mlir/Support/TypeID.h (L30)
- Existing uses of the `std::function` overload of `addExtension` will
need to be refactored into dedicated `DialectExtension` classes with
associated type IDs. The attached `std::function` can either be inlined
into or called directly from `DialectExtension::apply`.

---------

Co-authored-by: Mehdi Amini <joker.eph@gmail.com>
2024-08-06 01:32:36 +02:00

210 lines
8.6 KiB
C++

//===-- MyExtension.cpp - Transform dialect tutorial ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines Transform dialect extension operations used in the
// Chapter 4 of the Transform dialect tutorial.
//
//===----------------------------------------------------------------------===//
#include "MyExtension.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE_MATCHER "transform-matcher"
#define DBGS_MATCHER() (llvm::dbgs() << "[" DEBUG_TYPE_MATCHER "] ")
#define DEBUG_MATCHER(x) DEBUG_WITH_TYPE(DEBUG_TYPE_MATCHER, x)
#define GET_OP_CLASSES
#include "MyExtension.cpp.inc"
//===---------------------------------------------------------------------===//
// MyExtension
//===---------------------------------------------------------------------===//
// Define a new transform dialect extension. This uses the CRTP idiom to
// identify extensions.
class MyExtension
: public ::mlir::transform::TransformDialectExtension<MyExtension> {
public:
// The TypeID of this extension.
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(MyExtension)
// The extension must derive the base constructor.
using Base::Base;
// This function initializes the extension, similarly to `initialize` in
// dialect definitions. List individual operations and dependent dialects
// here.
void init();
};
void MyExtension::init() {
// Register the additional match operations with the dialect similarly to
// other transform operations. List all operations generated from ODS. This
// call will perform additional checks that the operations implement the
// transform and memory effect interfaces required by the dialect interpreter
// and assert if they do not.
registerTransformOps<
#define GET_OP_LIST
#include "MyExtension.cpp.inc"
>();
}
//===---------------------------------------------------------------------===//
// HasOperandSatisfyingOp
//===---------------------------------------------------------------------===//
/// Returns `true` if both types implement one of the interfaces provided as
/// template parameters.
template <typename... Tys>
static bool implementSameInterface(mlir::Type t1, mlir::Type t2) {
return ((llvm::isa<Tys>(t1) && llvm::isa<Tys>(t2)) || ... || false);
}
/// Returns `true` if both types implement one of the transform dialect
/// interfaces.
static bool implementSameTransformInterface(mlir::Type t1, mlir::Type t2) {
return implementSameInterface<
mlir::transform::TransformHandleTypeInterface,
mlir::transform::TransformParamTypeInterface,
mlir::transform::TransformValueHandleTypeInterface>(t1, t2);
}
// Matcher ops implement `apply` similarly to other transform ops. They are not
// expected to modify payload, but use the tri-state result to signal failure or
// success to match, as well as potential irrecoverable errors.
mlir::DiagnosedSilenceableFailure
mlir::transform::HasOperandSatisfyingOp::apply(
mlir::transform::TransformRewriter &rewriter,
mlir::transform::TransformResults &results,
mlir::transform::TransformState &state) {
// For simplicity, only handle a single payload op. Actual implementations
// can use `SingleOpMatcher` trait to simplify implementation and document
// this expectation.
auto payloadOps = state.getPayloadOps(getOp());
if (!llvm::hasSingleElement(payloadOps))
return emitSilenceableError() << "expected single payload";
// Iterate over all operands of the payload op to see if they can be matched
// using the body of this op.
Operation *payload = *payloadOps.begin();
for (OpOperand &operand : payload->getOpOperands()) {
// Create a scope for transform values defined in the body. This corresponds
// to the syntactic scope of the region attached to this op. Any values
// associated with payloads from now on will be automatically dissociated
// when this object is destroyed, i.e. at the end of the iteration.
// Associate the block argument handle with the operand.
auto matchScope = state.make_region_scope(getBody());
if (failed(state.mapBlockArgument(getBody().getArgument(0),
{operand.get()}))) {
return DiagnosedSilenceableFailure::definiteFailure();
}
// Iterate over all nested matchers with the current mapping and see if they
// succeed.
bool matchSucceeded = true;
for (Operation &matcher : getBody().front().without_terminator()) {
// Matcher ops are applied similarly to any other transform op.
DiagnosedSilenceableFailure diag =
state.applyTransform(cast<TransformOpInterface>(matcher));
// Definite failures are immediately propagated as they are irrecoverable.
if (diag.isDefiniteFailure())
return diag;
// On success, keep checking the remaining conditions.
if (diag.succeeded())
continue;
// Report failure-to-match for debugging purposes and stop matching this
// operand.
assert(diag.isSilenceableFailure());
DEBUG_MATCHER(DBGS_MATCHER()
<< "failed to match operand #" << operand.getOperandNumber()
<< ": " << diag.getMessage());
(void)diag.silence();
matchSucceeded = false;
break;
}
// If failed to match this operand, try other operands.
if (!matchSucceeded)
continue;
// If we reached this point, the matching succeeded for the current operand.
// Remap the values associated with terminator operands to be associated
// with op results, and also map the parameter result to the operand's
// position. Note that it is safe to do here despite the end of the scope
// as `results` are integrated into `state` by the interpreter after `apply`
// returns rather than immediately.
SmallVector<SmallVector<MappedValue>> yieldedMappings;
transform::detail::prepareValueMappings(
yieldedMappings, getBody().front().getTerminator()->getOperands(),
state);
results.setParams(cast<OpResult>(getPosition()),
{rewriter.getI32IntegerAttr(operand.getOperandNumber())});
for (auto &&[result, mapping] : llvm::zip(getResults(), yieldedMappings))
results.setMappedValues(result, mapping);
return DiagnosedSilenceableFailure::success();
}
// If we reached this point, none of the operands succeeded the match.
return emitSilenceableError()
<< "none of the operands satisfied the conditions";
}
// By convention, operations implementing MatchOpInterface must not modify
// payload IR and must therefore specify that they only read operand handles and
// payload as their effects.
void mlir::transform::HasOperandSatisfyingOp::getEffects(
llvm::SmallVectorImpl<mlir::MemoryEffects::EffectInstance> &effects) {
onlyReadsPayload(effects);
onlyReadsHandle(getOpMutable(), effects);
producesHandle(getOperation()->getOpResults(), effects);
}
// Verify well-formedness of the operation and emit diagnostics if it is
// ill-formed.
llvm::LogicalResult mlir::transform::HasOperandSatisfyingOp::verify() {
mlir::Block &bodyBlock = getBody().front();
if (bodyBlock.getNumArguments() != 1 ||
!isa<TransformValueHandleTypeInterface>(
bodyBlock.getArgument(0).getType())) {
return emitOpError()
<< "expects the body to have one value handle argument";
}
if (bodyBlock.getTerminator()->getNumOperands() != getNumResults() - 1) {
return emitOpError() << "expects the body to yield "
<< (getNumResults() - 1) << " values, got "
<< bodyBlock.getTerminator()->getNumOperands();
}
for (auto &&[i, operand, result] :
llvm::enumerate(bodyBlock.getTerminator()->getOperands().getTypes(),
getResults().getTypes())) {
if (implementSameTransformInterface(operand, result))
continue;
return emitOpError() << "expects terminator operand #" << i
<< " and result #" << (i + 1)
<< " to implement the same transform interface";
}
for (Operation &op : bodyBlock.without_terminator()) {
if (!isa<TransformOpInterface>(op) || !isa<MatchOpInterface>(op)) {
InFlightDiagnostic diag = emitOpError()
<< "expects body to contain match ops";
diag.attachNote(op.getLoc()) << "non-match operation";
return diag;
}
}
return success();
}
void registerMyExtension(::mlir::DialectRegistry &registry) {
registry.addExtensions<MyExtension>();
}