Files
clang-p2996/mlir/lib/Analysis/DataFlow/DenseAnalysis.cpp
donald chen 4b3f251bad [mlir] [dataflow] unify semantics of program point (#110344)
The concept of a 'program point' in the original data flow framework is
ambiguous. It can refer to either an operation or a block itself. This
representation has different interpretations in forward and backward
data-flow analysis. In forward data-flow analysis, the program point of
an operation represents the state after the operation, while in backward
data flow analysis, it represents the state before the operation. When
using forward or backward data-flow analysis, it is crucial to carefully
handle this distinction to ensure correctness.

This patch refactors the definition of program point, unifying the
interpretation of program points in both forward and backward data-flow
analysis.

How to integrate this patch?

For dense forward data-flow analysis and other analysis (except dense
backward data-flow analysis), the program point corresponding to the
original operation can be obtained by `getProgramPointAfter(op)`, and
the program point corresponding to the original block can be obtained by
`getProgramPointBefore(block)`.

For dense backward data-flow analysis, the program point corresponding
to the original operation can be obtained by
`getProgramPointBefore(op)`, and the program point corresponding to the
original block can be obtained by `getProgramPointAfter(block)`.

NOTE: If you need to get the lattice of other data-flow analyses in
dense backward data-flow analysis, you should still use the dense
forward data-flow approach. For example, to get the Executable state of
a block in dense backward data-flow analysis and add the dependency of
the current operation, you should write:

``getOrCreateFor<Executable>(getProgramPointBefore(op),
getProgramPointBefore(block))``

In case above, we use getProgramPointBefore(op) because the analysis we
rely on is dense backward data-flow, and we use
getProgramPointBefore(block) because the lattice we query is the result
of a non-dense backward data flow computation.

related dsscussion:
https://discourse.llvm.org/t/rfc-unify-the-semantics-of-program-points/80671/8
corresponding PSA:
https://discourse.llvm.org/t/psa-program-point-semantics-change/81479
2024-10-11 21:59:05 +08:00

466 lines
18 KiB
C++

//===- DenseAnalysis.cpp - Dense data-flow analysis -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/DenseAnalysis.h"
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/Region.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <optional>
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// AbstractDenseForwardDataFlowAnalysis
//===----------------------------------------------------------------------===//
LogicalResult AbstractDenseForwardDataFlowAnalysis::initialize(Operation *top) {
// Visit every operation and block.
if (failed(processOperation(top)))
return failure();
for (Region &region : top->getRegions()) {
for (Block &block : region) {
visitBlock(&block);
for (Operation &op : block)
if (failed(initialize(&op)))
return failure();
}
}
return success();
}
LogicalResult AbstractDenseForwardDataFlowAnalysis::visit(ProgramPoint *point) {
if (!point->isBlockStart())
return processOperation(point->getPrevOp());
visitBlock(point->getBlock());
return success();
}
void AbstractDenseForwardDataFlowAnalysis::visitCallOperation(
CallOpInterface call, const AbstractDenseLattice &before,
AbstractDenseLattice *after) {
// Allow for customizing the behavior of calls to external symbols, including
// when the analysis is explicitly marked as non-interprocedural.
auto callable =
dyn_cast_if_present<CallableOpInterface>(call.resolveCallable());
if (!getSolverConfig().isInterprocedural() ||
(callable && !callable.getCallableRegion())) {
return visitCallControlFlowTransfer(
call, CallControlFlowAction::ExternalCallee, before, after);
}
const auto *predecessors = getOrCreateFor<PredecessorState>(
getProgramPointAfter(call.getOperation()), getProgramPointAfter(call));
// Otherwise, if not all return sites are known, then conservatively assume we
// can't reason about the data-flow.
if (!predecessors->allPredecessorsKnown())
return setToEntryState(after);
for (Operation *predecessor : predecessors->getKnownPredecessors()) {
// Get the lattices at callee return:
//
// func.func @callee() {
// ...
// return // predecessor
// // latticeAtCalleeReturn
// }
// func.func @caller() {
// ...
// call @callee
// // latticeAfterCall
// ...
// }
AbstractDenseLattice *latticeAfterCall = after;
const AbstractDenseLattice *latticeAtCalleeReturn =
getLatticeFor(getProgramPointAfter(call.getOperation()),
getProgramPointAfter(predecessor));
visitCallControlFlowTransfer(call, CallControlFlowAction::ExitCallee,
*latticeAtCalleeReturn, latticeAfterCall);
}
}
LogicalResult
AbstractDenseForwardDataFlowAnalysis::processOperation(Operation *op) {
ProgramPoint *point = getProgramPointAfter(op);
// If the containing block is not executable, bail out.
if (op->getBlock() != nullptr &&
!getOrCreateFor<Executable>(point, getProgramPointBefore(op->getBlock()))
->isLive())
return success();
// Get the dense lattice to update.
AbstractDenseLattice *after = getLattice(point);
// Get the dense state before the execution of the op.
const AbstractDenseLattice *before =
getLatticeFor(point, getProgramPointBefore(op));
// If this op implements region control-flow, then control-flow dictates its
// transfer function.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
visitRegionBranchOperation(point, branch, after);
return success();
}
// If this is a call operation, then join its lattices across known return
// sites.
if (auto call = dyn_cast<CallOpInterface>(op)) {
visitCallOperation(call, *before, after);
return success();
}
// Invoke the operation transfer function.
return visitOperationImpl(op, *before, after);
}
void AbstractDenseForwardDataFlowAnalysis::visitBlock(Block *block) {
// If the block is not executable, bail out.
ProgramPoint *point = getProgramPointBefore(block);
if (!getOrCreateFor<Executable>(point, point)->isLive())
return;
// Get the dense lattice to update.
AbstractDenseLattice *after = getLattice(point);
// The dense lattices of entry blocks are set by region control-flow or the
// callgraph.
if (block->isEntryBlock()) {
// Check if this block is the entry block of a callable region.
auto callable = dyn_cast<CallableOpInterface>(block->getParentOp());
if (callable && callable.getCallableRegion() == block->getParent()) {
const auto *callsites = getOrCreateFor<PredecessorState>(
point, getProgramPointAfter(callable));
// If not all callsites are known, conservatively mark all lattices as
// having reached their pessimistic fixpoints. Do the same if
// interprocedural analysis is not enabled.
if (!callsites->allPredecessorsKnown() ||
!getSolverConfig().isInterprocedural())
return setToEntryState(after);
for (Operation *callsite : callsites->getKnownPredecessors()) {
// Get the dense lattice before the callsite.
const AbstractDenseLattice *before;
before = getLatticeFor(point, getProgramPointBefore(callsite));
visitCallControlFlowTransfer(cast<CallOpInterface>(callsite),
CallControlFlowAction::EnterCallee,
*before, after);
}
return;
}
// Check if we can reason about the control-flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp()))
return visitRegionBranchOperation(point, branch, after);
// Otherwise, we can't reason about the data-flow.
return setToEntryState(after);
}
// Join the state with the state after the block's predecessors.
for (Block::pred_iterator it = block->pred_begin(), e = block->pred_end();
it != e; ++it) {
// Skip control edges that aren't executable.
Block *predecessor = *it;
if (!getOrCreateFor<Executable>(
point, getLatticeAnchor<CFGEdge>(predecessor, block))
->isLive())
continue;
// Merge in the state from the predecessor's terminator.
join(after, *getLatticeFor(
point, getProgramPointAfter(predecessor->getTerminator())));
}
}
void AbstractDenseForwardDataFlowAnalysis::visitRegionBranchOperation(
ProgramPoint *point, RegionBranchOpInterface branch,
AbstractDenseLattice *after) {
// Get the terminator predecessors.
const auto *predecessors = getOrCreateFor<PredecessorState>(point, point);
assert(predecessors->allPredecessorsKnown() &&
"unexpected unresolved region successors");
for (Operation *op : predecessors->getKnownPredecessors()) {
const AbstractDenseLattice *before;
// If the predecessor is the parent, get the state before the parent.
if (op == branch) {
before = getLatticeFor(point, getProgramPointBefore(op));
// Otherwise, get the state after the terminator.
} else {
before = getLatticeFor(point, getProgramPointAfter(op));
}
// This function is called in two cases:
// 1. when visiting the block (point = block start);
// 2. when visiting the parent operation (point = iter after parent op).
// In both cases, we are looking for predecessor operations of the point,
// 1. predecessor may be the terminator of another block from another
// region (assuming that the block does belong to another region via an
// assertion) or the parent (when parent can transfer control to this
// region);
// 2. predecessor may be the terminator of a block that exits the
// region (when region transfers control to the parent) or the operation
// before the parent.
// In the latter case, just perform the join as it isn't the control flow
// affected by the region.
std::optional<unsigned> regionFrom =
op == branch ? std::optional<unsigned>()
: op->getBlock()->getParent()->getRegionNumber();
if (point->isBlockStart()) {
unsigned regionTo = point->getBlock()->getParent()->getRegionNumber();
visitRegionBranchControlFlowTransfer(branch, regionFrom, regionTo,
*before, after);
} else {
assert(point->getPrevOp() == branch &&
"expected to be visiting the branch itself");
// Only need to call the arc transfer when the predecessor is the region
// or the op itself, not the previous op.
if (op->getParentOp() == branch || op == branch) {
visitRegionBranchControlFlowTransfer(
branch, regionFrom, /*regionTo=*/std::nullopt, *before, after);
} else {
join(after, *before);
}
}
}
}
const AbstractDenseLattice *
AbstractDenseForwardDataFlowAnalysis::getLatticeFor(ProgramPoint *dependent,
LatticeAnchor anchor) {
AbstractDenseLattice *state = getLattice(anchor);
addDependency(state, dependent);
return state;
}
//===----------------------------------------------------------------------===//
// AbstractDenseBackwardDataFlowAnalysis
//===----------------------------------------------------------------------===//
LogicalResult
AbstractDenseBackwardDataFlowAnalysis::initialize(Operation *top) {
// Visit every operation and block.
if (failed(processOperation(top)))
return failure();
for (Region &region : top->getRegions()) {
for (Block &block : region) {
visitBlock(&block);
for (Operation &op : llvm::reverse(block)) {
if (failed(initialize(&op)))
return failure();
}
}
}
return success();
}
LogicalResult
AbstractDenseBackwardDataFlowAnalysis::visit(ProgramPoint *point) {
if (!point->isBlockEnd())
return processOperation(point->getNextOp());
visitBlock(point->getBlock());
return success();
}
void AbstractDenseBackwardDataFlowAnalysis::visitCallOperation(
CallOpInterface call, const AbstractDenseLattice &after,
AbstractDenseLattice *before) {
// Find the callee.
Operation *callee = call.resolveCallableInTable(&symbolTable);
auto callable = dyn_cast_or_null<CallableOpInterface>(callee);
// No region means the callee is only declared in this module.
// If that is the case or if the solver is not interprocedural,
// let the hook handle it.
if (!getSolverConfig().isInterprocedural() ||
(callable && (!callable.getCallableRegion() ||
callable.getCallableRegion()->empty()))) {
return visitCallControlFlowTransfer(
call, CallControlFlowAction::ExternalCallee, after, before);
}
if (!callable)
return setToExitState(before);
Region *region = callable.getCallableRegion();
// Call-level control flow specifies the data flow here.
//
// func.func @callee() {
// ^calleeEntryBlock:
// // latticeAtCalleeEntry
// ...
// }
// func.func @caller() {
// ...
// // latticeBeforeCall
// call @callee
// ...
// }
Block *calleeEntryBlock = &region->front();
ProgramPoint *calleeEntry = getProgramPointBefore(calleeEntryBlock);
const AbstractDenseLattice &latticeAtCalleeEntry =
*getLatticeFor(getProgramPointBefore(call.getOperation()), calleeEntry);
AbstractDenseLattice *latticeBeforeCall = before;
visitCallControlFlowTransfer(call, CallControlFlowAction::EnterCallee,
latticeAtCalleeEntry, latticeBeforeCall);
}
LogicalResult
AbstractDenseBackwardDataFlowAnalysis::processOperation(Operation *op) {
ProgramPoint *point = getProgramPointBefore(op);
// If the containing block is not executable, bail out.
if (op->getBlock() != nullptr &&
!getOrCreateFor<Executable>(point, getProgramPointBefore(op->getBlock()))
->isLive())
return success();
// Get the dense lattice to update.
AbstractDenseLattice *before = getLattice(point);
// Get the dense state after execution of this op.
const AbstractDenseLattice *after =
getLatticeFor(point, getProgramPointAfter(op));
// Special cases where control flow may dictate data flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
visitRegionBranchOperation(point, branch, RegionBranchPoint::parent(),
before);
return success();
}
if (auto call = dyn_cast<CallOpInterface>(op)) {
visitCallOperation(call, *after, before);
return success();
}
// Invoke the operation transfer function.
return visitOperationImpl(op, *after, before);
}
void AbstractDenseBackwardDataFlowAnalysis::visitBlock(Block *block) {
ProgramPoint *point = getProgramPointAfter(block);
// If the block is not executable, bail out.
if (!getOrCreateFor<Executable>(point, getProgramPointBefore(block))
->isLive())
return;
AbstractDenseLattice *before = getLattice(point);
// We need "exit" blocks, i.e. the blocks that may return control to the
// parent operation.
auto isExitBlock = [](Block *b) {
// Treat empty and terminator-less blocks as exit blocks.
if (b->empty() || !b->back().mightHaveTrait<OpTrait::IsTerminator>())
return true;
// There may be a weird case where a terminator may be transferring control
// either to the parent or to another block, so exit blocks and successors
// are not mutually exclusive.
return isa_and_nonnull<RegionBranchTerminatorOpInterface>(
b->getTerminator());
};
if (isExitBlock(block)) {
// If this block is exiting from a callable, the successors of exiting from
// a callable are the successors of all call sites. And the call sites
// themselves are predecessors of the callable.
auto callable = dyn_cast<CallableOpInterface>(block->getParentOp());
if (callable && callable.getCallableRegion() == block->getParent()) {
const auto *callsites = getOrCreateFor<PredecessorState>(
point, getProgramPointAfter(callable));
// If not all call sites are known, conservative mark all lattices as
// having reached their pessimistic fix points.
if (!callsites->allPredecessorsKnown() ||
!getSolverConfig().isInterprocedural()) {
return setToExitState(before);
}
for (Operation *callsite : callsites->getKnownPredecessors()) {
const AbstractDenseLattice *after =
getLatticeFor(point, getProgramPointAfter(callsite));
visitCallControlFlowTransfer(cast<CallOpInterface>(callsite),
CallControlFlowAction::ExitCallee, *after,
before);
}
return;
}
// If this block is exiting from an operation with region-based control
// flow, propagate the lattice back along the control flow edge.
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp())) {
visitRegionBranchOperation(point, branch, block->getParent(), before);
return;
}
// Cannot reason about successors of an exit block, set the pessimistic
// fixpoint.
return setToExitState(before);
}
// Meet the state with the state before block's successors.
for (Block *successor : block->getSuccessors()) {
if (!getOrCreateFor<Executable>(point,
getLatticeAnchor<CFGEdge>(block, successor))
->isLive())
continue;
// Merge in the state from the successor: either the first operation, or the
// block itself when empty.
meet(before, *getLatticeFor(point, getProgramPointBefore(successor)));
}
}
void AbstractDenseBackwardDataFlowAnalysis::visitRegionBranchOperation(
ProgramPoint *point, RegionBranchOpInterface branch,
RegionBranchPoint branchPoint, AbstractDenseLattice *before) {
// The successors of the operation may be either the first operation of the
// entry block of each possible successor region, or the next operation when
// the branch is a successor of itself.
SmallVector<RegionSuccessor> successors;
branch.getSuccessorRegions(branchPoint, successors);
for (const RegionSuccessor &successor : successors) {
const AbstractDenseLattice *after;
if (successor.isParent() || successor.getSuccessor()->empty()) {
after = getLatticeFor(point, getProgramPointAfter(branch));
} else {
Region *successorRegion = successor.getSuccessor();
assert(!successorRegion->empty() && "unexpected empty successor region");
Block *successorBlock = &successorRegion->front();
if (!getOrCreateFor<Executable>(point,
getProgramPointBefore(successorBlock))
->isLive())
continue;
after = getLatticeFor(point, getProgramPointBefore(successorBlock));
}
visitRegionBranchControlFlowTransfer(branch, branchPoint, successor, *after,
before);
}
}
const AbstractDenseLattice *
AbstractDenseBackwardDataFlowAnalysis::getLatticeFor(ProgramPoint *dependent,
LatticeAnchor anchor) {
AbstractDenseLattice *state = getLattice(anchor);
addDependency(state, dependent);
return state;
}