Files
clang-p2996/mlir/lib/Analysis/DataFlow/LivenessAnalysis.cpp
donald chen 4b3f251bad [mlir] [dataflow] unify semantics of program point (#110344)
The concept of a 'program point' in the original data flow framework is
ambiguous. It can refer to either an operation or a block itself. This
representation has different interpretations in forward and backward
data-flow analysis. In forward data-flow analysis, the program point of
an operation represents the state after the operation, while in backward
data flow analysis, it represents the state before the operation. When
using forward or backward data-flow analysis, it is crucial to carefully
handle this distinction to ensure correctness.

This patch refactors the definition of program point, unifying the
interpretation of program points in both forward and backward data-flow
analysis.

How to integrate this patch?

For dense forward data-flow analysis and other analysis (except dense
backward data-flow analysis), the program point corresponding to the
original operation can be obtained by `getProgramPointAfter(op)`, and
the program point corresponding to the original block can be obtained by
`getProgramPointBefore(block)`.

For dense backward data-flow analysis, the program point corresponding
to the original operation can be obtained by
`getProgramPointBefore(op)`, and the program point corresponding to the
original block can be obtained by `getProgramPointAfter(block)`.

NOTE: If you need to get the lattice of other data-flow analyses in
dense backward data-flow analysis, you should still use the dense
forward data-flow approach. For example, to get the Executable state of
a block in dense backward data-flow analysis and add the dependency of
the current operation, you should write:

``getOrCreateFor<Executable>(getProgramPointBefore(op),
getProgramPointBefore(block))``

In case above, we use getProgramPointBefore(op) because the analysis we
rely on is dense backward data-flow, and we use
getProgramPointBefore(block) because the lattice we query is the result
of a non-dense backward data flow computation.

related dsscussion:
https://discourse.llvm.org/t/rfc-unify-the-semantics-of-program-points/80671/8
corresponding PSA:
https://discourse.llvm.org/t/psa-program-point-semantics-change/81479
2024-10-11 21:59:05 +08:00

214 lines
8.7 KiB
C++

//===- LivenessAnalysis.cpp - Liveness analysis ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/SymbolTable.h"
#include <cassert>
#include <mlir/Analysis/DataFlow/LivenessAnalysis.h>
#include <mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h>
#include <mlir/Analysis/DataFlow/DeadCodeAnalysis.h>
#include <mlir/Analysis/DataFlow/SparseAnalysis.h>
#include <mlir/Analysis/DataFlowFramework.h>
#include <mlir/IR/Operation.h>
#include <mlir/IR/Value.h>
#include <mlir/Interfaces/CallInterfaces.h>
#include <mlir/Interfaces/SideEffectInterfaces.h>
#include <mlir/Support/LLVM.h>
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// Liveness
//===----------------------------------------------------------------------===//
void Liveness::print(raw_ostream &os) const {
os << (isLive ? "live" : "not live");
}
ChangeResult Liveness::markLive() {
bool wasLive = isLive;
isLive = true;
return wasLive ? ChangeResult::NoChange : ChangeResult::Change;
}
ChangeResult Liveness::meet(const AbstractSparseLattice &other) {
const auto *otherLiveness = reinterpret_cast<const Liveness *>(&other);
return otherLiveness->isLive ? markLive() : ChangeResult::NoChange;
}
//===----------------------------------------------------------------------===//
// LivenessAnalysis
//===----------------------------------------------------------------------===//
/// For every value, liveness analysis determines whether or not it is "live".
///
/// A value is considered "live" iff it:
/// (1) has memory effects OR
/// (2) is returned by a public function OR
/// (3) is used to compute a value of type (1) or (2).
/// It is also to be noted that a value could be of multiple types (1/2/3) at
/// the same time.
///
/// A value "has memory effects" iff it:
/// (1.a) is an operand of an op with memory effects OR
/// (1.b) is a non-forwarded branch operand and its branch op could take the
/// control to a block that has an op with memory effects OR
/// (1.c) is a non-forwarded call operand.
///
/// A value `A` is said to be "used to compute" value `B` iff `B` cannot be
/// computed in the absence of `A`. Thus, in this implementation, we say that
/// value `A` is used to compute value `B` iff:
/// (3.a) `B` is a result of an op with operand `A` OR
/// (3.b) `A` is used to compute some value `C` and `C` is used to compute
/// `B`.
LogicalResult
LivenessAnalysis::visitOperation(Operation *op, ArrayRef<Liveness *> operands,
ArrayRef<const Liveness *> results) {
// This marks values of type (1.a) liveness as "live".
if (!isMemoryEffectFree(op)) {
for (auto *operand : operands)
propagateIfChanged(operand, operand->markLive());
}
// This marks values of type (3) liveness as "live".
bool foundLiveResult = false;
for (const Liveness *r : results) {
if (r->isLive && !foundLiveResult) {
// It is assumed that each operand is used to compute each result of an
// op. Thus, if at least one result is live, each operand is live.
for (Liveness *operand : operands)
meet(operand, *r);
foundLiveResult = true;
}
addDependency(const_cast<Liveness *>(r), getProgramPointAfter(op));
}
return success();
}
void LivenessAnalysis::visitBranchOperand(OpOperand &operand) {
// We know (at the moment) and assume (for the future) that `operand` is a
// non-forwarded branch operand of a `RegionBranchOpInterface`,
// `BranchOpInterface`, `RegionBranchTerminatorOpInterface` or return-like op.
Operation *op = operand.getOwner();
assert((isa<RegionBranchOpInterface>(op) || isa<BranchOpInterface>(op) ||
isa<RegionBranchTerminatorOpInterface>(op)) &&
"expected the op to be `RegionBranchOpInterface`, "
"`BranchOpInterface` or `RegionBranchTerminatorOpInterface`");
// The lattices of the non-forwarded branch operands don't get updated like
// the forwarded branch operands or the non-branch operands. Thus they need
// to be handled separately. This is where we handle them.
// This marks values of type (1.b) liveness as "live". A non-forwarded
// branch operand will be live if a block where its op could take the control
// has an op with memory effects.
// Populating such blocks in `blocks`.
SmallVector<Block *, 4> blocks;
if (isa<RegionBranchOpInterface>(op)) {
// When the op is a `RegionBranchOpInterface`, like an `scf.for` or an
// `scf.index_switch` op, its branch operand controls the flow into this
// op's regions.
for (Region &region : op->getRegions()) {
for (Block &block : region)
blocks.push_back(&block);
}
} else if (isa<BranchOpInterface>(op)) {
// When the op is a `BranchOpInterface`, like a `cf.cond_br` or a
// `cf.switch` op, its branch operand controls the flow into this op's
// successors.
blocks = op->getSuccessors();
} else {
// When the op is a `RegionBranchTerminatorOpInterface`, like an
// `scf.condition` op or return-like, like an `scf.yield` op, its branch
// operand controls the flow into this op's parent's (which is a
// `RegionBranchOpInterface`'s) regions.
Operation *parentOp = op->getParentOp();
assert(isa<RegionBranchOpInterface>(parentOp) &&
"expected parent op to implement `RegionBranchOpInterface`");
for (Region &region : parentOp->getRegions()) {
for (Block &block : region)
blocks.push_back(&block);
}
}
bool foundMemoryEffectingOp = false;
for (Block *block : blocks) {
if (foundMemoryEffectingOp)
break;
for (Operation &nestedOp : *block) {
if (!isMemoryEffectFree(&nestedOp)) {
Liveness *operandLiveness = getLatticeElement(operand.get());
propagateIfChanged(operandLiveness, operandLiveness->markLive());
foundMemoryEffectingOp = true;
break;
}
}
}
// Now that we have checked for memory-effecting ops in the blocks of concern,
// we will simply visit the op with this non-forwarded operand to potentially
// mark it "live" due to type (1.a/3) liveness.
SmallVector<Liveness *, 4> operandLiveness;
operandLiveness.push_back(getLatticeElement(operand.get()));
SmallVector<const Liveness *, 4> resultsLiveness;
for (const Value result : op->getResults())
resultsLiveness.push_back(getLatticeElement(result));
(void)visitOperation(op, operandLiveness, resultsLiveness);
// We also visit the parent op with the parent's results and this operand if
// `op` is a `RegionBranchTerminatorOpInterface` because its non-forwarded
// operand depends on not only its memory effects/results but also on those of
// its parent's.
if (!isa<RegionBranchTerminatorOpInterface>(op))
return;
Operation *parentOp = op->getParentOp();
SmallVector<const Liveness *, 4> parentResultsLiveness;
for (const Value parentResult : parentOp->getResults())
parentResultsLiveness.push_back(getLatticeElement(parentResult));
(void)visitOperation(parentOp, operandLiveness, parentResultsLiveness);
}
void LivenessAnalysis::visitCallOperand(OpOperand &operand) {
// We know (at the moment) and assume (for the future) that `operand` is a
// non-forwarded call operand of an op implementing `CallOpInterface`.
assert(isa<CallOpInterface>(operand.getOwner()) &&
"expected the op to implement `CallOpInterface`");
// The lattices of the non-forwarded call operands don't get updated like the
// forwarded call operands or the non-call operands. Thus they need to be
// handled separately. This is where we handle them.
// This marks values of type (1.c) liveness as "live". A non-forwarded
// call operand is live.
Liveness *operandLiveness = getLatticeElement(operand.get());
propagateIfChanged(operandLiveness, operandLiveness->markLive());
}
void LivenessAnalysis::setToExitState(Liveness *lattice) {
// This marks values of type (2) liveness as "live".
(void)lattice->markLive();
}
//===----------------------------------------------------------------------===//
// RunLivenessAnalysis
//===----------------------------------------------------------------------===//
RunLivenessAnalysis::RunLivenessAnalysis(Operation *op) {
SymbolTableCollection symbolTable;
solver.load<DeadCodeAnalysis>();
solver.load<SparseConstantPropagation>();
solver.load<LivenessAnalysis>(symbolTable);
(void)solver.initializeAndRun(op);
}
const Liveness *RunLivenessAnalysis::getLiveness(Value val) {
return solver.lookupState<Liveness>(val);
}