Files
clang-p2996/mlir/lib/Dialect/GPU/Transforms/EliminateBarriers.cpp
Jacques Pienaar 09dfc5713d [mlir] Enable decoupling two kinds of greedy behavior. (#104649)
The greedy rewriter is used in many different flows and it has a lot of
convenience (work list management, debugging actions, tracing, etc). But
it combines two kinds of greedy behavior 1) how ops are matched, 2)
folding wherever it can.

These are independent forms of greedy and leads to inefficiency. E.g.,
cases where one need to create different phases in lowering and is
required to applying patterns in specific order split across different
passes. Using the driver one ends up needlessly retrying folding/having
multiple rounds of folding attempts, where one final run would have
sufficed.

Of course folks can locally avoid this behavior by just building their
own, but this is also a common requested feature that folks keep on
working around locally in suboptimal ways.

For downstream users, there should be no behavioral change. Updating
from the deprecated should just be a find and replace (e.g., `find ./
-type f -exec sed -i
's|applyPatternsAndFoldGreedily|applyPatternsGreedily|g' {} \;` variety)
as the API arguments hasn't changed between the two.
2024-12-20 08:15:48 -08:00

644 lines
24 KiB
C++

//===- EliminateBarriers.cpp - Eliminate extra barriers --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Barrier elimination pattern and pass. If a barrier does not enforce any
// conflicting pair of memory effects, including a pair that is enforced by
// another barrier, it is unnecessary and can be removed. Adapted from
// "High-Performance GPU-to-CPU Transpilation and Optimization via High-Level
// Parallel Constructs" by Moses, Ivanov, Domke, Endo, Doerfert, and Zinenko in
// PPoPP 2023 and implementation in Polygeist.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/Operation.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
namespace mlir {
#define GEN_PASS_DEF_GPUELIMINATEBARRIERS
#include "mlir/Dialect/GPU/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::gpu;
#define DEBUG_TYPE "gpu-erase-barriers"
#define DEBUG_TYPE_ALIAS "gpu-erase-barries-alias"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define DBGS_ALIAS() (llvm::dbgs() << '[' << DEBUG_TYPE_ALIAS << "] ")
// The functions below provide interface-like verification, but are too specific
// to barrier elimination to become interfaces.
/// Implement the MemoryEffectsOpInterface in the suitable way.
static bool isKnownNoEffectsOpWithoutInterface(Operation *op) {
// memref::AssumeAlignment is conceptually pure, but marking it as such would
// make DCE immediately remove it.
return isa<memref::AssumeAlignmentOp>(op);
}
/// Returns `true` if the op is defines the parallel region that is subject to
/// barrier synchronization.
static bool isParallelRegionBoundary(Operation *op) {
if (op->hasAttr("__parallel_region_boundary_for_test"))
return true;
return isa<GPUFuncOp, LaunchOp>(op);
}
/// Returns `true` if the op behaves like a sequential loop, e.g., the control
/// flow "wraps around" from the end of the body region back to its start.
static bool isSequentialLoopLike(Operation *op) { return isa<scf::ForOp>(op); }
/// Returns `true` if the regions of the op are guaranteed to be executed at
/// most once. Thus, if an operation in one of the nested regions of `op` is
/// executed than so are all the other operations in this region.
static bool hasSingleExecutionBody(Operation *op) {
return isa<scf::IfOp, memref::AllocaScopeOp>(op);
}
/// Returns `true` if the operation is known to produce a pointer-like object
/// distinct from any other object produced by a similar operation. For example,
/// an allocation produces such an object.
static bool producesDistinctBase(Operation *op) {
return isa_and_nonnull<memref::AllocOp, memref::AllocaOp>(op);
}
/// Populates `effects` with all memory effects without associating them to a
/// specific value.
static void addAllValuelessEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
effects.emplace_back(MemoryEffects::Effect::get<MemoryEffects::Read>());
effects.emplace_back(MemoryEffects::Effect::get<MemoryEffects::Write>());
effects.emplace_back(MemoryEffects::Effect::get<MemoryEffects::Allocate>());
effects.emplace_back(MemoryEffects::Effect::get<MemoryEffects::Free>());
}
/// Collect the memory effects of the given op in 'effects'. Returns 'true' if
/// it could extract the effect information from the op, otherwise returns
/// 'false' and conservatively populates the list with all possible effects
/// associated with no particular value or symbol.
static bool
collectEffects(Operation *op,
SmallVectorImpl<MemoryEffects::EffectInstance> &effects,
bool ignoreBarriers = true) {
// Skip over barriers to avoid infinite recursion (those barriers would ask
// this barrier again).
if (ignoreBarriers && isa<BarrierOp>(op))
return true;
// Skip over ops that we know have no effects.
if (isKnownNoEffectsOpWithoutInterface(op))
return true;
// Collect effect instances the operation. Note that the implementation of
// getEffects erases all effect instances that have the type other than the
// template parameter so we collect them first in a local buffer and then
// copy.
if (auto iface = dyn_cast<MemoryEffectOpInterface>(op)) {
SmallVector<MemoryEffects::EffectInstance> localEffects;
iface.getEffects(localEffects);
llvm::append_range(effects, localEffects);
return true;
}
if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) {
for (auto &region : op->getRegions()) {
for (auto &block : region) {
for (auto &innerOp : block)
if (!collectEffects(&innerOp, effects, ignoreBarriers))
return false;
}
}
return true;
}
// We need to be conservative here in case the op doesn't have the interface
// and assume it can have any possible effect.
addAllValuelessEffects(effects);
return false;
}
/// Get all effects before the given operation caused by other operations in the
/// same block. That is, this will not consider operations beyond the block.
static bool
getEffectsBeforeInBlock(Operation *op,
SmallVectorImpl<MemoryEffects::EffectInstance> &effects,
bool stopAtBarrier) {
if (op == &op->getBlock()->front())
return true;
for (Operation *it = op->getPrevNode(); it != nullptr;
it = it->getPrevNode()) {
if (isa<BarrierOp>(it)) {
if (stopAtBarrier)
return true;
continue;
}
if (!collectEffects(it, effects))
return false;
}
return true;
}
/// Collects memory effects from operations that may be executed before `op` in
/// a trivial structured control flow, e.g., without branches. Stops at the
/// parallel region boundary or at the barrier operation if `stopAtBarrier` is
/// set. Returns `true` if the memory effects added to `effects` are exact,
/// `false` if they are a conservative over-approximation. The latter means that
/// `effects` contain instances not associated with a specific value.
static bool
getEffectsBefore(Operation *op,
SmallVectorImpl<MemoryEffects::EffectInstance> &effects,
bool stopAtBarrier) {
if (!op->getBlock())
return true;
// If there is a non-structured control flow, bail.
Region *region = op->getBlock()->getParent();
if (region && !llvm::hasSingleElement(region->getBlocks())) {
addAllValuelessEffects(effects);
return false;
}
// Collect all effects before the op.
getEffectsBeforeInBlock(op, effects, stopAtBarrier);
// Stop if reached the parallel region boundary.
if (isParallelRegionBoundary(op->getParentOp()))
return true;
// Otherwise, keep collecting above the parent operation.
if (!getEffectsBefore(op->getParentOp(), effects, stopAtBarrier))
return false;
// If the op is loop-like, collect effects from the trailing operations until
// we hit a barrier because they can executed before the current operation by
// the previous iteration of this loop. For example, in the following loop
//
// for i = ... {
// op1
// ...
// barrier
// op2
// }
//
// the operation `op2` at iteration `i` is known to be executed before the
// operation `op1` at iteration `i+1` and the side effects must be ordered
// appropriately.
if (isSequentialLoopLike(op->getParentOp())) {
// Assuming loop terminators have no side effects.
return getEffectsBeforeInBlock(op->getBlock()->getTerminator(), effects,
/*stopAtBarrier=*/true);
}
// If the parent operation is not guaranteed to execute its (single-block)
// region once, walk the block.
bool conservative = false;
if (!hasSingleExecutionBody(op->getParentOp()))
op->getParentOp()->walk([&](Operation *in) {
if (conservative)
return WalkResult::interrupt();
if (!collectEffects(in, effects)) {
conservative = true;
return WalkResult::interrupt();
}
return WalkResult::advance();
});
return !conservative;
}
/// Get all effects after the given operation caused by other operations in the
/// same block. That is, this will not consider operations beyond the block.
static bool
getEffectsAfterInBlock(Operation *op,
SmallVectorImpl<MemoryEffects::EffectInstance> &effects,
bool stopAtBarrier) {
if (op == &op->getBlock()->back())
return true;
for (Operation *it = op->getNextNode(); it != nullptr;
it = it->getNextNode()) {
if (isa<BarrierOp>(it)) {
if (stopAtBarrier)
return true;
continue;
}
if (!collectEffects(it, effects))
return false;
}
return true;
}
/// Collects memory effects from operations that may be executed after `op` in
/// a trivial structured control flow, e.g., without branches. Stops at the
/// parallel region boundary or at the barrier operation if `stopAtBarrier` is
/// set. Returns `true` if the memory effects added to `effects` are exact,
/// `false` if they are a conservative over-approximation. The latter means that
/// `effects` contain instances not associated with a specific value.
static bool
getEffectsAfter(Operation *op,
SmallVectorImpl<MemoryEffects::EffectInstance> &effects,
bool stopAtBarrier) {
if (!op->getBlock())
return true;
// If there is a non-structured control flow, bail.
Region *region = op->getBlock()->getParent();
if (region && !llvm::hasSingleElement(region->getBlocks())) {
addAllValuelessEffects(effects);
return false;
}
// Collect all effects after the op.
getEffectsAfterInBlock(op, effects, stopAtBarrier);
// Stop if reached the parallel region boundary.
if (isParallelRegionBoundary(op->getParentOp()))
return true;
// Otherwise, keep collecting below the parent operation.
if (!getEffectsAfter(op->getParentOp(), effects, stopAtBarrier))
return false;
// If the op is loop-like, collect effects from the leading operations until
// we hit a barrier because they can executed after the current operation by
// the next iteration of this loop. For example, in the following loop
//
// for i = ... {
// op1
// ...
// barrier
// op2
// }
//
// the operation `op1` at iteration `i` is known to be executed after the
// operation `op2` at iteration `i-1` and the side effects must be ordered
// appropriately.
if (isSequentialLoopLike(op->getParentOp())) {
if (isa<BarrierOp>(op->getBlock()->front()))
return true;
bool exact = collectEffects(&op->getBlock()->front(), effects);
return getEffectsAfterInBlock(&op->getBlock()->front(), effects,
/*stopAtBarrier=*/true) &&
exact;
}
// If the parent operation is not guaranteed to execute its (single-block)
// region once, walk the block.
bool conservative = false;
if (!hasSingleExecutionBody(op->getParentOp()))
op->getParentOp()->walk([&](Operation *in) {
if (conservative)
return WalkResult::interrupt();
if (!collectEffects(in, effects)) {
conservative = true;
return WalkResult::interrupt();
}
return WalkResult::advance();
});
return !conservative;
}
/// Looks through known "view-like" ops to find the base memref.
static Value getBase(Value v) {
while (true) {
Operation *definingOp = v.getDefiningOp();
if (!definingOp)
break;
bool shouldContinue =
TypeSwitch<Operation *, bool>(v.getDefiningOp())
.Case<memref::CastOp, memref::SubViewOp, memref::ViewOp>(
[&](auto op) {
v = op.getSource();
return true;
})
.Case<memref::TransposeOp>([&](auto op) {
v = op.getIn();
return true;
})
.Case<memref::CollapseShapeOp, memref::ExpandShapeOp>([&](auto op) {
v = op.getSrc();
return true;
})
.Default([](Operation *) { return false; });
if (!shouldContinue)
break;
}
return v;
}
/// Returns `true` if the value is defined as a function argument.
static bool isFunctionArgument(Value v) {
auto arg = dyn_cast<BlockArgument>(v);
return arg && isa<FunctionOpInterface>(arg.getOwner()->getParentOp());
}
/// Returns the operand that the operation "propagates" through it for capture
/// purposes. That is, if the value produced by this operation is captured, then
/// so is the returned value.
static Value propagatesCapture(Operation *op) {
return llvm::TypeSwitch<Operation *, Value>(op)
.Case(
[](ViewLikeOpInterface viewLike) { return viewLike.getViewSource(); })
.Case([](CastOpInterface castLike) { return castLike->getOperand(0); })
.Case([](memref::TransposeOp transpose) { return transpose.getIn(); })
.Case<memref::ExpandShapeOp, memref::CollapseShapeOp>(
[](auto op) { return op.getSrc(); })
.Default([](Operation *) { return Value(); });
}
/// Returns `true` if the given operation is known to capture the given value,
/// `false` if it is known not to capture the given value, `nullopt` if neither
/// is known.
static std::optional<bool> getKnownCapturingStatus(Operation *op, Value v) {
return llvm::TypeSwitch<Operation *, std::optional<bool>>(op)
// Store-like operations don't capture the destination, but do capture
// the value.
.Case<memref::StoreOp, vector::TransferWriteOp>(
[&](auto op) { return op.getValue() == v; })
.Case<vector::StoreOp, vector::MaskedStoreOp>(
[&](auto op) { return op.getValueToStore() == v; })
// These operations are known not to capture.
.Case([](memref::DeallocOp) { return false; })
// By default, we don't know anything.
.Default([](Operation *) { return std::nullopt; });
}
/// Returns `true` if the value may be captured by any of its users, i.e., if
/// the user may be storing this value into memory. This makes aliasing analysis
/// more conservative as it cannot assume the pointer-like value is only passed
/// around through SSA use-def.
static bool maybeCaptured(Value v) {
SmallVector<Value> todo = {v};
while (!todo.empty()) {
Value v = todo.pop_back_val();
for (Operation *user : v.getUsers()) {
// A user that is known to only read cannot capture.
auto iface = dyn_cast<MemoryEffectOpInterface>(user);
if (iface) {
SmallVector<MemoryEffects::EffectInstance> effects;
iface.getEffects(effects);
if (llvm::all_of(effects,
[](const MemoryEffects::EffectInstance &effect) {
return isa<MemoryEffects::Read>(effect.getEffect());
})) {
continue;
}
}
// When an operation is known to create an alias, consider if the
// source is captured as well.
if (Value v = propagatesCapture(user)) {
todo.push_back(v);
continue;
}
std::optional<bool> knownCaptureStatus = getKnownCapturingStatus(user, v);
if (!knownCaptureStatus || *knownCaptureStatus)
return true;
}
}
return false;
}
/// Returns true if two values may be referencing aliasing memory. This is a
/// rather naive and conservative analysis. Values defined by different
/// allocation-like operations as well as values derived from those by casts and
/// views cannot alias each other. Similarly, values defined by allocations
/// inside a function cannot alias function arguments. Global values cannot
/// alias each other or local allocations. Values that are captured, i.e.
/// themselves potentially stored in memory, are considered as aliasing with
/// everything. This seems sufficient to achieve barrier removal in structured
/// control flow, more complex cases would require a proper dataflow analysis.
static bool mayAlias(Value first, Value second) {
DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, {
DBGS_ALIAS() << "checking aliasing between ";
DBGS_ALIAS() << first << "\n";
DBGS_ALIAS() << " and ";
DBGS_ALIAS() << second << "\n";
});
first = getBase(first);
second = getBase(second);
DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, {
DBGS_ALIAS() << "base ";
DBGS_ALIAS() << first << "\n";
DBGS_ALIAS() << " and ";
DBGS_ALIAS() << second << "\n";
});
// Values derived from the same base memref do alias (unless we do a more
// advanced analysis to prove non-overlapping accesses).
if (first == second) {
DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, DBGS_ALIAS() << "-> do alias!\n");
return true;
}
// Different globals cannot alias.
if (auto globFirst = first.getDefiningOp<memref::GetGlobalOp>()) {
if (auto globSecond = second.getDefiningOp<memref::GetGlobalOp>()) {
return globFirst.getNameAttr() == globSecond.getNameAttr();
}
}
// Two function arguments marked as noalias do not alias.
auto isNoaliasFuncArgument = [](Value value) {
auto bbArg = dyn_cast<BlockArgument>(value);
if (!bbArg)
return false;
auto iface = dyn_cast<FunctionOpInterface>(bbArg.getOwner()->getParentOp());
if (!iface)
return false;
// TODO: we need a way to not depend on the LLVM dialect here.
return iface.getArgAttr(bbArg.getArgNumber(), "llvm.noalias") != nullptr;
};
if (isNoaliasFuncArgument(first) && isNoaliasFuncArgument(second))
return false;
bool isDistinct[] = {producesDistinctBase(first.getDefiningOp()),
producesDistinctBase(second.getDefiningOp())};
bool isGlobal[] = {first.getDefiningOp<memref::GetGlobalOp>() != nullptr,
second.getDefiningOp<memref::GetGlobalOp>() != nullptr};
// Non-equivalent distinct bases and globals cannot alias. At this point, we
// have already filtered out based on values being equal and global name being
// equal.
if ((isDistinct[0] || isGlobal[0]) && (isDistinct[1] || isGlobal[1]))
return false;
bool isArg[] = {isFunctionArgument(first), isFunctionArgument(second)};
// Distinct bases (allocations) cannot have been passed as an argument.
if ((isDistinct[0] && isArg[1]) || (isDistinct[1] && isArg[0]))
return false;
// Non-captured base distinct values cannot conflict with another base value.
if (isDistinct[0] && !maybeCaptured(first))
return false;
if (isDistinct[1] && !maybeCaptured(second))
return false;
// Otherwise, conservatively assume aliasing.
DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, DBGS_ALIAS() << "-> may alias!\n");
return true;
}
/// Returns `true` if the effect may be affecting memory aliasing the value. If
/// the effect is not associated with any value, it is assumed to affect all
/// memory and therefore aliases with everything.
static bool mayAlias(MemoryEffects::EffectInstance a, Value v2) {
if (Value v = a.getValue()) {
return mayAlias(v, v2);
}
return true;
}
/// Returns `true` if the two effects may be affecting aliasing memory. If
/// an effect is not associated with any value, it is assumed to affect all
/// memory and therefore aliases with everything. Effects on different resources
/// cannot alias.
static bool mayAlias(MemoryEffects::EffectInstance a,
MemoryEffects::EffectInstance b) {
if (a.getResource()->getResourceID() != b.getResource()->getResourceID())
return false;
if (Value v2 = b.getValue()) {
return mayAlias(a, v2);
} else if (Value v = a.getValue()) {
return mayAlias(b, v);
}
return true;
}
/// Returns `true` if any of the "before" effect instances has a conflict with
/// any "after" instance for the purpose of barrier elimination. The effects are
/// supposed to be limited to a barrier synchronization scope. A conflict exists
/// if effects instances affect aliasing memory locations and at least on of
/// then as a write. As an exception, if the non-write effect is an allocation
/// effect, there is no conflict since we are only expected to see the
/// allocation happening in the same thread and it cannot be accessed from
/// another thread without capture (which we do handle in alias analysis).
static bool
haveConflictingEffects(ArrayRef<MemoryEffects::EffectInstance> beforeEffects,
ArrayRef<MemoryEffects::EffectInstance> afterEffects) {
for (const MemoryEffects::EffectInstance &before : beforeEffects) {
for (const MemoryEffects::EffectInstance &after : afterEffects) {
// If cannot alias, definitely no conflict.
if (!mayAlias(before, after))
continue;
// Read/read is not a conflict.
if (isa<MemoryEffects::Read>(before.getEffect()) &&
isa<MemoryEffects::Read>(after.getEffect())) {
continue;
}
// Allocate/* is not a conflict since the allocation happens within the
// thread context.
// TODO: This is not the case for */Free unless the allocation happened in
// the thread context, which we could also check for.
if (isa<MemoryEffects::Allocate>(before.getEffect()) ||
isa<MemoryEffects::Allocate>(after.getEffect())) {
continue;
}
// In the particular case that the before effect is a free, we only have 2
// possibilities:
// 1. either the program is well-formed and there must be an interleaved
// alloc that must limit the scope of effect lookback and we can
// safely ignore the free -> read / free -> write and free -> free
// conflicts.
// 2. either the program is ill-formed and we are in undefined behavior
// territory.
if (isa<MemoryEffects::Free>(before.getEffect()))
continue;
// Other kinds of effects create a conflict, e.g. read-after-write.
LLVM_DEBUG(
DBGS() << "found a conflict between (before): " << before.getValue()
<< " read:" << isa<MemoryEffects::Read>(before.getEffect())
<< " write:" << isa<MemoryEffects::Write>(before.getEffect())
<< " alloc:"
<< isa<MemoryEffects::Allocate>(before.getEffect()) << " free:"
<< isa<MemoryEffects::Free>(before.getEffect()) << "\n");
LLVM_DEBUG(
DBGS() << "and (after): " << after.getValue()
<< " read:" << isa<MemoryEffects::Read>(after.getEffect())
<< " write:" << isa<MemoryEffects::Write>(after.getEffect())
<< " alloc:" << isa<MemoryEffects::Allocate>(after.getEffect())
<< " free:" << isa<MemoryEffects::Free>(after.getEffect())
<< "\n");
return true;
}
}
return false;
}
namespace {
class BarrierElimination final : public OpRewritePattern<BarrierOp> {
public:
using OpRewritePattern<BarrierOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BarrierOp barrier,
PatternRewriter &rewriter) const override {
LLVM_DEBUG(DBGS() << "checking the necessity of: " << barrier << " "
<< barrier.getLoc() << "\n");
SmallVector<MemoryEffects::EffectInstance> beforeEffects;
getEffectsBefore(barrier, beforeEffects, /*stopAtBarrier=*/true);
SmallVector<MemoryEffects::EffectInstance> afterEffects;
getEffectsAfter(barrier, afterEffects, /*stopAtBarrier=*/true);
if (!haveConflictingEffects(beforeEffects, afterEffects)) {
LLVM_DEBUG(DBGS() << "the surrounding barriers are sufficient, removing "
<< barrier << "\n");
rewriter.eraseOp(barrier);
return success();
}
LLVM_DEBUG(DBGS() << "barrier is necessary: " << barrier << " "
<< barrier.getLoc() << "\n");
return failure();
}
};
class GpuEliminateBarriersPass
: public impl::GpuEliminateBarriersBase<GpuEliminateBarriersPass> {
void runOnOperation() override {
auto funcOp = getOperation();
RewritePatternSet patterns(&getContext());
mlir::populateGpuEliminateBarriersPatterns(patterns);
if (failed(applyPatternsGreedily(funcOp, std::move(patterns)))) {
return signalPassFailure();
}
}
};
} // namespace
void mlir::populateGpuEliminateBarriersPatterns(RewritePatternSet &patterns) {
patterns.insert<BarrierElimination>(patterns.getContext());
}