It looks like scalable `vector.insertslice/extractslice` ops made their way through lowering patterns that generate `vector.shuffle` ops. I'm not sure why this wasn't caught by the verifier, probably because the shuffle op was folded into something else as part of the same rewrite and the IR wasn't verified. This PR fixes the issue by preventing scalable vector.insertslice/extractslice ops to be lowered to vector shuffles. Instead, they are now lowered to a sequence of insertslice/extractelement ops using an existing patter.
356 lines
14 KiB
C++
356 lines
14 KiB
C++
//===- VectorInsertExtractStridedSliceRewritePatterns.cpp - Rewrites ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
|
|
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::vector;
|
|
|
|
/// RewritePattern for InsertStridedSliceOp where source and destination vectors
|
|
/// have different ranks.
|
|
///
|
|
/// When ranks are different, InsertStridedSlice needs to extract a properly
|
|
/// ranked vector from the destination vector into which to insert. This pattern
|
|
/// only takes care of this extraction part and forwards the rest to
|
|
/// [ConvertSameRankInsertStridedSliceIntoShuffle].
|
|
///
|
|
/// For a k-D source and n-D destination vector (k < n), we emit:
|
|
/// 1. ExtractOp to extract the (unique) (n-1)-D subvector into which to
|
|
/// insert the k-D source.
|
|
/// 2. k-D -> (n-1)-D InsertStridedSlice op
|
|
/// 3. InsertOp that is the reverse of 1.
|
|
class DecomposeDifferentRankInsertStridedSlice
|
|
: public OpRewritePattern<InsertStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto srcType = op.getSourceVectorType();
|
|
auto dstType = op.getDestVectorType();
|
|
|
|
if (op.getOffsets().getValue().empty())
|
|
return failure();
|
|
|
|
auto loc = op.getLoc();
|
|
int64_t rankDiff = dstType.getRank() - srcType.getRank();
|
|
assert(rankDiff >= 0);
|
|
if (rankDiff == 0)
|
|
return failure();
|
|
|
|
int64_t rankRest = dstType.getRank() - rankDiff;
|
|
// Extract / insert the subvector of matching rank and InsertStridedSlice
|
|
// on it.
|
|
Value extracted = rewriter.create<ExtractOp>(
|
|
loc, op.getDest(),
|
|
getI64SubArray(op.getOffsets(), /*dropFront=*/0,
|
|
/*dropBack=*/rankRest));
|
|
|
|
// A different pattern will kick in for InsertStridedSlice with matching
|
|
// ranks.
|
|
auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
|
|
loc, op.getSource(), extracted,
|
|
getI64SubArray(op.getOffsets(), /*dropFront=*/rankDiff),
|
|
getI64SubArray(op.getStrides(), /*dropFront=*/0));
|
|
|
|
rewriter.replaceOpWithNewOp<InsertOp>(
|
|
op, stridedSliceInnerOp.getResult(), op.getDest(),
|
|
getI64SubArray(op.getOffsets(), /*dropFront=*/0,
|
|
/*dropBack=*/rankRest));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// RewritePattern for InsertStridedSliceOp where source and destination vectors
|
|
/// have the same rank. For each outermost index in the slice:
|
|
/// begin end stride
|
|
/// [offset : offset+size*stride : stride]
|
|
/// 1. ExtractOp one (k-1)-D source subvector and one (n-1)-D dest subvector.
|
|
/// 2. InsertStridedSlice (k-1)-D into (n-1)-D
|
|
/// 3. the destination subvector is inserted back in the proper place
|
|
/// 3. InsertOp that is the reverse of 1.
|
|
class ConvertSameRankInsertStridedSliceIntoShuffle
|
|
: public OpRewritePattern<InsertStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
|
|
|
|
void initialize() {
|
|
// This pattern creates recursive InsertStridedSliceOp, but the recursion is
|
|
// bounded as the rank is strictly decreasing.
|
|
setHasBoundedRewriteRecursion();
|
|
}
|
|
|
|
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto srcType = op.getSourceVectorType();
|
|
auto dstType = op.getDestVectorType();
|
|
int64_t srcRank = srcType.getRank();
|
|
|
|
// Scalable vectors are not supported by vector shuffle.
|
|
if ((srcType.isScalable() || dstType.isScalable()) && srcRank == 1)
|
|
return failure();
|
|
|
|
if (op.getOffsets().getValue().empty())
|
|
return failure();
|
|
|
|
int64_t dstRank = dstType.getRank();
|
|
assert(dstRank >= srcRank);
|
|
if (dstRank != srcRank)
|
|
return failure();
|
|
|
|
if (srcType == dstType) {
|
|
rewriter.replaceOp(op, op.getSource());
|
|
return success();
|
|
}
|
|
|
|
int64_t offset =
|
|
cast<IntegerAttr>(op.getOffsets().getValue().front()).getInt();
|
|
int64_t size = srcType.getShape().front();
|
|
int64_t stride =
|
|
cast<IntegerAttr>(op.getStrides().getValue().front()).getInt();
|
|
|
|
auto loc = op.getLoc();
|
|
Value res = op.getDest();
|
|
|
|
if (srcRank == 1) {
|
|
int nSrc = srcType.getShape().front();
|
|
int nDest = dstType.getShape().front();
|
|
// 1. Scale source to destType so we can shufflevector them together.
|
|
SmallVector<int64_t> offsets(nDest, 0);
|
|
for (int64_t i = 0; i < nSrc; ++i)
|
|
offsets[i] = i;
|
|
Value scaledSource = rewriter.create<ShuffleOp>(loc, op.getSource(),
|
|
op.getSource(), offsets);
|
|
|
|
// 2. Create a mask where we take the value from scaledSource of dest
|
|
// depending on the offset.
|
|
offsets.clear();
|
|
for (int64_t i = 0, e = offset + size * stride; i < nDest; ++i) {
|
|
if (i < offset || i >= e || (i - offset) % stride != 0)
|
|
offsets.push_back(nDest + i);
|
|
else
|
|
offsets.push_back((i - offset) / stride);
|
|
}
|
|
|
|
// 3. Replace with a ShuffleOp.
|
|
rewriter.replaceOpWithNewOp<ShuffleOp>(op, scaledSource, op.getDest(),
|
|
offsets);
|
|
|
|
return success();
|
|
}
|
|
|
|
// For each slice of the source vector along the most major dimension.
|
|
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
|
|
off += stride, ++idx) {
|
|
// 1. extract the proper subvector (or element) from source
|
|
Value extractedSource =
|
|
rewriter.create<ExtractOp>(loc, op.getSource(), idx);
|
|
if (isa<VectorType>(extractedSource.getType())) {
|
|
// 2. If we have a vector, extract the proper subvector from destination
|
|
// Otherwise we are at the element level and no need to recurse.
|
|
Value extractedDest =
|
|
rewriter.create<ExtractOp>(loc, op.getDest(), off);
|
|
// 3. Reduce the problem to lowering a new InsertStridedSlice op with
|
|
// smaller rank.
|
|
extractedSource = rewriter.create<InsertStridedSliceOp>(
|
|
loc, extractedSource, extractedDest,
|
|
getI64SubArray(op.getOffsets(), /* dropFront=*/1),
|
|
getI64SubArray(op.getStrides(), /* dropFront=*/1));
|
|
}
|
|
// 4. Insert the extractedSource into the res vector.
|
|
res = rewriter.create<InsertOp>(loc, extractedSource, res, off);
|
|
}
|
|
|
|
rewriter.replaceOp(op, res);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// RewritePattern for ExtractStridedSliceOp where source and destination
|
|
/// vectors are 1-D. For such cases, we can lower it to a ShuffleOp.
|
|
class Convert1DExtractStridedSliceIntoShuffle
|
|
: public OpRewritePattern<ExtractStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto dstType = op.getType();
|
|
auto srcType = op.getSourceVectorType();
|
|
|
|
// Scalable vectors are not supported by vector shuffle.
|
|
if (dstType.isScalable() || srcType.isScalable())
|
|
return failure();
|
|
|
|
assert(!op.getOffsets().getValue().empty() && "Unexpected empty offsets");
|
|
|
|
int64_t offset =
|
|
cast<IntegerAttr>(op.getOffsets().getValue().front()).getInt();
|
|
int64_t size = cast<IntegerAttr>(op.getSizes().getValue().front()).getInt();
|
|
int64_t stride =
|
|
cast<IntegerAttr>(op.getStrides().getValue().front()).getInt();
|
|
|
|
assert(dstType.getElementType().isSignlessIntOrIndexOrFloat());
|
|
|
|
// Single offset can be more efficiently shuffled.
|
|
if (op.getOffsets().getValue().size() != 1)
|
|
return failure();
|
|
|
|
SmallVector<int64_t, 4> offsets;
|
|
offsets.reserve(size);
|
|
for (int64_t off = offset, e = offset + size * stride; off < e;
|
|
off += stride)
|
|
offsets.push_back(off);
|
|
rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.getVector(),
|
|
op.getVector(), offsets);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// For a 1-D ExtractStridedSlice, breaks it down into a chain of Extract ops
|
|
/// to extract each element from the source, and then a chain of Insert ops
|
|
/// to insert to the target vector.
|
|
class Convert1DExtractStridedSliceIntoExtractInsertChain final
|
|
: public OpRewritePattern<ExtractStridedSliceOp> {
|
|
public:
|
|
Convert1DExtractStridedSliceIntoExtractInsertChain(
|
|
MLIRContext *context,
|
|
std::function<bool(ExtractStridedSliceOp)> controlFn,
|
|
PatternBenefit benefit)
|
|
: OpRewritePattern(context, benefit), controlFn(std::move(controlFn)) {}
|
|
|
|
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (controlFn && !controlFn(op))
|
|
return failure();
|
|
|
|
// Only handle 1-D cases.
|
|
if (op.getOffsets().getValue().size() != 1)
|
|
return failure();
|
|
|
|
int64_t offset =
|
|
cast<IntegerAttr>(op.getOffsets().getValue().front()).getInt();
|
|
int64_t size = cast<IntegerAttr>(op.getSizes().getValue().front()).getInt();
|
|
int64_t stride =
|
|
cast<IntegerAttr>(op.getStrides().getValue().front()).getInt();
|
|
|
|
Location loc = op.getLoc();
|
|
SmallVector<Value> elements;
|
|
elements.reserve(size);
|
|
for (int64_t i = offset, e = offset + size * stride; i < e; i += stride)
|
|
elements.push_back(rewriter.create<ExtractOp>(loc, op.getVector(), i));
|
|
|
|
Value result = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getZeroAttr(op.getType()));
|
|
for (int64_t i = 0; i < size; ++i)
|
|
result = rewriter.create<InsertOp>(loc, elements[i], result, i);
|
|
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
std::function<bool(ExtractStridedSliceOp)> controlFn;
|
|
};
|
|
|
|
/// RewritePattern for ExtractStridedSliceOp where the source vector is n-D.
|
|
/// For such cases, we can rewrite it to ExtractOp + lower rank
|
|
/// ExtractStridedSliceOp + InsertOp for the n-D case.
|
|
class DecomposeNDExtractStridedSlice
|
|
: public OpRewritePattern<ExtractStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
|
|
|
|
void initialize() {
|
|
// This pattern creates recursive ExtractStridedSliceOp, but the recursion
|
|
// is bounded as the rank is strictly decreasing.
|
|
setHasBoundedRewriteRecursion();
|
|
}
|
|
|
|
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto dstType = op.getType();
|
|
|
|
assert(!op.getOffsets().getValue().empty() && "Unexpected empty offsets");
|
|
|
|
int64_t offset =
|
|
cast<IntegerAttr>(op.getOffsets().getValue().front()).getInt();
|
|
int64_t size = cast<IntegerAttr>(op.getSizes().getValue().front()).getInt();
|
|
int64_t stride =
|
|
cast<IntegerAttr>(op.getStrides().getValue().front()).getInt();
|
|
|
|
auto loc = op.getLoc();
|
|
auto elemType = dstType.getElementType();
|
|
assert(elemType.isSignlessIntOrIndexOrFloat());
|
|
|
|
// Single offset can be more efficiently shuffled. It's handled in
|
|
// Convert1DExtractStridedSliceIntoShuffle.
|
|
if (op.getOffsets().getValue().size() == 1)
|
|
return failure();
|
|
|
|
// Extract/insert on a lower ranked extract strided slice op.
|
|
Value zero = rewriter.create<arith::ConstantOp>(
|
|
loc, elemType, rewriter.getZeroAttr(elemType));
|
|
Value res = rewriter.create<SplatOp>(loc, dstType, zero);
|
|
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
|
|
off += stride, ++idx) {
|
|
Value one = rewriter.create<ExtractOp>(loc, op.getVector(), off);
|
|
Value extracted = rewriter.create<ExtractStridedSliceOp>(
|
|
loc, one, getI64SubArray(op.getOffsets(), /* dropFront=*/1),
|
|
getI64SubArray(op.getSizes(), /* dropFront=*/1),
|
|
getI64SubArray(op.getStrides(), /* dropFront=*/1));
|
|
res = rewriter.create<InsertOp>(loc, extracted, res, idx);
|
|
}
|
|
rewriter.replaceOp(op, res);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// TODO: Make sure these `populate*` patterns are tested in isolation.
|
|
|
|
void vector::populateVectorInsertExtractStridedSliceDecompositionPatterns(
|
|
RewritePatternSet &patterns, PatternBenefit benefit) {
|
|
patterns.add<DecomposeDifferentRankInsertStridedSlice,
|
|
DecomposeNDExtractStridedSlice>(patterns.getContext(), benefit);
|
|
}
|
|
|
|
void vector::populateVectorExtractStridedSliceToExtractInsertChainPatterns(
|
|
RewritePatternSet &patterns,
|
|
std::function<bool(ExtractStridedSliceOp)> controlFn,
|
|
PatternBenefit benefit) {
|
|
patterns.add<Convert1DExtractStridedSliceIntoExtractInsertChain>(
|
|
patterns.getContext(), std::move(controlFn), benefit);
|
|
}
|
|
|
|
/// Populate the given list with patterns that convert from Vector to LLVM.
|
|
void vector::populateVectorInsertExtractStridedSliceTransforms(
|
|
RewritePatternSet &patterns, PatternBenefit benefit) {
|
|
populateVectorInsertExtractStridedSliceDecompositionPatterns(patterns,
|
|
benefit);
|
|
patterns.add<ConvertSameRankInsertStridedSliceIntoShuffle,
|
|
Convert1DExtractStridedSliceIntoShuffle>(patterns.getContext(),
|
|
benefit);
|
|
// Generate chains of extract/insert ops for scalable vectors only as they
|
|
// can't be lowered to vector shuffles.
|
|
populateVectorExtractStridedSliceToExtractInsertChainPatterns(
|
|
patterns,
|
|
/*controlFn=*/
|
|
[](ExtractStridedSliceOp op) {
|
|
return op.getType().isScalable() ||
|
|
op.getSourceVectorType().isScalable();
|
|
},
|
|
benefit);
|
|
}
|