LLVM itself is generally moving away from using `undef` and towards
using `poison`, to the point of having a lint that caches new uses of
`undef` in tests.
In order to not trip the lint on new patterns and to conform to the
evolution of LLVM
- Rename valious ::undef() methods on StructBuilder subclasses to
::poison()
- Audit the uses of UndefOp in the MLIR libraries and replace almost all
of them with PoisonOp
The remaining uses of `undef` are initializing `uninitialized` memrefs,
explicit conversions to undef from SPIR-V, and a few cases in
AMDGPUToROCDL where usage like
%v = insertelement <M x iN> undef, iN %v, i32 0
%arg = bitcast <M x iN> %v to i(M * N)
is used to handle "i32" arguments that are are really packed vectors of
smaller types that won't always be fully initialized.
72 lines
3.6 KiB
MLIR
72 lines
3.6 KiB
MLIR
// RUN: mlir-opt %s -convert-complex-to-llvm -convert-func-to-llvm -reconcile-unrealized-casts | FileCheck %s
|
|
|
|
// CHECK-LABEL: llvm.func @complex_div
|
|
// CHECK-SAME: %[[LHS:.*]]: ![[C_TY:.*>]], %[[RHS:.*]]: ![[C_TY]]) -> ![[C_TY]]
|
|
func.func @complex_div(%lhs: complex<f32>, %rhs: complex<f32>) -> complex<f32> {
|
|
%div = complex.div %lhs, %rhs : complex<f32>
|
|
return %div : complex<f32>
|
|
}
|
|
// CHECK: %[[LHS_RE:.*]] = llvm.extractvalue %[[LHS]][0] : ![[C_TY]]
|
|
// CHECK: %[[LHS_IM:.*]] = llvm.extractvalue %[[LHS]][1] : ![[C_TY]]
|
|
// CHECK: %[[RHS_RE:.*]] = llvm.extractvalue %[[RHS]][0] : ![[C_TY]]
|
|
// CHECK: %[[RHS_IM:.*]] = llvm.extractvalue %[[RHS]][1] : ![[C_TY]]
|
|
|
|
// CHECK: %[[RESULT_0:.*]] = llvm.mlir.poison : ![[C_TY]]
|
|
|
|
// CHECK-DAG: %[[RHS_RE_SQ:.*]] = llvm.fmul %[[RHS_RE]], %[[RHS_RE]] : f32
|
|
// CHECK-DAG: %[[RHS_IM_SQ:.*]] = llvm.fmul %[[RHS_IM]], %[[RHS_IM]] : f32
|
|
// CHECK: %[[SQ_NORM:.*]] = llvm.fadd %[[RHS_RE_SQ]], %[[RHS_IM_SQ]] : f32
|
|
|
|
// CHECK-DAG: %[[REAL_TMP_0:.*]] = llvm.fmul %[[LHS_RE]], %[[RHS_RE]] : f32
|
|
// CHECK-DAG: %[[REAL_TMP_1:.*]] = llvm.fmul %[[LHS_IM]], %[[RHS_IM]] : f32
|
|
// CHECK: %[[REAL_TMP_2:.*]] = llvm.fadd %[[REAL_TMP_0]], %[[REAL_TMP_1]] : f32
|
|
|
|
// CHECK-DAG: %[[IMAG_TMP_0:.*]] = llvm.fmul %[[LHS_IM]], %[[RHS_RE]] : f32
|
|
// CHECK-DAG: %[[IMAG_TMP_1:.*]] = llvm.fmul %[[LHS_RE]], %[[RHS_IM]] : f32
|
|
// CHECK: %[[IMAG_TMP_2:.*]] = llvm.fsub %[[IMAG_TMP_0]], %[[IMAG_TMP_1]] : f32
|
|
|
|
// CHECK: %[[REAL:.*]] = llvm.fdiv %[[REAL_TMP_2]], %[[SQ_NORM]] : f32
|
|
// CHECK: %[[RESULT_1:.*]] = llvm.insertvalue %[[REAL]], %[[RESULT_0]][0] : ![[C_TY]]
|
|
// CHECK: %[[IMAG:.*]] = llvm.fdiv %[[IMAG_TMP_2]], %[[SQ_NORM]] : f32
|
|
// CHECK: %[[RESULT_2:.*]] = llvm.insertvalue %[[IMAG]], %[[RESULT_1]][1] : ![[C_TY]]
|
|
// CHECK: llvm.return %[[RESULT_2]] : ![[C_TY]]
|
|
|
|
// CHECK-LABEL: llvm.func @complex_mul
|
|
// CHECK-SAME: %[[LHS:.*]]: ![[C_TY:.*>]], %[[RHS:.*]]: ![[C_TY]]) -> ![[C_TY]]
|
|
func.func @complex_mul(%lhs: complex<f32>, %rhs: complex<f32>) -> complex<f32> {
|
|
%mul = complex.mul %lhs, %rhs : complex<f32>
|
|
return %mul : complex<f32>
|
|
}
|
|
// CHECK: %[[LHS_RE:.*]] = llvm.extractvalue %[[LHS]][0] : ![[C_TY]]
|
|
// CHECK: %[[LHS_IM:.*]] = llvm.extractvalue %[[LHS]][1] : ![[C_TY]]
|
|
// CHECK: %[[RHS_RE:.*]] = llvm.extractvalue %[[RHS]][0] : ![[C_TY]]
|
|
// CHECK: %[[RHS_IM:.*]] = llvm.extractvalue %[[RHS]][1] : ![[C_TY]]
|
|
// CHECK: %[[RESULT_0:.*]] = llvm.mlir.poison : ![[C_TY]]
|
|
|
|
// CHECK-DAG: %[[REAL_TMP_0:.*]] = llvm.fmul %[[RHS_RE]], %[[LHS_RE]] : f32
|
|
// CHECK-DAG: %[[REAL_TMP_1:.*]] = llvm.fmul %[[RHS_IM]], %[[LHS_IM]] : f32
|
|
// CHECK: %[[REAL:.*]] = llvm.fsub %[[REAL_TMP_0]], %[[REAL_TMP_1]] : f32
|
|
|
|
// CHECK-DAG: %[[IMAG_TMP_0:.*]] = llvm.fmul %[[LHS_IM]], %[[RHS_RE]] : f32
|
|
// CHECK-DAG: %[[IMAG_TMP_1:.*]] = llvm.fmul %[[LHS_RE]], %[[RHS_IM]] : f32
|
|
// CHECK: %[[IMAG:.*]] = llvm.fadd %[[IMAG_TMP_0]], %[[IMAG_TMP_1]] : f32
|
|
|
|
// CHECK: %[[RESULT_1:.*]] = llvm.insertvalue %[[REAL]], %[[RESULT_0]][0]
|
|
// CHECK: %[[RESULT_2:.*]] = llvm.insertvalue %[[IMAG]], %[[RESULT_1]][1]
|
|
// CHECK: llvm.return %[[RESULT_2]] : ![[C_TY]]
|
|
|
|
// CHECK-LABEL: llvm.func @complex_abs
|
|
// CHECK-SAME: %[[ARG:.*]]: ![[C_TY:.*]])
|
|
func.func @complex_abs(%arg: complex<f32>) -> f32 {
|
|
%abs = complex.abs %arg: complex<f32>
|
|
return %abs : f32
|
|
}
|
|
// CHECK: %[[REAL:.*]] = llvm.extractvalue %[[ARG]][0] : ![[C_TY]]
|
|
// CHECK: %[[IMAG:.*]] = llvm.extractvalue %[[ARG]][1] : ![[C_TY]]
|
|
// CHECK-DAG: %[[REAL_SQ:.*]] = llvm.fmul %[[REAL]], %[[REAL]] : f32
|
|
// CHECK-DAG: %[[IMAG_SQ:.*]] = llvm.fmul %[[IMAG]], %[[IMAG]] : f32
|
|
// CHECK: %[[SQ_NORM:.*]] = llvm.fadd %[[REAL_SQ]], %[[IMAG_SQ]] : f32
|
|
// CHECK: %[[NORM:.*]] = llvm.intr.sqrt(%[[SQ_NORM]]) : (f32) -> f32
|
|
// CHECK: llvm.return %[[NORM]] : f32
|
|
|