Generic operator/assignment checks for distinguishable specific procedures must ignore inaccessible generic bindings. Fixes https://github.com/llvm/llvm-project/issues/122764.
773 lines
32 KiB
C++
773 lines
32 KiB
C++
//===-- include/flang/Semantics/tools.h -------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef FORTRAN_SEMANTICS_TOOLS_H_
|
|
#define FORTRAN_SEMANTICS_TOOLS_H_
|
|
|
|
// Simple predicates and look-up functions that are best defined
|
|
// canonically for use in semantic checking.
|
|
|
|
#include "flang/Common/Fortran.h"
|
|
#include "flang/Common/visit.h"
|
|
#include "flang/Evaluate/expression.h"
|
|
#include "flang/Evaluate/shape.h"
|
|
#include "flang/Evaluate/type.h"
|
|
#include "flang/Evaluate/variable.h"
|
|
#include "flang/Parser/message.h"
|
|
#include "flang/Parser/parse-tree.h"
|
|
#include "flang/Semantics/attr.h"
|
|
#include "flang/Semantics/expression.h"
|
|
#include "flang/Semantics/semantics.h"
|
|
#include <functional>
|
|
|
|
namespace Fortran::semantics {
|
|
|
|
class DeclTypeSpec;
|
|
class DerivedTypeSpec;
|
|
class Scope;
|
|
class Symbol;
|
|
|
|
// Note: Here ProgramUnit includes internal subprograms while TopLevelUnit
|
|
// does not. "program-unit" in the Fortran standard matches TopLevelUnit.
|
|
const Scope &GetTopLevelUnitContaining(const Scope &);
|
|
const Scope &GetTopLevelUnitContaining(const Symbol &);
|
|
const Scope &GetProgramUnitContaining(const Scope &);
|
|
const Scope &GetProgramUnitContaining(const Symbol &);
|
|
const Scope &GetProgramUnitOrBlockConstructContaining(const Scope &);
|
|
const Scope &GetProgramUnitOrBlockConstructContaining(const Symbol &);
|
|
|
|
const Scope *FindModuleContaining(const Scope &);
|
|
const Scope *FindModuleOrSubmoduleContaining(const Scope &);
|
|
const Scope *FindModuleFileContaining(const Scope &);
|
|
const Scope *FindPureProcedureContaining(const Scope &);
|
|
const Scope *FindOpenACCConstructContaining(const Scope *);
|
|
|
|
const Symbol *FindPointerComponent(const Scope &);
|
|
const Symbol *FindPointerComponent(const DerivedTypeSpec &);
|
|
const Symbol *FindPointerComponent(const DeclTypeSpec &);
|
|
const Symbol *FindPointerComponent(const Symbol &);
|
|
const Symbol *FindInterface(const Symbol &);
|
|
const Symbol *FindSubprogram(const Symbol &);
|
|
const Symbol *FindOverriddenBinding(
|
|
const Symbol &, bool &isInaccessibleDeferred);
|
|
const Symbol *FindGlobal(const Symbol &);
|
|
|
|
const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &);
|
|
const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &);
|
|
const DeclTypeSpec *FindParentTypeSpec(const Scope &);
|
|
const DeclTypeSpec *FindParentTypeSpec(const Symbol &);
|
|
|
|
const EquivalenceSet *FindEquivalenceSet(const Symbol &);
|
|
|
|
enum class Tristate { No, Yes, Maybe };
|
|
inline Tristate ToTristate(bool x) { return x ? Tristate::Yes : Tristate::No; }
|
|
|
|
// Is this a user-defined assignment? If both sides are the same derived type
|
|
// (and the ranks are okay) the answer is Maybe.
|
|
Tristate IsDefinedAssignment(
|
|
const std::optional<evaluate::DynamicType> &lhsType, int lhsRank,
|
|
const std::optional<evaluate::DynamicType> &rhsType, int rhsRank);
|
|
// Test for intrinsic unary and binary operators based on types and ranks
|
|
bool IsIntrinsicRelational(common::RelationalOperator,
|
|
const evaluate::DynamicType &, int, const evaluate::DynamicType &, int);
|
|
bool IsIntrinsicNumeric(const evaluate::DynamicType &);
|
|
bool IsIntrinsicNumeric(
|
|
const evaluate::DynamicType &, int, const evaluate::DynamicType &, int);
|
|
bool IsIntrinsicLogical(const evaluate::DynamicType &);
|
|
bool IsIntrinsicLogical(
|
|
const evaluate::DynamicType &, int, const evaluate::DynamicType &, int);
|
|
bool IsIntrinsicConcat(
|
|
const evaluate::DynamicType &, int, const evaluate::DynamicType &, int);
|
|
|
|
bool IsGenericDefinedOp(const Symbol &);
|
|
bool IsDefinedOperator(SourceName);
|
|
std::string MakeOpName(SourceName);
|
|
bool IsCommonBlockContaining(const Symbol &, const Symbol &);
|
|
|
|
// Returns true if maybeAncestor exists and is a proper ancestor of a
|
|
// descendent scope (or symbol owner). Will be false, unlike Scope::Contains(),
|
|
// if maybeAncestor *is* the descendent.
|
|
bool DoesScopeContain(const Scope *maybeAncestor, const Scope &maybeDescendent);
|
|
bool DoesScopeContain(const Scope *, const Symbol &);
|
|
|
|
bool IsUseAssociated(const Symbol &, const Scope &);
|
|
bool IsHostAssociated(const Symbol &, const Scope &);
|
|
bool IsHostAssociatedIntoSubprogram(const Symbol &, const Scope &);
|
|
inline bool IsStmtFunction(const Symbol &symbol) {
|
|
const auto *subprogram{symbol.detailsIf<SubprogramDetails>()};
|
|
return subprogram && subprogram->stmtFunction();
|
|
}
|
|
bool IsInStmtFunction(const Symbol &);
|
|
bool IsStmtFunctionDummy(const Symbol &);
|
|
bool IsStmtFunctionResult(const Symbol &);
|
|
bool IsPointerDummy(const Symbol &);
|
|
bool IsBindCProcedure(const Symbol &);
|
|
bool IsBindCProcedure(const Scope &);
|
|
// Returns a pointer to the function's symbol when true, else null
|
|
const Symbol *IsFunctionResultWithSameNameAsFunction(const Symbol &);
|
|
bool IsOrContainsEventOrLockComponent(const Symbol &);
|
|
bool CanBeTypeBoundProc(const Symbol &);
|
|
// Does a non-PARAMETER symbol have explicit initialization with =value or
|
|
// =>target in its declaration (but not in a DATA statement)? (Being
|
|
// ALLOCATABLE or having a derived type with default component initialization
|
|
// doesn't count; it must be a variable initialization that implies the SAVE
|
|
// attribute, or a derived type component default value.)
|
|
bool HasDeclarationInitializer(const Symbol &);
|
|
// Is the symbol explicitly or implicitly initialized in any way?
|
|
bool IsInitialized(const Symbol &, bool ignoreDATAstatements = false,
|
|
bool ignoreAllocatable = false, bool ignorePointer = true);
|
|
// Is the symbol a component subject to deallocation or finalization?
|
|
bool IsDestructible(const Symbol &, const Symbol *derivedType = nullptr);
|
|
bool HasIntrinsicTypeName(const Symbol &);
|
|
bool IsSeparateModuleProcedureInterface(const Symbol *);
|
|
bool HasAlternateReturns(const Symbol &);
|
|
bool IsAutomaticallyDestroyed(const Symbol &);
|
|
|
|
// Return an ultimate component of type that matches predicate, or nullptr.
|
|
const Symbol *FindUltimateComponent(const DerivedTypeSpec &type,
|
|
const std::function<bool(const Symbol &)> &predicate);
|
|
const Symbol *FindUltimateComponent(
|
|
const Symbol &symbol, const std::function<bool(const Symbol &)> &predicate);
|
|
|
|
// Returns an immediate component of type that matches predicate, or nullptr.
|
|
// An immediate component of a type is one declared for that type or is an
|
|
// immediate component of the type that it extends.
|
|
const Symbol *FindImmediateComponent(
|
|
const DerivedTypeSpec &, const std::function<bool(const Symbol &)> &);
|
|
|
|
inline bool IsPointer(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::POINTER);
|
|
}
|
|
inline bool IsAllocatable(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::ALLOCATABLE);
|
|
}
|
|
inline bool IsValue(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::VALUE);
|
|
}
|
|
// IsAllocatableOrObjectPointer() may be the better choice
|
|
inline bool IsAllocatableOrPointer(const Symbol &symbol) {
|
|
return IsPointer(symbol) || IsAllocatable(symbol);
|
|
}
|
|
inline bool IsNamedConstant(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::PARAMETER);
|
|
}
|
|
inline bool IsOptional(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::OPTIONAL);
|
|
}
|
|
inline bool IsIntentIn(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::INTENT_IN);
|
|
}
|
|
inline bool IsIntentInOut(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::INTENT_INOUT);
|
|
}
|
|
inline bool IsIntentOut(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::INTENT_OUT);
|
|
}
|
|
inline bool IsProtected(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::PROTECTED);
|
|
}
|
|
inline bool IsImpliedDoIndex(const Symbol &symbol) {
|
|
return symbol.owner().kind() == Scope::Kind::ImpliedDos;
|
|
}
|
|
SymbolVector FinalsForDerivedTypeInstantiation(const DerivedTypeSpec &);
|
|
// Returns a non-null pointer to a FINAL procedure, if any.
|
|
const Symbol *IsFinalizable(const Symbol &,
|
|
std::set<const DerivedTypeSpec *> * = nullptr,
|
|
bool withImpureFinalizer = false);
|
|
const Symbol *IsFinalizable(const DerivedTypeSpec &,
|
|
std::set<const DerivedTypeSpec *> * = nullptr,
|
|
bool withImpureFinalizer = false, std::optional<int> rank = std::nullopt);
|
|
const Symbol *HasImpureFinal(
|
|
const Symbol &, std::optional<int> rank = std::nullopt);
|
|
// Is this type finalizable or does it contain any polymorphic allocatable
|
|
// ultimate components?
|
|
bool MayRequireFinalization(const DerivedTypeSpec &derived);
|
|
// Does this type have an allocatable direct component?
|
|
bool HasAllocatableDirectComponent(const DerivedTypeSpec &derived);
|
|
|
|
bool IsInBlankCommon(const Symbol &);
|
|
bool IsAssumedLengthCharacter(const Symbol &);
|
|
bool IsExternal(const Symbol &);
|
|
bool IsModuleProcedure(const Symbol &);
|
|
bool HasCoarray(const parser::Expr &);
|
|
bool IsAssumedType(const Symbol &);
|
|
bool IsPolymorphic(const Symbol &);
|
|
bool IsUnlimitedPolymorphic(const Symbol &);
|
|
bool IsPolymorphicAllocatable(const Symbol &);
|
|
|
|
inline bool IsCUDADeviceContext(const Scope *scope) {
|
|
if (scope) {
|
|
if (const Symbol * symbol{scope->symbol()}) {
|
|
if (const auto *subp{symbol->detailsIf<SubprogramDetails>()}) {
|
|
if (auto attrs{subp->cudaSubprogramAttrs()}) {
|
|
return *attrs != common::CUDASubprogramAttrs::Host;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline bool HasCUDAAttr(const Symbol &sym) {
|
|
if (const auto *details{sym.GetUltimate().detailsIf<ObjectEntityDetails>()}) {
|
|
if (details->cudaDataAttr()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline bool NeedCUDAAlloc(const Symbol &sym) {
|
|
if (IsDummy(sym)) {
|
|
return false;
|
|
}
|
|
if (const auto *details{sym.GetUltimate().detailsIf<ObjectEntityDetails>()}) {
|
|
if (details->cudaDataAttr() &&
|
|
(*details->cudaDataAttr() == common::CUDADataAttr::Device ||
|
|
*details->cudaDataAttr() == common::CUDADataAttr::Managed ||
|
|
*details->cudaDataAttr() == common::CUDADataAttr::Unified ||
|
|
*details->cudaDataAttr() == common::CUDADataAttr::Pinned)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const Scope *FindCUDADeviceContext(const Scope *);
|
|
std::optional<common::CUDADataAttr> GetCUDADataAttr(const Symbol *);
|
|
|
|
bool IsAccessible(const Symbol &, const Scope &);
|
|
|
|
// Return an error if a symbol is not accessible from a scope
|
|
std::optional<parser::MessageFormattedText> CheckAccessibleSymbol(
|
|
const Scope &, const Symbol &);
|
|
|
|
// Analysis of image control statements
|
|
bool IsImageControlStmt(const parser::ExecutableConstruct &);
|
|
// Get the location of the image control statement in this ExecutableConstruct
|
|
parser::CharBlock GetImageControlStmtLocation(
|
|
const parser::ExecutableConstruct &);
|
|
// Image control statements that reference coarrays need an extra message
|
|
// to clarify why they're image control statements. This function returns
|
|
// std::nullopt for ExecutableConstructs that do not require an extra message.
|
|
std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg(
|
|
const parser::ExecutableConstruct &);
|
|
|
|
// Returns the complete list of derived type parameter symbols in
|
|
// the order in which their declarations appear in the derived type
|
|
// definitions (parents first).
|
|
SymbolVector OrderParameterDeclarations(const Symbol &);
|
|
// Returns the complete list of derived type parameter names in the
|
|
// order defined by 7.5.3.2.
|
|
SymbolVector OrderParameterNames(const Symbol &);
|
|
|
|
// Return an existing or new derived type instance
|
|
const DeclTypeSpec &FindOrInstantiateDerivedType(Scope &, DerivedTypeSpec &&,
|
|
DeclTypeSpec::Category = DeclTypeSpec::TypeDerived);
|
|
|
|
// When a subprogram defined in a submodule defines a separate module
|
|
// procedure whose interface is defined in an ancestor (sub)module,
|
|
// returns a pointer to that interface, else null.
|
|
const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *);
|
|
|
|
// Determines whether an object might be visible outside a
|
|
// pure function (C1594); returns a non-null Symbol pointer for
|
|
// diagnostic purposes if so.
|
|
const Symbol *FindExternallyVisibleObject(
|
|
const Symbol &, const Scope &, bool isPointerDefinition);
|
|
|
|
template <typename A>
|
|
const Symbol *FindExternallyVisibleObject(const A &, const Scope &) {
|
|
return nullptr; // default base case
|
|
}
|
|
|
|
template <typename T>
|
|
const Symbol *FindExternallyVisibleObject(
|
|
const evaluate::Designator<T> &designator, const Scope &scope) {
|
|
if (const Symbol * symbol{designator.GetBaseObject().symbol()}) {
|
|
return FindExternallyVisibleObject(*symbol, scope, false);
|
|
} else if (std::holds_alternative<evaluate::CoarrayRef>(designator.u)) {
|
|
// Coindexed values are visible even if their image-local objects are not.
|
|
return designator.GetBaseObject().symbol();
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
const Symbol *FindExternallyVisibleObject(
|
|
const evaluate::Expr<T> &expr, const Scope &scope) {
|
|
return common::visit(
|
|
[&](const auto &x) { return FindExternallyVisibleObject(x, scope); },
|
|
expr.u);
|
|
}
|
|
|
|
// Applies GetUltimate(), then if the symbol is a generic procedure shadowing a
|
|
// specific procedure of the same name, return it instead.
|
|
const Symbol &BypassGeneric(const Symbol &);
|
|
|
|
// Given a cray pointee symbol, returns the related cray pointer symbol.
|
|
const Symbol &GetCrayPointer(const Symbol &crayPointee);
|
|
|
|
using SomeExpr = evaluate::Expr<evaluate::SomeType>;
|
|
|
|
bool ExprHasTypeCategory(
|
|
const SomeExpr &expr, const common::TypeCategory &type);
|
|
bool ExprTypeKindIsDefault(
|
|
const SomeExpr &expr, const SemanticsContext &context);
|
|
|
|
class GetExprHelper {
|
|
public:
|
|
explicit GetExprHelper(SemanticsContext *context) : context_{context} {}
|
|
GetExprHelper() : crashIfNoExpr_{true} {}
|
|
|
|
// Specializations for parse tree nodes that have a typedExpr member.
|
|
const SomeExpr *Get(const parser::Expr &);
|
|
const SomeExpr *Get(const parser::Variable &);
|
|
const SomeExpr *Get(const parser::DataStmtConstant &);
|
|
const SomeExpr *Get(const parser::AllocateObject &);
|
|
const SomeExpr *Get(const parser::PointerObject &);
|
|
|
|
template <typename T> const SomeExpr *Get(const common::Indirection<T> &x) {
|
|
return Get(x.value());
|
|
}
|
|
template <typename T> const SomeExpr *Get(const std::optional<T> &x) {
|
|
return x ? Get(*x) : nullptr;
|
|
}
|
|
template <typename T> const SomeExpr *Get(const T &x) {
|
|
static_assert(
|
|
!parser::HasTypedExpr<T>::value, "explicit Get overload must be added");
|
|
if constexpr (ConstraintTrait<T>) {
|
|
return Get(x.thing);
|
|
} else if constexpr (WrapperTrait<T>) {
|
|
return Get(x.v);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
private:
|
|
SemanticsContext *context_{nullptr};
|
|
const bool crashIfNoExpr_{false};
|
|
};
|
|
|
|
// If a SemanticsContext is passed, even if null, it is possible for a null
|
|
// pointer to be returned in the event of an expression that had fatal errors.
|
|
// Use these first two forms in semantics checks for best error recovery.
|
|
// If a SemanticsContext is not passed, a missing expression will
|
|
// cause a crash.
|
|
template <typename T>
|
|
const SomeExpr *GetExpr(SemanticsContext *context, const T &x) {
|
|
return GetExprHelper{context}.Get(x);
|
|
}
|
|
template <typename T>
|
|
const SomeExpr *GetExpr(SemanticsContext &context, const T &x) {
|
|
return GetExprHelper{&context}.Get(x);
|
|
}
|
|
template <typename T> const SomeExpr *GetExpr(const T &x) {
|
|
return GetExprHelper{}.Get(x);
|
|
}
|
|
|
|
const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &);
|
|
const evaluate::Assignment *GetAssignment(
|
|
const parser::PointerAssignmentStmt &);
|
|
|
|
template <typename T> std::optional<std::int64_t> GetIntValue(const T &x) {
|
|
if (const auto *expr{GetExpr(nullptr, x)}) {
|
|
return evaluate::ToInt64(*expr);
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
template <typename T> bool IsZero(const T &expr) {
|
|
auto value{GetIntValue(expr)};
|
|
return value && *value == 0;
|
|
}
|
|
|
|
// 15.2.2
|
|
enum class ProcedureDefinitionClass {
|
|
None,
|
|
Intrinsic,
|
|
External,
|
|
Internal,
|
|
Module,
|
|
Dummy,
|
|
Pointer,
|
|
StatementFunction
|
|
};
|
|
|
|
ProcedureDefinitionClass ClassifyProcedure(const Symbol &);
|
|
|
|
// Returns a list of storage associations due to EQUIVALENCE in a
|
|
// scope; each storage association is a list of symbol references
|
|
// in ascending order of scope offset. Note that the scope may have
|
|
// more EquivalenceSets than this function's result has storage
|
|
// associations; these are closures over equivalences.
|
|
std::list<std::list<SymbolRef>> GetStorageAssociations(const Scope &);
|
|
|
|
// Derived type component iterator that provides a C++ LegacyForwardIterator
|
|
// iterator over the Ordered, Direct, Ultimate or Potential components of a
|
|
// DerivedTypeSpec. These iterators can be used with STL algorithms
|
|
// accepting LegacyForwardIterator.
|
|
// The kind of component is a template argument of the iterator factory
|
|
// ComponentIterator.
|
|
//
|
|
// - Ordered components are the components from the component order defined
|
|
// in 7.5.4.7, except that the parent component IS added between the parent
|
|
// component order and the components in order of declaration.
|
|
// This "deviation" is important for structure-constructor analysis.
|
|
// For this kind of iterator, the component tree is recursively visited in the
|
|
// following order:
|
|
// - first, the Ordered components of the parent type (if relevant)
|
|
// - then, the parent component (if relevant, different from 7.5.4.7!)
|
|
// - then, the components in declaration order (without visiting subcomponents)
|
|
//
|
|
// - Ultimate, Direct and Potential components are as defined in 7.5.1.
|
|
// - Ultimate components of a derived type are the closure of its components
|
|
// of intrinsic type, its ALLOCATABLE or POINTER components, and the
|
|
// ultimate components of its non-ALLOCATABLE non-POINTER derived type
|
|
// components. (No ultimate component has a derived type unless it is
|
|
// ALLOCATABLE or POINTER.)
|
|
// - Direct components of a derived type are all of its components, and all
|
|
// of the direct components of its non-ALLOCATABLE non-POINTER derived type
|
|
// components. (Direct components are always present.)
|
|
// - Potential subobject components of a derived type are the closure of
|
|
// its non-POINTER components and the potential subobject components of
|
|
// its non-POINTER derived type components. (The lifetime of each
|
|
// potential subobject component is that of the entire instance.)
|
|
// - PotentialAndPointer subobject components of a derived type are the
|
|
// closure of its components (including POINTERs) and the
|
|
// PotentialAndPointer subobject components of its non-POINTER derived type
|
|
// components.
|
|
//
|
|
// type t1 ultimate components: x, a, p
|
|
// real x direct components: x, a, p
|
|
// real, allocatable :: a potential components: x, a
|
|
// real, pointer :: p potential & pointers: x, a, p
|
|
// end type
|
|
// type t2 ultimate components: y, c%x, c%a, c%p, b
|
|
// real y direct components: y, c, c%x, c%a, c%p, b
|
|
// type(t1) :: c potential components: y, c, c%x, c%a, b, b%x, b%a
|
|
// type(t1), allocatable :: b potential & pointers: potentials + c%p + b%p
|
|
// end type
|
|
//
|
|
// Parent and procedure components are considered against these definitions.
|
|
// For this kind of iterator, the component tree is recursively visited in the
|
|
// following order:
|
|
// - the parent component first (if relevant)
|
|
// - then, the components of the parent type (if relevant)
|
|
// + visiting the component and then, if it is derived type data component,
|
|
// visiting the subcomponents before visiting the next
|
|
// component in declaration order.
|
|
// - then, components in declaration order, similarly to components of parent
|
|
// type.
|
|
// Here, the parent component is visited first so that search for a component
|
|
// verifying a property will never descend into a component that already
|
|
// verifies the property (this helps giving clearer feedback).
|
|
//
|
|
// ComponentIterator::const_iterator remain valid during the whole lifetime of
|
|
// the DerivedTypeSpec passed by reference to the ComponentIterator factory.
|
|
// Their validity is independent of the ComponentIterator factory lifetime.
|
|
//
|
|
// For safety and simplicity, the iterators are read only and can only be
|
|
// incremented. This could be changed if desired.
|
|
//
|
|
// Note that iterators are made in such a way that one can easily test and build
|
|
// info message in the following way:
|
|
// ComponentIterator<ComponentKind::...> comp{derived}
|
|
// if (auto it{std::find_if(comp.begin(), comp.end(), predicate)}) {
|
|
// msg = it.BuildResultDesignatorName() + " verifies predicates";
|
|
// const Symbol *component{*it};
|
|
// ....
|
|
// }
|
|
|
|
ENUM_CLASS(ComponentKind, Ordered, Direct, Ultimate, Potential, Scope,
|
|
PotentialAndPointer)
|
|
|
|
template <ComponentKind componentKind> class ComponentIterator {
|
|
public:
|
|
ComponentIterator(const DerivedTypeSpec &derived) : derived_{derived} {}
|
|
class const_iterator {
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag;
|
|
using value_type = SymbolRef;
|
|
using difference_type = void;
|
|
using pointer = const Symbol *;
|
|
using reference = const Symbol &;
|
|
|
|
static const_iterator Create(const DerivedTypeSpec &);
|
|
|
|
const_iterator &operator++() {
|
|
Increment();
|
|
return *this;
|
|
}
|
|
const_iterator operator++(int) {
|
|
const_iterator tmp(*this);
|
|
Increment();
|
|
return tmp;
|
|
}
|
|
reference operator*() const {
|
|
CHECK(!componentPath_.empty());
|
|
return DEREF(componentPath_.back().component());
|
|
}
|
|
pointer operator->() const { return &**this; }
|
|
|
|
bool operator==(const const_iterator &other) const {
|
|
return componentPath_ == other.componentPath_;
|
|
}
|
|
bool operator!=(const const_iterator &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
// bool() operator indicates if the iterator can be dereferenced without
|
|
// having to check against an end() iterator.
|
|
explicit operator bool() const { return !componentPath_.empty(); }
|
|
|
|
// Builds a designator name of the referenced component for messages.
|
|
// The designator helps when the component referred to by the iterator
|
|
// may be "buried" into other components. This gives the full
|
|
// path inside the iterated derived type: e.g "%a%b%c%ultimate"
|
|
// when it->name() only gives "ultimate". Parent components are
|
|
// part of the path for clarity, even though they could be
|
|
// skipped.
|
|
std::string BuildResultDesignatorName() const;
|
|
|
|
private:
|
|
using name_iterator =
|
|
std::conditional_t<componentKind == ComponentKind::Scope,
|
|
typename Scope::const_iterator,
|
|
typename std::list<SourceName>::const_iterator>;
|
|
|
|
class ComponentPathNode {
|
|
public:
|
|
explicit ComponentPathNode(const DerivedTypeSpec &derived)
|
|
: derived_{derived} {
|
|
if constexpr (componentKind == ComponentKind::Scope) {
|
|
const Scope &scope{DEREF(derived.GetScope())};
|
|
nameIterator_ = scope.cbegin();
|
|
nameEnd_ = scope.cend();
|
|
} else {
|
|
const std::list<SourceName> &nameList{
|
|
derived.typeSymbol().get<DerivedTypeDetails>().componentNames()};
|
|
nameIterator_ = nameList.cbegin();
|
|
nameEnd_ = nameList.cend();
|
|
}
|
|
}
|
|
const Symbol *component() const { return component_; }
|
|
void set_component(const Symbol &component) { component_ = &component; }
|
|
bool visited() const { return visited_; }
|
|
void set_visited(bool yes) { visited_ = yes; }
|
|
bool descended() const { return descended_; }
|
|
void set_descended(bool yes) { descended_ = yes; }
|
|
name_iterator &nameIterator() { return nameIterator_; }
|
|
name_iterator nameEnd() { return nameEnd_; }
|
|
const Symbol &GetTypeSymbol() const { return derived_->typeSymbol(); }
|
|
const Scope &GetScope() const {
|
|
return derived_->scope() ? *derived_->scope()
|
|
: DEREF(GetTypeSymbol().scope());
|
|
}
|
|
bool operator==(const ComponentPathNode &that) const {
|
|
return &*derived_ == &*that.derived_ &&
|
|
nameIterator_ == that.nameIterator_ &&
|
|
component_ == that.component_;
|
|
}
|
|
|
|
private:
|
|
common::Reference<const DerivedTypeSpec> derived_;
|
|
name_iterator nameEnd_;
|
|
name_iterator nameIterator_;
|
|
const Symbol *component_{nullptr}; // until Increment()
|
|
bool visited_{false};
|
|
bool descended_{false};
|
|
};
|
|
|
|
const DerivedTypeSpec *PlanComponentTraversal(
|
|
const Symbol &component) const;
|
|
// Advances to the next relevant symbol, if any. Afterwards, the
|
|
// iterator will either be at its end or contain no null component().
|
|
void Increment();
|
|
|
|
std::vector<ComponentPathNode> componentPath_;
|
|
};
|
|
|
|
const_iterator begin() { return cbegin(); }
|
|
const_iterator end() { return cend(); }
|
|
const_iterator cbegin() { return const_iterator::Create(derived_); }
|
|
const_iterator cend() { return const_iterator{}; }
|
|
|
|
private:
|
|
const DerivedTypeSpec &derived_;
|
|
};
|
|
|
|
extern template class ComponentIterator<ComponentKind::Ordered>;
|
|
extern template class ComponentIterator<ComponentKind::Direct>;
|
|
extern template class ComponentIterator<ComponentKind::Ultimate>;
|
|
extern template class ComponentIterator<ComponentKind::Potential>;
|
|
extern template class ComponentIterator<ComponentKind::Scope>;
|
|
extern template class ComponentIterator<ComponentKind::PotentialAndPointer>;
|
|
using OrderedComponentIterator = ComponentIterator<ComponentKind::Ordered>;
|
|
using DirectComponentIterator = ComponentIterator<ComponentKind::Direct>;
|
|
using UltimateComponentIterator = ComponentIterator<ComponentKind::Ultimate>;
|
|
using PotentialComponentIterator = ComponentIterator<ComponentKind::Potential>;
|
|
using ScopeComponentIterator = ComponentIterator<ComponentKind::Scope>;
|
|
using PotentialAndPointerComponentIterator =
|
|
ComponentIterator<ComponentKind::PotentialAndPointer>;
|
|
|
|
// Common component searches, the iterator returned is referring to the first
|
|
// component, according to the order defined for the related ComponentIterator,
|
|
// that verifies the property from the name.
|
|
// If no component verifies the property, an end iterator (casting to false)
|
|
// is returned. Otherwise, the returned iterator casts to true and can be
|
|
// dereferenced.
|
|
PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent(
|
|
const DerivedTypeSpec &);
|
|
UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent(
|
|
const DerivedTypeSpec &);
|
|
UltimateComponentIterator::const_iterator FindPointerUltimateComponent(
|
|
const DerivedTypeSpec &);
|
|
UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent(
|
|
const DerivedTypeSpec &);
|
|
DirectComponentIterator::const_iterator FindAllocatableOrPointerDirectComponent(
|
|
const DerivedTypeSpec &);
|
|
PotentialComponentIterator::const_iterator
|
|
FindPolymorphicAllocatablePotentialComponent(const DerivedTypeSpec &);
|
|
|
|
// The LabelEnforce class (given a set of labels) provides an error message if
|
|
// there is a branch to a label which is not in the given set.
|
|
class LabelEnforce {
|
|
public:
|
|
LabelEnforce(SemanticsContext &context, std::set<parser::Label> &&labels,
|
|
parser::CharBlock constructSourcePosition, const char *construct)
|
|
: context_{context}, labels_{labels},
|
|
constructSourcePosition_{constructSourcePosition}, construct_{
|
|
construct} {}
|
|
template <typename T> bool Pre(const T &) { return true; }
|
|
template <typename T> bool Pre(const parser::Statement<T> &statement) {
|
|
currentStatementSourcePosition_ = statement.source;
|
|
return true;
|
|
}
|
|
|
|
template <typename T> void Post(const T &) {}
|
|
|
|
void Post(const parser::GotoStmt &gotoStmt);
|
|
void Post(const parser::ComputedGotoStmt &computedGotoStmt);
|
|
void Post(const parser::ArithmeticIfStmt &arithmeticIfStmt);
|
|
void Post(const parser::AssignStmt &assignStmt);
|
|
void Post(const parser::AssignedGotoStmt &assignedGotoStmt);
|
|
void Post(const parser::AltReturnSpec &altReturnSpec);
|
|
void Post(const parser::ErrLabel &errLabel);
|
|
void Post(const parser::EndLabel &endLabel);
|
|
void Post(const parser::EorLabel &eorLabel);
|
|
void CheckLabelUse(const parser::Label &labelUsed);
|
|
|
|
private:
|
|
SemanticsContext &context_;
|
|
std::set<parser::Label> labels_;
|
|
parser::CharBlock currentStatementSourcePosition_{nullptr};
|
|
parser::CharBlock constructSourcePosition_{nullptr};
|
|
const char *construct_{nullptr};
|
|
|
|
parser::MessageFormattedText GetEnclosingConstructMsg();
|
|
void SayWithConstruct(SemanticsContext &context,
|
|
parser::CharBlock stmtLocation, parser::MessageFormattedText &&message,
|
|
parser::CharBlock constructLocation);
|
|
};
|
|
// Return the (possibly null) name of the ConstructNode
|
|
const std::optional<parser::Name> &MaybeGetNodeName(
|
|
const ConstructNode &construct);
|
|
|
|
// Convert evaluate::GetShape() result into an ArraySpec
|
|
std::optional<ArraySpec> ToArraySpec(
|
|
evaluate::FoldingContext &, const evaluate::Shape &);
|
|
std::optional<ArraySpec> ToArraySpec(
|
|
evaluate::FoldingContext &, const std::optional<evaluate::Shape> &);
|
|
|
|
// Searches a derived type and a scope for a particular defined I/O procedure.
|
|
bool HasDefinedIo(
|
|
common::DefinedIo, const DerivedTypeSpec &, const Scope * = nullptr);
|
|
|
|
// Some intrinsic operators have more than one name (e.g. `operator(.eq.)` and
|
|
// `operator(==)`). GetAllNames() returns them all, including symbolName.
|
|
std::forward_list<std::string> GetAllNames(
|
|
const SemanticsContext &, const SourceName &);
|
|
|
|
// Determines the derived type of a procedure's initial "dtv" dummy argument,
|
|
// assuming that the procedure is a specific procedure of a defined I/O
|
|
// generic interface,
|
|
const DerivedTypeSpec *GetDtvArgDerivedType(const Symbol &);
|
|
|
|
// If "expr" exists and is a designator for a deferred length
|
|
// character allocatable whose semantics might change under Fortran 202X,
|
|
// emit a portability warning.
|
|
void WarnOnDeferredLengthCharacterScalar(SemanticsContext &, const SomeExpr *,
|
|
parser::CharBlock at, const char *what);
|
|
|
|
inline const parser::Name *getDesignatorNameIfDataRef(
|
|
const parser::Designator &designator) {
|
|
const auto *dataRef{std::get_if<parser::DataRef>(&designator.u)};
|
|
return dataRef ? std::get_if<parser::Name>(&dataRef->u) : nullptr;
|
|
}
|
|
|
|
bool CouldBeDataPointerValuedFunction(const Symbol *);
|
|
|
|
template <typename R, typename T>
|
|
std::optional<R> GetConstExpr(SemanticsContext &semanticsContext, const T &x) {
|
|
using DefaultCharConstantType = evaluate::Ascii;
|
|
if (const auto *expr{GetExpr(semanticsContext, x)}) {
|
|
const auto foldExpr{evaluate::Fold(
|
|
semanticsContext.foldingContext(), common::Clone(*expr))};
|
|
if constexpr (std::is_same_v<R, std::string>) {
|
|
return evaluate::GetScalarConstantValue<DefaultCharConstantType>(
|
|
foldExpr);
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Returns "m" for a module, "m:sm" for a submodule.
|
|
std::string GetModuleOrSubmoduleName(const Symbol &);
|
|
|
|
// Return the assembly name emitted for a common block.
|
|
std::string GetCommonBlockObjectName(const Symbol &, bool underscoring);
|
|
|
|
// Check for ambiguous USE associations
|
|
bool HadUseError(SemanticsContext &, SourceName at, const Symbol *);
|
|
|
|
/// Checks if the assignment statement has a single variable on the RHS.
|
|
inline bool checkForSingleVariableOnRHS(
|
|
const Fortran::parser::AssignmentStmt &assignmentStmt) {
|
|
const Fortran::parser::Expr &expr{
|
|
std::get<Fortran::parser::Expr>(assignmentStmt.t)};
|
|
const Fortran::common::Indirection<Fortran::parser::Designator> *designator =
|
|
std::get_if<Fortran::common::Indirection<Fortran::parser::Designator>>(
|
|
&expr.u);
|
|
return designator != nullptr;
|
|
}
|
|
|
|
/// Checks if the symbol on the LHS of the assignment statement is present in
|
|
/// the RHS expression.
|
|
inline bool checkForSymbolMatch(
|
|
const Fortran::parser::AssignmentStmt &assignmentStmt) {
|
|
const auto &var{std::get<Fortran::parser::Variable>(assignmentStmt.t)};
|
|
const auto &expr{std::get<Fortran::parser::Expr>(assignmentStmt.t)};
|
|
const auto *e{Fortran::semantics::GetExpr(expr)};
|
|
const auto *v{Fortran::semantics::GetExpr(var)};
|
|
auto varSyms{Fortran::evaluate::GetSymbolVector(*v)};
|
|
const Fortran::semantics::Symbol &varSymbol{*varSyms.front()};
|
|
for (const Fortran::semantics::Symbol &symbol :
|
|
Fortran::evaluate::GetSymbolVector(*e)) {
|
|
if (varSymbol == symbol) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
} // namespace Fortran::semantics
|
|
#endif // FORTRAN_SEMANTICS_TOOLS_H_
|