This adds COO and loose compressed to output testing. Also prepares BSR for output testing, but needs the conversion to work first. Cleanup of stale TODOs
157 lines
5.4 KiB
Python
157 lines
5.4 KiB
Python
# RUN: env SUPPORT_LIB=%mlir_c_runner_utils \
|
|
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
import ctypes
|
|
import numpy as np
|
|
import os
|
|
import sys
|
|
|
|
from mlir import ir
|
|
from mlir import runtime as rt
|
|
|
|
from mlir.dialects import sparse_tensor as st
|
|
from mlir.dialects import builtin
|
|
from mlir.dialects import func
|
|
from mlir.dialects.linalg.opdsl import lang as dsl
|
|
|
|
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(_SCRIPT_PATH)
|
|
from tools import sparse_compiler
|
|
|
|
|
|
@dsl.linalg_structured_op
|
|
def matmul_dsl(
|
|
A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
|
|
B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
|
|
C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True),
|
|
):
|
|
C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
|
|
|
|
|
|
def build_SpMM(attr: st.EncodingAttr):
|
|
"""Build SpMM kernel.
|
|
|
|
This method generates a linalg op with for matrix multiplication using
|
|
just the Python API. Effectively, a generic linalg op is constructed
|
|
that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
|
|
"""
|
|
module = ir.Module.create()
|
|
f64 = ir.F64Type.get()
|
|
a = ir.RankedTensorType.get([3, 4], f64, attr)
|
|
b = ir.RankedTensorType.get([4, 2], f64)
|
|
c = ir.RankedTensorType.get([3, 2], f64)
|
|
arguments = [a, b, c]
|
|
with ir.InsertionPoint(module.body):
|
|
|
|
@func.FuncOp.from_py_func(*arguments)
|
|
def spMxM(*args):
|
|
return matmul_dsl(args[0], args[1], outs=[args[2]])
|
|
|
|
return module
|
|
|
|
|
|
def boilerplate(attr: st.EncodingAttr):
|
|
"""Returns boilerplate main method.
|
|
|
|
This method sets up a boilerplate main method that takes three tensors
|
|
(a, b, c), converts the first tensor a into s sparse tensor, and then
|
|
calls the sparse kernel for matrix multiplication. For convenience,
|
|
this part is purely done as string input.
|
|
"""
|
|
return f"""
|
|
func.func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64>
|
|
attributes {{ llvm.emit_c_interface }} {{
|
|
%a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}>
|
|
%0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>,
|
|
tensor<4x2xf64>,
|
|
tensor<3x2xf64>) -> tensor<3x2xf64>
|
|
return %0 : tensor<3x2xf64>
|
|
}}
|
|
"""
|
|
|
|
|
|
def build_compile_and_run_SpMM(attr: st.EncodingAttr, compiler):
|
|
# Build.
|
|
module = build_SpMM(attr)
|
|
func = str(module.operation.regions[0].blocks[0].operations[0].operation)
|
|
module = ir.Module.parse(func + boilerplate(attr))
|
|
|
|
# Compile.
|
|
engine = compiler.compile_and_jit(module)
|
|
|
|
# Set up numpy input and buffer for output.
|
|
a = np.array(
|
|
[[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]], np.float64
|
|
)
|
|
b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64)
|
|
c = np.zeros((3, 2), np.float64)
|
|
|
|
mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
|
|
mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
|
|
mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
|
|
# Allocate a MemRefDescriptor to receive the output tensor.
|
|
# The buffer itself is allocated inside the MLIR code generation.
|
|
ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)()
|
|
mem_out = ctypes.pointer(ctypes.pointer(ref_out))
|
|
|
|
# Invoke the kernel and get numpy output.
|
|
# Built-in bufferization uses in-out buffers.
|
|
engine.invoke("main", mem_out, mem_a, mem_b, mem_c)
|
|
|
|
# Sanity check on computed result.
|
|
expected = np.matmul(a, b)
|
|
c = rt.ranked_memref_to_numpy(mem_out[0])
|
|
if np.allclose(c, expected):
|
|
pass
|
|
else:
|
|
quit(f"FAILURE")
|
|
|
|
|
|
def main():
|
|
support_lib = os.getenv("SUPPORT_LIB")
|
|
assert support_lib is not None, "SUPPORT_LIB is undefined"
|
|
if not os.path.exists(support_lib):
|
|
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib)
|
|
|
|
# CHECK-LABEL: TEST: testSpMM
|
|
print("\nTEST: testSpMM")
|
|
with ir.Context() as ctx, ir.Location.unknown():
|
|
count = 0
|
|
# Loop over various ways to compile and annotate the SpMM kernel with
|
|
# a *single* sparse tensor. Note that we deliberate do not exhaustively
|
|
# search the full state space to reduce runtime of the test. It is
|
|
# straightforward to adapt the code below to explore more combinations.
|
|
|
|
vl = 1
|
|
e = False
|
|
opt = f"parallelization-strategy=none"
|
|
levels = [
|
|
[st.DimLevelType.dense, st.DimLevelType.dense],
|
|
[st.DimLevelType.dense, st.DimLevelType.compressed],
|
|
[st.DimLevelType.compressed, st.DimLevelType.dense],
|
|
[st.DimLevelType.compressed, st.DimLevelType.compressed],
|
|
]
|
|
orderings = [
|
|
ir.AffineMap.get_permutation([0, 1]),
|
|
ir.AffineMap.get_permutation([1, 0]),
|
|
]
|
|
bitwidths = [0]
|
|
compiler = sparse_compiler.SparseCompiler(
|
|
options=opt, opt_level=0, shared_libs=[support_lib]
|
|
)
|
|
for level in levels:
|
|
for ordering in orderings:
|
|
for pwidth in bitwidths:
|
|
for iwidth in bitwidths:
|
|
attr = st.EncodingAttr.get(
|
|
level, ordering, None, pwidth, iwidth
|
|
)
|
|
build_compile_and_run_SpMM(attr, compiler)
|
|
count = count + 1
|
|
# CHECK: Passed 8 tests
|
|
print("Passed ", count, "tests")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|