Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py
Aart Bik ed2d0b0e9b [mlir][sparse] extend sparse output test (#69986)
This adds COO and loose compressed to output testing. Also prepares BSR
for output testing, but needs the conversion to work first. Cleanup of
stale TODOs
2023-10-23 21:33:54 -07:00

138 lines
4.4 KiB
Python

# RUN: env SUPPORT_LIB=%mlir_c_runner_utils \
# RUN: %PYTHON %s | FileCheck %s
import ctypes
import os
import sys
import tempfile
from mlir import ir
from mlir import runtime as rt
from mlir.dialects import builtin
from mlir.dialects import sparse_tensor as st
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(_SCRIPT_PATH)
from tools import sparse_compiler
def boilerplate(attr: st.EncodingAttr):
"""Returns boilerplate main method."""
return f"""
func.func @main(%p : !llvm.ptr<i8>) -> () attributes {{ llvm.emit_c_interface }} {{
%d = arith.constant sparse<[[0, 0], [1, 1], [0, 9], [9, 0], [4, 4]],
[1.0, 2.0, 3.0, 4.0, 5.0]> : tensor<10x10xf64>
%a = sparse_tensor.convert %d : tensor<10x10xf64> to tensor<10x10xf64, {attr}>
sparse_tensor.out %a, %p : tensor<10x10xf64, {attr}>, !llvm.ptr<i8>
return
}}
"""
def expected():
"""Returns expected contents of output.
Regardless of the dimension ordering, compression, and bitwidths that are
used in the sparse tensor, the output is always lexicographically sorted
by natural index order.
"""
return f"""; extended FROSTT format
2 5
10 10
1 1 1
1 10 3
2 2 2
5 5 5
10 1 4
"""
def build_compile_and_run_output(attr: st.EncodingAttr, compiler, expected):
# Build and Compile.
module = ir.Module.parse(boilerplate(attr))
engine = compiler.compile_and_jit(module)
# Invoke the kernel and compare output.
with tempfile.TemporaryDirectory() as test_dir:
out = os.path.join(test_dir, "out.tns")
buf = out.encode("utf-8")
mem_a = ctypes.pointer(ctypes.pointer(ctypes.create_string_buffer(buf)))
engine.invoke("main", mem_a)
actual = open(out).read()
if actual != expected:
quit("FAILURE")
def main():
support_lib = os.getenv("SUPPORT_LIB")
assert support_lib is not None, "SUPPORT_LIB is undefined"
if not os.path.exists(support_lib):
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib)
# CHECK-LABEL: TEST: test_output
print("\nTEST: test_output")
count = 0
with ir.Context() as ctx, ir.Location.unknown():
# Loop over various sparse types (COO, CSR, DCSR, CSC, DCSC) with
# regular and loose compression and various metadata bitwidths.
# For these simple orderings, dim2lvl and lvl2dim are the same.
levels = [
[st.DimLevelType.compressed_nu, st.DimLevelType.singleton],
[st.DimLevelType.dense, st.DimLevelType.compressed],
[st.DimLevelType.dense, st.DimLevelType.loose_compressed],
[st.DimLevelType.compressed, st.DimLevelType.compressed],
]
orderings = [
ir.AffineMap.get_permutation([0, 1]),
ir.AffineMap.get_permutation([1, 0]),
]
bitwidths = [8, 16, 32, 64]
compiler = sparse_compiler.SparseCompiler(
options="", opt_level=2, shared_libs=[support_lib]
)
for level in levels:
for ordering in orderings:
for bwidth in bitwidths:
attr = st.EncodingAttr.get(
level, ordering, ordering, bwidth, bwidth
)
build_compile_and_run_output(attr, compiler, expected())
count = count + 1
# Now do the same for BSR.
level = [
st.DimLevelType.dense,
st.DimLevelType.compressed,
st.DimLevelType.dense,
st.DimLevelType.dense,
]
d0 = ir.AffineDimExpr.get(0)
d1 = ir.AffineDimExpr.get(1)
c2 = ir.AffineConstantExpr.get(2)
dim2lvl = ir.AffineMap.get(
2,
0,
[
ir.AffineExpr.get_floor_div(d0, c2),
ir.AffineExpr.get_floor_div(d1, c2),
ir.AffineExpr.get_mod(d0, c2),
ir.AffineExpr.get_mod(d1, c2),
],
)
l0 = ir.AffineDimExpr.get(0)
l1 = ir.AffineDimExpr.get(1)
l2 = ir.AffineDimExpr.get(2)
l3 = ir.AffineDimExpr.get(3)
lvl2dim = ir.AffineMap.get(4, 0, [2 * l0 + l2, 2 * l1 + l3])
attr = st.EncodingAttr.get(level, dim2lvl, lvl2dim, 0, 0)
# TODO: enable this one CONVERSION on BSR is working
# build_compile_and_run_output(attr, compiler, block_expected())
count = count + 1
# CHECK: Passed 33 tests
print("Passed", count, "tests")
if __name__ == "__main__":
main()