Files
clang-p2996/clang/test/Analysis/copy-elision.cpp
Balazs Benics 6ad47e1c4f [analyzer] Catch leaking stack addresses via stack variables
Not only global variables can hold references to dead stack variables.
Consider this example:

  void write_stack_address_to(char **q) {
    char local;
    *q = &local;
  }

  void test_stack() {
    char *p;
    write_stack_address_to(&p);
  }

The address of 'local' is assigned to 'p', which becomes a dangling
pointer after 'write_stack_address_to()' returns.

The StackAddrEscapeChecker was looking for bindings in the store which
referred to variables of the popped stack frame, but it only considered
global variables in this regard. This patch relaxes this, catching
stack variable bindings as well.

---

This patch also works for temporary objects like:

  struct Bar {
    const int &ref;
    explicit Bar(int y) : ref(y) {
      // Okay.
    } // End of the constructor call, `ref` is dangling now. Warning!
  };

  void test() {
    Bar{33}; // Temporary object, so the corresponding memregion is
             // *not* a VarRegion.
  }

---

The return value optimization aka. copy-elision might kick in but that
is modeled by passing an imaginary CXXThisRegion which refers to the
parent stack frame which is supposed to be the 'return slot'.
Objects residing in the 'return slot' outlive the scope of the inner
call, thus we should expect no warning about them - except if we
explicitly disable copy-elision.

Reviewed By: NoQ, martong

Differential Revision: https://reviews.llvm.org/D107078
2021-08-27 11:31:16 +02:00

421 lines
13 KiB
C++

// RUN: %clang_analyze_cc1 -analyzer-checker=core,debug.ExprInspection -std=c++11 \
// RUN: -analyzer-config eagerly-assume=false -verify %s
// RUN: %clang_analyze_cc1 -analyzer-checker=core,debug.ExprInspection -std=c++17 \
// RUN: -analyzer-config eagerly-assume=false -verify %s
// RUN: %clang_analyze_cc1 -analyzer-checker=core,debug.ExprInspection -std=c++11 \
// RUN: -analyzer-config elide-constructors=false -DNO_ELIDE_FLAG \
// RUN: -analyzer-config eagerly-assume=false -verify=expected,no-elide %s
// RUN: %clang_analyze_cc1 -analyzer-checker=core,debug.ExprInspection -std=c++17 \
// RUN: -analyzer-config elide-constructors=false \
// RUN: -analyzer-config eagerly-assume=false -verify %s
// Copy elision always occurs in C++17, otherwise it's under
// an on-by-default flag.
#if __cplusplus >= 201703L
#define ELIDE 1
#else
#ifndef NO_ELIDE_FLAG
#define ELIDE 1
#endif
#endif
void clang_analyzer_eval(bool);
namespace variable_functional_cast_crash {
struct A {
A(int) {}
};
void foo() {
A a = A(0);
}
struct B {
A a;
B(): a(A(0)) {}
};
} // namespace variable_functional_cast_crash
namespace ctor_initializer {
struct S {
int x, y, z;
};
struct T {
S s;
int w;
T(int w): s(), w(w) {}
};
class C {
T t;
public:
C() : t(T(4)) {
S s = {1, 2, 3};
t.s = s;
// FIXME: Should be TRUE regardless of copy elision.
clang_analyzer_eval(t.w == 4);
#ifdef ELIDE
// expected-warning@-2{{TRUE}}
#else
// expected-warning@-4{{UNKNOWN}}
#endif
}
};
struct A {
int x;
A(): x(0) {}
~A() {}
};
struct B {
A a;
B() : a(A()) {}
};
void foo() {
B b;
clang_analyzer_eval(b.a.x == 0); // expected-warning{{TRUE}}
}
} // namespace ctor_initializer
namespace elision_on_ternary_op_branches {
class C1 {
int x;
public:
C1(int x): x(x) {}
int getX() const { return x; }
~C1();
};
class C2 {
int x;
int y;
public:
C2(int x, int y): x(x), y(y) {}
int getX() const { return x; }
int getY() const { return y; }
~C2();
};
void foo(int coin) {
C1 c1 = coin ? C1(1) : C1(2);
if (coin) {
clang_analyzer_eval(c1.getX() == 1); // expected-warning{{TRUE}}
} else {
clang_analyzer_eval(c1.getX() == 2); // expected-warning{{TRUE}}
}
C2 c2 = coin ? C2(3, 4) : C2(5, 6);
if (coin) {
clang_analyzer_eval(c2.getX() == 3); // expected-warning{{TRUE}}
clang_analyzer_eval(c2.getY() == 4); // expected-warning{{TRUE}}
} else {
clang_analyzer_eval(c2.getX() == 5); // expected-warning{{TRUE}}
clang_analyzer_eval(c2.getY() == 6); // expected-warning{{TRUE}}
}
}
} // namespace elision_on_ternary_op_branches
namespace address_vector_tests {
template <typename T> struct AddressVector {
T *buf[20];
int len;
AddressVector() : len(0) {}
void push(T *t) {
buf[len] = t;
++len;
}
};
class ClassWithoutDestructor {
AddressVector<ClassWithoutDestructor> &v;
public:
ClassWithoutDestructor(AddressVector<ClassWithoutDestructor> &v) : v(v) {
push();
}
ClassWithoutDestructor(ClassWithoutDestructor &&c) : v(c.v) { push(); }
ClassWithoutDestructor(const ClassWithoutDestructor &c) : v(c.v) { push(); }
void push() { v.push(this); }
};
ClassWithoutDestructor make1(AddressVector<ClassWithoutDestructor> &v) {
return ClassWithoutDestructor(v);
// no-elide-warning@-1 {{Address of stack memory associated with temporary \
object of type 'address_vector_tests::ClassWithoutDestructor' is still \
referred to by the stack variable 'v' upon returning to the caller}}
}
ClassWithoutDestructor make2(AddressVector<ClassWithoutDestructor> &v) {
return make1(v);
// no-elide-warning@-1 {{Address of stack memory associated with temporary \
object of type 'address_vector_tests::ClassWithoutDestructor' is still \
referred to by the stack variable 'v' upon returning to the caller}}
}
ClassWithoutDestructor make3(AddressVector<ClassWithoutDestructor> &v) {
return make2(v);
// no-elide-warning@-1 {{Address of stack memory associated with temporary \
object of type 'address_vector_tests::ClassWithoutDestructor' is still \
referred to by the stack variable 'v' upon returning to the caller}}
}
void testMultipleReturns() {
AddressVector<ClassWithoutDestructor> v;
ClassWithoutDestructor c = make3(v);
#if ELIDE
clang_analyzer_eval(v.len == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] == &c); // expected-warning{{TRUE}}
#else
clang_analyzer_eval(v.len == 5); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] != v.buf[1]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[1] != v.buf[2]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[2] != v.buf[3]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[3] != v.buf[4]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[4] == &c); // expected-warning{{TRUE}}
#endif
}
void consume(ClassWithoutDestructor c) {
c.push();
// expected-warning@-1 {{Address of stack memory associated with local \
variable 'c' is still referred to by the stack variable 'v' upon returning \
to the caller}}
}
void testArgumentConstructorWithoutDestructor() {
AddressVector<ClassWithoutDestructor> v;
consume(make3(v));
#if ELIDE
clang_analyzer_eval(v.len == 2); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] == v.buf[1]); // expected-warning{{TRUE}}
#else
clang_analyzer_eval(v.len == 6); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] != v.buf[1]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[1] != v.buf[2]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[2] != v.buf[3]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[3] != v.buf[4]); // expected-warning{{TRUE}}
// We forced a push() in consume(), let's see if the address here matches
// the address during construction.
clang_analyzer_eval(v.buf[4] == v.buf[5]); // expected-warning{{TRUE}}
#endif
}
class ClassWithDestructor {
AddressVector<ClassWithDestructor> &v;
public:
ClassWithDestructor(AddressVector<ClassWithDestructor> &v) : v(v) {
push();
}
ClassWithDestructor(ClassWithDestructor &&c) : v(c.v) { push(); }
ClassWithDestructor(const ClassWithDestructor &c) : v(c.v) { push(); }
~ClassWithDestructor() { push(); }
void push() { v.push(this); }
};
void testVariable() {
AddressVector<ClassWithDestructor> v;
{
ClassWithDestructor c = ClassWithDestructor(v);
// Check if the last destructor is an automatic destructor.
// A temporary destructor would have fired by now.
#if ELIDE
clang_analyzer_eval(v.len == 1); // expected-warning{{TRUE}}
#else
clang_analyzer_eval(v.len == 3); // expected-warning{{TRUE}}
#endif
}
#if ELIDE
// 0. Construct the variable.
// 1. Destroy the variable.
clang_analyzer_eval(v.len == 2); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] == v.buf[1]); // expected-warning{{TRUE}}
#else
// 0. Construct the temporary.
// 1. Construct the variable.
// 2. Destroy the temporary.
// 3. Destroy the variable.
clang_analyzer_eval(v.len == 4); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] == v.buf[2]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[1] == v.buf[3]); // expected-warning{{TRUE}}
#endif
}
struct TestCtorInitializer {
ClassWithDestructor c;
TestCtorInitializer(AddressVector<ClassWithDestructor> &v)
: c(ClassWithDestructor(v)) {}
// no-elide-warning@-1 {{Address of stack memory associated with temporary \
object of type 'address_vector_tests::ClassWithDestructor' is still referred \
to by the stack variable 'v' upon returning to the caller}}
};
void testCtorInitializer() {
AddressVector<ClassWithDestructor> v;
{
TestCtorInitializer t(v);
// Check if the last destructor is an automatic destructor.
// A temporary destructor would have fired by now.
#if ELIDE
clang_analyzer_eval(v.len == 1); // expected-warning{{TRUE}}
#else
clang_analyzer_eval(v.len == 3); // expected-warning{{TRUE}}
#endif
}
#if ELIDE
// 0. Construct the member variable.
// 1. Destroy the member variable.
clang_analyzer_eval(v.len == 2); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] == v.buf[1]); // expected-warning{{TRUE}}
#else
// 0. Construct the temporary.
// 1. Construct the member variable.
// 2. Destroy the temporary.
// 3. Destroy the member variable.
clang_analyzer_eval(v.len == 4); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] == v.buf[2]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[1] == v.buf[3]); // expected-warning{{TRUE}}
#endif
}
ClassWithDestructor make1(AddressVector<ClassWithDestructor> &v) {
return ClassWithDestructor(v);
// no-elide-warning@-1 {{Address of stack memory associated with temporary \
object of type 'address_vector_tests::ClassWithDestructor' is still referred \
to by the stack variable 'v' upon returning to the caller}}
}
ClassWithDestructor make2(AddressVector<ClassWithDestructor> &v) {
return make1(v);
// no-elide-warning@-1 {{Address of stack memory associated with temporary \
object of type 'address_vector_tests::ClassWithDestructor' is still referred \
to by the stack variable 'v' upon returning to the caller}}
}
ClassWithDestructor make3(AddressVector<ClassWithDestructor> &v) {
return make2(v);
// no-elide-warning@-1 {{Address of stack memory associated with temporary \
object of type 'address_vector_tests::ClassWithDestructor' is still referred \
to by the stack variable 'v' upon returning to the caller}}
}
void testMultipleReturnsWithDestructors() {
AddressVector<ClassWithDestructor> v;
{
ClassWithDestructor c = make3(v);
// Check if the last destructor is an automatic destructor.
// A temporary destructor would have fired by now.
#if ELIDE
clang_analyzer_eval(v.len == 1); // expected-warning{{TRUE}}
#else
clang_analyzer_eval(v.len == 9); // expected-warning{{TRUE}}
#endif
}
#if ELIDE
// 0. Construct the variable. Yes, constructor in make1() constructs
// the variable 'c'.
// 1. Destroy the variable.
clang_analyzer_eval(v.len == 2); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] == v.buf[1]); // expected-warning{{TRUE}}
#else
// 0. Construct the temporary in make1().
// 1. Construct the temporary in make2().
// 2. Destroy the temporary in make1().
// 3. Construct the temporary in make3().
// 4. Destroy the temporary in make2().
// 5. Construct the temporary here.
// 6. Destroy the temporary in make3().
// 7. Construct the variable.
// 8. Destroy the temporary here.
// 9. Destroy the variable.
clang_analyzer_eval(v.len == 10); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] == v.buf[2]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[1] == v.buf[4]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[3] == v.buf[6]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[5] == v.buf[8]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[7] == v.buf[9]); // expected-warning{{TRUE}}
#endif
}
void consume(ClassWithDestructor c) {
c.push();
// expected-warning@-1 {{Address of stack memory associated with local \
variable 'c' is still referred to by the stack variable 'v' upon returning \
to the caller}}
}
void testArgumentConstructorWithDestructor() {
AddressVector<ClassWithDestructor> v;
consume(make3(v));
#if ELIDE
// 0. Construct the argument.
// 1. Forced push() in consume().
// 2. Destroy the argument.
clang_analyzer_eval(v.len == 3); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] == v.buf[1]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[1] == v.buf[2]); // expected-warning{{TRUE}}
#else
// 0. Construct the temporary in make1().
// 1. Construct the temporary in make2().
// 2. Destroy the temporary in make1().
// 3. Construct the temporary in make3().
// 4. Destroy the temporary in make2().
// 5. Construct the temporary here.
// 6. Destroy the temporary in make3().
// 7. Construct the argument.
// 8. Forced push() in consume().
// 9. Destroy the argument. Notice the reverse order!
// 10. Destroy the temporary here.
clang_analyzer_eval(v.len == 11); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[0] == v.buf[2]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[1] == v.buf[4]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[3] == v.buf[6]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[5] == v.buf[10]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[7] == v.buf[8]); // expected-warning{{TRUE}}
clang_analyzer_eval(v.buf[8] == v.buf[9]); // expected-warning{{TRUE}}
#endif
}
struct Foo {
Foo(Foo **q) {
*q = this;
}
};
Foo make1(Foo **r) {
return Foo(r);
// no-elide-warning@-1 {{Address of stack memory associated with temporary \
object of type 'address_vector_tests::Foo' is still referred to by the stack \
variable 'z' upon returning to the caller}}
}
void test_copy_elision() {
Foo *z;
// If the copy elided, 'z' points to 'tmp', otherwise it's a dangling pointer.
Foo tmp = make1(&z);
(void)tmp;
}
} // namespace address_vector_tests