Files
clang-p2996/compiler-rt/lib/hwasan/hwasan_report.cpp
Mitch Phillips fd51ab6341 [hwasan] Don't report short-granule shadow as overwritten.
The shadow for a short granule is stored in the last byte of the
granule. Currently, if there's a tail-overwrite report (a
buffer-overflow-write in uninstrumented code), we report the shadow byte
as a mismatch against the magic.

Fix this bug by slapping the shadow into the expected value. This also
makes sure that if the uninstrumented WRITE does clobber the shadow
byte, it reports the shadow was actually clobbered as well.

Reviewed By: eugenis, fmayer

Differential Revision: https://reviews.llvm.org/D107938
2021-08-18 11:25:57 -07:00

759 lines
28 KiB
C++

//===-- hwasan_report.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// Error reporting.
//===----------------------------------------------------------------------===//
#include "hwasan_report.h"
#include <dlfcn.h>
#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_globals.h"
#include "hwasan_mapping.h"
#include "hwasan_thread.h"
#include "hwasan_thread_list.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace_printer.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
using namespace __sanitizer;
namespace __hwasan {
class ScopedReport {
public:
ScopedReport(bool fatal = false) : error_message_(1), fatal(fatal) {
Lock lock(&error_message_lock_);
error_message_ptr_ = fatal ? &error_message_ : nullptr;
++hwasan_report_count;
}
~ScopedReport() {
void (*report_cb)(const char *);
{
Lock lock(&error_message_lock_);
report_cb = error_report_callback_;
error_message_ptr_ = nullptr;
}
if (report_cb)
report_cb(error_message_.data());
if (fatal)
SetAbortMessage(error_message_.data());
if (common_flags()->print_module_map >= 2 ||
(fatal && common_flags()->print_module_map))
DumpProcessMap();
if (fatal)
Die();
}
static void MaybeAppendToErrorMessage(const char *msg) {
Lock lock(&error_message_lock_);
if (!error_message_ptr_)
return;
uptr len = internal_strlen(msg);
uptr old_size = error_message_ptr_->size();
error_message_ptr_->resize(old_size + len);
// overwrite old trailing '\0', keep new trailing '\0' untouched.
internal_memcpy(&(*error_message_ptr_)[old_size - 1], msg, len);
}
static void SetErrorReportCallback(void (*callback)(const char *)) {
Lock lock(&error_message_lock_);
error_report_callback_ = callback;
}
private:
ScopedErrorReportLock error_report_lock_;
InternalMmapVector<char> error_message_;
bool fatal;
static InternalMmapVector<char> *error_message_ptr_;
static Mutex error_message_lock_;
static void (*error_report_callback_)(const char *);
};
InternalMmapVector<char> *ScopedReport::error_message_ptr_;
Mutex ScopedReport::error_message_lock_;
void (*ScopedReport::error_report_callback_)(const char *);
// If there is an active ScopedReport, append to its error message.
void AppendToErrorMessageBuffer(const char *buffer) {
ScopedReport::MaybeAppendToErrorMessage(buffer);
}
static StackTrace GetStackTraceFromId(u32 id) {
CHECK(id);
StackTrace res = StackDepotGet(id);
CHECK(res.trace);
return res;
}
// A RAII object that holds a copy of the current thread stack ring buffer.
// The actual stack buffer may change while we are iterating over it (for
// example, Printf may call syslog() which can itself be built with hwasan).
class SavedStackAllocations {
public:
SavedStackAllocations(StackAllocationsRingBuffer *rb) {
uptr size = rb->size() * sizeof(uptr);
void *storage =
MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
new (&rb_) StackAllocationsRingBuffer(*rb, storage);
}
~SavedStackAllocations() {
StackAllocationsRingBuffer *rb = get();
UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
}
StackAllocationsRingBuffer *get() {
return (StackAllocationsRingBuffer *)&rb_;
}
private:
uptr rb_;
};
class Decorator: public __sanitizer::SanitizerCommonDecorator {
public:
Decorator() : SanitizerCommonDecorator() { }
const char *Access() { return Blue(); }
const char *Allocation() const { return Magenta(); }
const char *Origin() const { return Magenta(); }
const char *Name() const { return Green(); }
const char *Location() { return Green(); }
const char *Thread() { return Green(); }
};
static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
HeapAllocationRecord *har, uptr *ring_index,
uptr *num_matching_addrs,
uptr *num_matching_addrs_4b) {
if (!rb) return false;
*num_matching_addrs = 0;
*num_matching_addrs_4b = 0;
for (uptr i = 0, size = rb->size(); i < size; i++) {
auto h = (*rb)[i];
if (h.tagged_addr <= tagged_addr &&
h.tagged_addr + h.requested_size > tagged_addr) {
*har = h;
*ring_index = i;
return true;
}
// Measure the number of heap ring buffer entries that would have matched
// if we had only one entry per address (e.g. if the ring buffer data was
// stored at the address itself). This will help us tune the allocator
// implementation for MTE.
if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
++*num_matching_addrs;
}
// Measure the number of heap ring buffer entries that would have matched
// if we only had 4 tag bits, which is the case for MTE.
auto untag_4b = [](uptr p) {
return p & ((1ULL << 60) - 1);
};
if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
++*num_matching_addrs_4b;
}
}
return false;
}
static void PrintStackAllocations(StackAllocationsRingBuffer *sa,
tag_t addr_tag, uptr untagged_addr) {
uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
bool found_local = false;
for (uptr i = 0; i < frames; i++) {
const uptr *record_addr = &(*sa)[i];
uptr record = *record_addr;
if (!record)
break;
tag_t base_tag =
reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
uptr pc_mask = (1ULL << kRecordFPShift) - 1;
uptr pc = record & pc_mask;
FrameInfo frame;
if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
for (LocalInfo &local : frame.locals) {
if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
continue;
tag_t obj_tag = base_tag ^ local.tag_offset;
if (obj_tag != addr_tag)
continue;
// Calculate the offset from the object address to the faulting
// address. Because we only store bits 4-19 of FP (bits 0-3 are
// guaranteed to be zero), the calculation is performed mod 2^20 and may
// harmlessly underflow if the address mod 2^20 is below the object
// address.
uptr obj_offset =
(untagged_addr - fp - local.frame_offset) & (kRecordFPModulus - 1);
if (obj_offset >= local.size)
continue;
if (!found_local) {
Printf("Potentially referenced stack objects:\n");
found_local = true;
}
Printf(" %s in %s %s:%d\n", local.name, local.function_name,
local.decl_file, local.decl_line);
}
frame.Clear();
}
}
if (found_local)
return;
// We didn't find any locals. Most likely we don't have symbols, so dump
// the information that we have for offline analysis.
InternalScopedString frame_desc;
Printf("Previously allocated frames:\n");
for (uptr i = 0; i < frames; i++) {
const uptr *record_addr = &(*sa)[i];
uptr record = *record_addr;
if (!record)
break;
uptr pc_mask = (1ULL << 48) - 1;
uptr pc = record & pc_mask;
frame_desc.append(" record_addr:0x%zx record:0x%zx",
reinterpret_cast<uptr>(record_addr), record);
if (SymbolizedStack *frame = Symbolizer::GetOrInit()->SymbolizePC(pc)) {
RenderFrame(&frame_desc, " %F %L", 0, frame->info.address, &frame->info,
common_flags()->symbolize_vs_style,
common_flags()->strip_path_prefix);
frame->ClearAll();
}
Printf("%s\n", frame_desc.data());
frame_desc.clear();
}
}
// Returns true if tag == *tag_ptr, reading tags from short granules if
// necessary. This may return a false positive if tags 1-15 are used as a
// regular tag rather than a short granule marker.
static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
if (tag == *tag_ptr)
return true;
if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
return false;
uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
return tag == inline_tag;
}
// HWASan globals store the size of the global in the descriptor. In cases where
// we don't have a binary with symbols, we can't grab the size of the global
// from the debug info - but we might be able to retrieve it from the
// descriptor. Returns zero if the lookup failed.
static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
// Find the ELF object that this global resides in.
Dl_info info;
if (dladdr(reinterpret_cast<void *>(ptr), &info) == 0)
return 0;
auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);
// Get the load bias. This is normally the same as the dli_fbase address on
// position-independent code, but can be different on non-PIE executables,
// binaries using LLD's partitioning feature, or binaries compiled with a
// linker script.
ElfW(Addr) load_bias = 0;
for (const auto &phdr :
ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
continue;
load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
break;
}
// Walk all globals in this ELF object, looking for the one we're interested
// in. Once we find it, we can stop iterating and return the size of the
// global we're interested in.
for (const hwasan_global &global :
HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
if (global.addr() <= ptr && ptr < global.addr() + global.size())
return global.size();
return 0;
}
static void ShowHeapOrGlobalCandidate(uptr untagged_addr, tag_t *candidate,
tag_t *left, tag_t *right) {
Decorator d;
uptr mem = ShadowToMem(reinterpret_cast<uptr>(candidate));
HwasanChunkView chunk = FindHeapChunkByAddress(mem);
if (chunk.IsAllocated()) {
uptr offset;
const char *whence;
if (untagged_addr < chunk.End() && untagged_addr >= chunk.Beg()) {
offset = untagged_addr - chunk.Beg();
whence = "inside";
} else if (candidate == left) {
offset = untagged_addr - chunk.End();
whence = "to the right of";
} else {
offset = chunk.Beg() - untagged_addr;
whence = "to the left of";
}
Printf("%s", d.Error());
Printf("\nCause: heap-buffer-overflow\n");
Printf("%s", d.Default());
Printf("%s", d.Location());
Printf("%p is located %zd bytes %s %zd-byte region [%p,%p)\n",
untagged_addr, offset, whence, chunk.UsedSize(), chunk.Beg(),
chunk.End());
Printf("%s", d.Allocation());
Printf("allocated here:\n");
Printf("%s", d.Default());
GetStackTraceFromId(chunk.GetAllocStackId()).Print();
return;
}
// Check whether the address points into a loaded library. If so, this is
// most likely a global variable.
const char *module_name;
uptr module_address;
Symbolizer *sym = Symbolizer::GetOrInit();
if (sym->GetModuleNameAndOffsetForPC(mem, &module_name, &module_address)) {
Printf("%s", d.Error());
Printf("\nCause: global-overflow\n");
Printf("%s", d.Default());
DataInfo info;
Printf("%s", d.Location());
if (sym->SymbolizeData(mem, &info) && info.start) {
Printf(
"%p is located %zd bytes to the %s of %zd-byte global variable "
"%s [%p,%p) in %s\n",
untagged_addr,
candidate == left ? untagged_addr - (info.start + info.size)
: info.start - untagged_addr,
candidate == left ? "right" : "left", info.size, info.name,
info.start, info.start + info.size, module_name);
} else {
uptr size = GetGlobalSizeFromDescriptor(mem);
if (size == 0)
// We couldn't find the size of the global from the descriptors.
Printf("%p is located to the %s of a global variable in (%s+0x%x)\n",
untagged_addr, candidate == left ? "right" : "left", module_name,
module_address);
else
Printf(
"%p is located to the %s of a %zd-byte global variable in "
"(%s+0x%x)\n",
untagged_addr, candidate == left ? "right" : "left", size,
module_name, module_address);
}
Printf("%s", d.Default());
}
}
void PrintAddressDescription(
uptr tagged_addr, uptr access_size,
StackAllocationsRingBuffer *current_stack_allocations) {
Decorator d;
int num_descriptions_printed = 0;
uptr untagged_addr = UntagAddr(tagged_addr);
if (MemIsShadow(untagged_addr)) {
Printf("%s%p is HWAsan shadow memory.\n%s", d.Location(), untagged_addr,
d.Default());
return;
}
// Print some very basic information about the address, if it's a heap.
HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
if (uptr beg = chunk.Beg()) {
uptr size = chunk.ActualSize();
Printf("%s[%p,%p) is a %s %s heap chunk; "
"size: %zd offset: %zd\n%s",
d.Location(),
beg, beg + size,
chunk.FromSmallHeap() ? "small" : "large",
chunk.IsAllocated() ? "allocated" : "unallocated",
size, untagged_addr - beg,
d.Default());
}
tag_t addr_tag = GetTagFromPointer(tagged_addr);
bool on_stack = false;
// Check stack first. If the address is on the stack of a live thread, we
// know it cannot be a heap / global overflow.
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
if (t->AddrIsInStack(untagged_addr)) {
on_stack = true;
// TODO(fmayer): figure out how to distinguish use-after-return and
// stack-buffer-overflow.
Printf("%s", d.Error());
Printf("\nCause: stack tag-mismatch\n");
Printf("%s", d.Location());
Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
t->unique_id());
Printf("%s", d.Default());
t->Announce();
auto *sa = (t == GetCurrentThread() && current_stack_allocations)
? current_stack_allocations
: t->stack_allocations();
PrintStackAllocations(sa, addr_tag, untagged_addr);
num_descriptions_printed++;
}
});
// Check if this looks like a heap buffer overflow by scanning
// the shadow left and right and looking for the first adjacent
// object with a different memory tag. If that tag matches addr_tag,
// check the allocator if it has a live chunk there.
tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
tag_t *candidate = nullptr, *left = tag_ptr, *right = tag_ptr;
uptr candidate_distance = 0;
for (; candidate_distance < 1000; candidate_distance++) {
if (MemIsShadow(reinterpret_cast<uptr>(left)) &&
TagsEqual(addr_tag, left)) {
candidate = left;
break;
}
--left;
if (MemIsShadow(reinterpret_cast<uptr>(right)) &&
TagsEqual(addr_tag, right)) {
candidate = right;
break;
}
++right;
}
constexpr auto kCloseCandidateDistance = 1;
if (!on_stack && candidate && candidate_distance <= kCloseCandidateDistance) {
ShowHeapOrGlobalCandidate(untagged_addr, candidate, left, right);
num_descriptions_printed++;
}
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
// Scan all threads' ring buffers to find if it's a heap-use-after-free.
HeapAllocationRecord har;
uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
&ring_index, &num_matching_addrs,
&num_matching_addrs_4b)) {
Printf("%s", d.Error());
Printf("\nCause: use-after-free\n");
Printf("%s", d.Location());
Printf("%p is located %zd bytes inside of %zd-byte region [%p,%p)\n",
untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
har.requested_size, UntagAddr(har.tagged_addr),
UntagAddr(har.tagged_addr) + har.requested_size);
Printf("%s", d.Allocation());
Printf("freed by thread T%zd here:\n", t->unique_id());
Printf("%s", d.Default());
GetStackTraceFromId(har.free_context_id).Print();
Printf("%s", d.Allocation());
Printf("previously allocated here:\n", t);
Printf("%s", d.Default());
GetStackTraceFromId(har.alloc_context_id).Print();
// Print a developer note: the index of this heap object
// in the thread's deallocation ring buffer.
Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ring_index + 1,
flags()->heap_history_size);
Printf("hwasan_dev_note_num_matching_addrs: %zd\n", num_matching_addrs);
Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
num_matching_addrs_4b);
t->Announce();
num_descriptions_printed++;
}
});
if (candidate && num_descriptions_printed == 0) {
ShowHeapOrGlobalCandidate(untagged_addr, candidate, left, right);
num_descriptions_printed++;
}
// Print the remaining threads, as an extra information, 1 line per thread.
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });
if (!num_descriptions_printed)
// We exhausted our possibilities. Bail out.
Printf("HWAddressSanitizer can not describe address in more detail.\n");
if (num_descriptions_printed > 1) {
Printf(
"There are %d potential causes, printed above in order "
"of likeliness.\n",
num_descriptions_printed);
}
}
void ReportStats() {}
static void PrintTagInfoAroundAddr(tag_t *tag_ptr, uptr num_rows,
void (*print_tag)(InternalScopedString &s,
tag_t *tag)) {
const uptr row_len = 16; // better be power of two.
tag_t *center_row_beg = reinterpret_cast<tag_t *>(
RoundDownTo(reinterpret_cast<uptr>(tag_ptr), row_len));
tag_t *beg_row = center_row_beg - row_len * (num_rows / 2);
tag_t *end_row = center_row_beg + row_len * ((num_rows + 1) / 2);
InternalScopedString s;
for (tag_t *row = beg_row; row < end_row; row += row_len) {
s.append("%s", row == center_row_beg ? "=>" : " ");
s.append("%p:", row);
for (uptr i = 0; i < row_len; i++) {
s.append("%s", row + i == tag_ptr ? "[" : " ");
print_tag(s, &row[i]);
s.append("%s", row + i == tag_ptr ? "]" : " ");
}
s.append("\n");
}
Printf("%s", s.data());
}
static void PrintTagsAroundAddr(tag_t *tag_ptr) {
Printf(
"Memory tags around the buggy address (one tag corresponds to %zd "
"bytes):\n", kShadowAlignment);
PrintTagInfoAroundAddr(tag_ptr, 17, [](InternalScopedString &s, tag_t *tag) {
s.append("%02x", *tag);
});
Printf(
"Tags for short granules around the buggy address (one tag corresponds "
"to %zd bytes):\n",
kShadowAlignment);
PrintTagInfoAroundAddr(tag_ptr, 3, [](InternalScopedString &s, tag_t *tag) {
if (*tag >= 1 && *tag <= kShadowAlignment) {
uptr granule_addr = ShadowToMem(reinterpret_cast<uptr>(tag));
s.append("%02x",
*reinterpret_cast<u8 *>(granule_addr + kShadowAlignment - 1));
} else {
s.append("..");
}
});
Printf(
"See "
"https://clang.llvm.org/docs/"
"HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
"description of short granule tags\n");
}
uptr GetTopPc(StackTrace *stack) {
return stack->size ? StackTrace::GetPreviousInstructionPc(stack->trace[0])
: 0;
}
void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
ScopedReport R(flags()->halt_on_error);
uptr untagged_addr = UntagAddr(tagged_addr);
tag_t ptr_tag = GetTagFromPointer(tagged_addr);
tag_t *tag_ptr = nullptr;
tag_t mem_tag = 0;
if (MemIsApp(untagged_addr)) {
tag_ptr = reinterpret_cast<tag_t *>(MemToShadow(untagged_addr));
if (MemIsShadow(reinterpret_cast<uptr>(tag_ptr)))
mem_tag = *tag_ptr;
else
tag_ptr = nullptr;
}
Decorator d;
Printf("%s", d.Error());
uptr pc = GetTopPc(stack);
const char *bug_type = "invalid-free";
const Thread *thread = GetCurrentThread();
if (thread) {
Report("ERROR: %s: %s on address %p at pc %p on thread T%zd\n",
SanitizerToolName, bug_type, untagged_addr, pc, thread->unique_id());
} else {
Report("ERROR: %s: %s on address %p at pc %p on unknown thread\n",
SanitizerToolName, bug_type, untagged_addr, pc);
}
Printf("%s", d.Access());
if (tag_ptr)
Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag, mem_tag);
Printf("%s", d.Default());
stack->Print();
PrintAddressDescription(tagged_addr, 0, nullptr);
if (tag_ptr)
PrintTagsAroundAddr(tag_ptr);
ReportErrorSummary(bug_type, stack);
}
void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
const u8 *expected) {
uptr tail_size = kShadowAlignment - (orig_size % kShadowAlignment);
u8 actual_expected[kShadowAlignment];
internal_memcpy(actual_expected, expected, tail_size);
tag_t ptr_tag = GetTagFromPointer(tagged_addr);
// Short granule is stashed in the last byte of the magic string. To avoid
// confusion, make the expected magic string contain the short granule tag.
if (orig_size % kShadowAlignment != 0) {
actual_expected[tail_size - 1] = ptr_tag;
}
ScopedReport R(flags()->halt_on_error);
Decorator d;
uptr untagged_addr = UntagAddr(tagged_addr);
Printf("%s", d.Error());
const char *bug_type = "allocation-tail-overwritten";
Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
Printf("\n%s", d.Default());
Printf(
"Stack of invalid access unknown. Issue detected at deallocation "
"time.\n");
Printf("%s", d.Allocation());
Printf("deallocated here:\n");
Printf("%s", d.Default());
stack->Print();
HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
if (chunk.Beg()) {
Printf("%s", d.Allocation());
Printf("allocated here:\n");
Printf("%s", d.Default());
GetStackTraceFromId(chunk.GetAllocStackId()).Print();
}
InternalScopedString s;
CHECK_GT(tail_size, 0U);
CHECK_LT(tail_size, kShadowAlignment);
u8 *tail = reinterpret_cast<u8*>(untagged_addr + orig_size);
s.append("Tail contains: ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
s.append(".. ");
for (uptr i = 0; i < tail_size; i++)
s.append("%02x ", tail[i]);
s.append("\n");
s.append("Expected: ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
s.append(".. ");
for (uptr i = 0; i < tail_size; i++) s.append("%02x ", actual_expected[i]);
s.append("\n");
s.append(" ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
s.append(" ");
for (uptr i = 0; i < tail_size; i++)
s.append("%s ", actual_expected[i] != tail[i] ? "^^" : " ");
s.append("\nThis error occurs when a buffer overflow overwrites memory\n"
"to the right of a heap object, but within the %zd-byte granule, e.g.\n"
" char *x = new char[20];\n"
" x[25] = 42;\n"
"%s does not detect such bugs in uninstrumented code at the time of write,"
"\nbut can detect them at the time of free/delete.\n"
"To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
kShadowAlignment, SanitizerToolName);
Printf("%s", s.data());
GetCurrentThread()->Announce();
tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
PrintTagsAroundAddr(tag_ptr);
ReportErrorSummary(bug_type, stack);
}
void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
bool is_store, bool fatal, uptr *registers_frame) {
ScopedReport R(fatal);
SavedStackAllocations current_stack_allocations(
GetCurrentThread()->stack_allocations());
Decorator d;
Printf("%s", d.Error());
uptr untagged_addr = UntagAddr(tagged_addr);
// TODO: when possible, try to print heap-use-after-free, etc.
const char *bug_type = "tag-mismatch";
uptr pc = GetTopPc(stack);
Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
untagged_addr, pc);
Thread *t = GetCurrentThread();
sptr offset =
__hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
CHECK(offset >= 0 && offset < static_cast<sptr>(access_size));
tag_t ptr_tag = GetTagFromPointer(tagged_addr);
tag_t *tag_ptr =
reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
tag_t mem_tag = *tag_ptr;
Printf("%s", d.Access());
Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
mem_tag, t->unique_id());
if (offset != 0)
Printf("Invalid access starting at offset [%zu, %zu)\n", offset,
Min(access_size, static_cast<uptr>(offset) + (1 << kShadowScale)));
Printf("%s", d.Default());
stack->Print();
PrintAddressDescription(tagged_addr, access_size,
current_stack_allocations.get());
t->Announce();
PrintTagsAroundAddr(tag_ptr);
if (registers_frame)
ReportRegisters(registers_frame, pc);
ReportErrorSummary(bug_type, stack);
}
// See the frame breakdown defined in __hwasan_tag_mismatch (from
// hwasan_tag_mismatch_aarch64.S).
void ReportRegisters(uptr *frame, uptr pc) {
Printf("Registers where the failure occurred (pc %p):\n", pc);
// We explicitly print a single line (4 registers/line) each iteration to
// reduce the amount of logcat error messages printed. Each Printf() will
// result in a new logcat line, irrespective of whether a newline is present,
// and so we wish to reduce the number of Printf() calls we have to make.
Printf(" x0 %016llx x1 %016llx x2 %016llx x3 %016llx\n",
frame[0], frame[1], frame[2], frame[3]);
Printf(" x4 %016llx x5 %016llx x6 %016llx x7 %016llx\n",
frame[4], frame[5], frame[6], frame[7]);
Printf(" x8 %016llx x9 %016llx x10 %016llx x11 %016llx\n",
frame[8], frame[9], frame[10], frame[11]);
Printf(" x12 %016llx x13 %016llx x14 %016llx x15 %016llx\n",
frame[12], frame[13], frame[14], frame[15]);
Printf(" x16 %016llx x17 %016llx x18 %016llx x19 %016llx\n",
frame[16], frame[17], frame[18], frame[19]);
Printf(" x20 %016llx x21 %016llx x22 %016llx x23 %016llx\n",
frame[20], frame[21], frame[22], frame[23]);
Printf(" x24 %016llx x25 %016llx x26 %016llx x27 %016llx\n",
frame[24], frame[25], frame[26], frame[27]);
// hwasan_check* reduces the stack pointer by 256, then __hwasan_tag_mismatch
// passes it to this function.
Printf(" x28 %016llx x29 %016llx x30 %016llx sp %016llx\n", frame[28],
frame[29], frame[30], reinterpret_cast<u8 *>(frame) + 256);
}
} // namespace __hwasan
void __hwasan_set_error_report_callback(void (*callback)(const char *)) {
__hwasan::ScopedReport::SetErrorReportCallback(callback);
}