Currently we have MemoryAccess function that accepts "bool kAccessIsWrite, bool kIsAtomic" and 4 wrappers: MemoryRead/MemoryWrite/MemoryReadAtomic/MemoryWriteAtomic. Such scheme with bool flags is not particularly scalable/extendable. Because of that we did not have Read/Write wrappers for UnalignedMemoryAccess, and "true, false" or "false, true" at call sites is not very readable. Moreover, the new tsan runtime will introduce more flags (e.g. move "freed" and "vptr access" to memory acccess flags). We can't have 16 wrappers and each flag also takes whole 64-bit register for non-inlined calls. Introduce AccessType enum that contains bit mask of read/write, atomic/non-atomic, and later free/non-free, vptr/non-vptr. Such scheme is more scalable, more readble, more efficient (don't consume multiple registers for these flags during calls) and allows to cover unaligned and range variations of memory access functions as well. Also switch from size log to just size. The new tsan runtime won't have the limitation of supporting only 1/2/4/8 access sizes, so we don't need the logarithms. Also add an inline thunk that converts the new interface to the old one. For inlined calls it should not add any overhead because all flags/size can be computed as compile time. Reviewed By: vitalybuka, melver Differential Revision: https://reviews.llvm.org/D107276
317 lines
9.1 KiB
C++
317 lines
9.1 KiB
C++
//===-- tsan_fd.cpp -------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "tsan_fd.h"
|
|
#include "tsan_rtl.h"
|
|
#include <sanitizer_common/sanitizer_atomic.h>
|
|
|
|
namespace __tsan {
|
|
|
|
const int kTableSizeL1 = 1024;
|
|
const int kTableSizeL2 = 1024;
|
|
const int kTableSize = kTableSizeL1 * kTableSizeL2;
|
|
|
|
struct FdSync {
|
|
atomic_uint64_t rc;
|
|
};
|
|
|
|
struct FdDesc {
|
|
FdSync *sync;
|
|
Tid creation_tid;
|
|
StackID creation_stack;
|
|
};
|
|
|
|
struct FdContext {
|
|
atomic_uintptr_t tab[kTableSizeL1];
|
|
// Addresses used for synchronization.
|
|
FdSync globsync;
|
|
FdSync filesync;
|
|
FdSync socksync;
|
|
u64 connectsync;
|
|
};
|
|
|
|
static FdContext fdctx;
|
|
|
|
static bool bogusfd(int fd) {
|
|
// Apparently a bogus fd value.
|
|
return fd < 0 || fd >= kTableSize;
|
|
}
|
|
|
|
static FdSync *allocsync(ThreadState *thr, uptr pc) {
|
|
FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sizeof(FdSync),
|
|
kDefaultAlignment, false);
|
|
atomic_store(&s->rc, 1, memory_order_relaxed);
|
|
return s;
|
|
}
|
|
|
|
static FdSync *ref(FdSync *s) {
|
|
if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
|
|
atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
|
|
return s;
|
|
}
|
|
|
|
static void unref(ThreadState *thr, uptr pc, FdSync *s) {
|
|
if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
|
|
if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
|
|
CHECK_NE(s, &fdctx.globsync);
|
|
CHECK_NE(s, &fdctx.filesync);
|
|
CHECK_NE(s, &fdctx.socksync);
|
|
user_free(thr, pc, s, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
|
|
CHECK_GE(fd, 0);
|
|
CHECK_LT(fd, kTableSize);
|
|
atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
|
|
uptr l1 = atomic_load(pl1, memory_order_consume);
|
|
if (l1 == 0) {
|
|
uptr size = kTableSizeL2 * sizeof(FdDesc);
|
|
// We need this to reside in user memory to properly catch races on it.
|
|
void *p = user_alloc_internal(thr, pc, size, kDefaultAlignment, false);
|
|
internal_memset(p, 0, size);
|
|
MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
|
|
if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
|
|
l1 = (uptr)p;
|
|
else
|
|
user_free(thr, pc, p, false);
|
|
}
|
|
FdDesc *fds = reinterpret_cast<FdDesc *>(l1);
|
|
return &fds[fd % kTableSizeL2];
|
|
}
|
|
|
|
// pd must be already ref'ed.
|
|
static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
|
|
bool write = true) {
|
|
FdDesc *d = fddesc(thr, pc, fd);
|
|
// As a matter of fact, we don't intercept all close calls.
|
|
// See e.g. libc __res_iclose().
|
|
if (d->sync) {
|
|
unref(thr, pc, d->sync);
|
|
d->sync = 0;
|
|
}
|
|
if (flags()->io_sync == 0) {
|
|
unref(thr, pc, s);
|
|
} else if (flags()->io_sync == 1) {
|
|
d->sync = s;
|
|
} else if (flags()->io_sync == 2) {
|
|
unref(thr, pc, s);
|
|
d->sync = &fdctx.globsync;
|
|
}
|
|
d->creation_tid = thr->tid;
|
|
d->creation_stack = CurrentStackId(thr, pc);
|
|
if (write) {
|
|
// To catch races between fd usage and open.
|
|
MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
|
|
} else {
|
|
// See the dup-related comment in FdClose.
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
|
|
}
|
|
}
|
|
|
|
void FdInit() {
|
|
atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
|
|
atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
|
|
atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
|
|
}
|
|
|
|
void FdOnFork(ThreadState *thr, uptr pc) {
|
|
// On fork() we need to reset all fd's, because the child is going
|
|
// close all them, and that will cause races between previous read/write
|
|
// and the close.
|
|
for (int l1 = 0; l1 < kTableSizeL1; l1++) {
|
|
FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
|
|
if (tab == 0)
|
|
break;
|
|
for (int l2 = 0; l2 < kTableSizeL2; l2++) {
|
|
FdDesc *d = &tab[l2];
|
|
MemoryResetRange(thr, pc, (uptr)d, 8);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool FdLocation(uptr addr, int *fd, Tid *tid, StackID *stack) {
|
|
for (int l1 = 0; l1 < kTableSizeL1; l1++) {
|
|
FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
|
|
if (tab == 0)
|
|
break;
|
|
if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
|
|
int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
|
|
FdDesc *d = &tab[l2];
|
|
*fd = l1 * kTableSizeL1 + l2;
|
|
*tid = d->creation_tid;
|
|
*stack = d->creation_stack;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void FdAcquire(ThreadState *thr, uptr pc, int fd) {
|
|
if (bogusfd(fd))
|
|
return;
|
|
FdDesc *d = fddesc(thr, pc, fd);
|
|
FdSync *s = d->sync;
|
|
DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
|
|
if (s)
|
|
Acquire(thr, pc, (uptr)s);
|
|
}
|
|
|
|
void FdRelease(ThreadState *thr, uptr pc, int fd) {
|
|
if (bogusfd(fd))
|
|
return;
|
|
FdDesc *d = fddesc(thr, pc, fd);
|
|
FdSync *s = d->sync;
|
|
DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
|
|
if (s)
|
|
Release(thr, pc, (uptr)s);
|
|
}
|
|
|
|
void FdAccess(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
FdDesc *d = fddesc(thr, pc, fd);
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
|
|
}
|
|
|
|
void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
|
|
DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
FdDesc *d = fddesc(thr, pc, fd);
|
|
if (write) {
|
|
// To catch races between fd usage and close.
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessWrite);
|
|
} else {
|
|
// This path is used only by dup2/dup3 calls.
|
|
// We do read instead of write because there is a number of legitimate
|
|
// cases where write would lead to false positives:
|
|
// 1. Some software dups a closed pipe in place of a socket before closing
|
|
// the socket (to prevent races actually).
|
|
// 2. Some daemons dup /dev/null in place of stdin/stdout.
|
|
// On the other hand we have not seen cases when write here catches real
|
|
// bugs.
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
|
|
}
|
|
// We need to clear it, because if we do not intercept any call out there
|
|
// that creates fd, we will hit false postives.
|
|
MemoryResetRange(thr, pc, (uptr)d, 8);
|
|
unref(thr, pc, d->sync);
|
|
d->sync = 0;
|
|
d->creation_tid = kInvalidTid;
|
|
d->creation_stack = kInvalidStackID;
|
|
}
|
|
|
|
void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, &fdctx.filesync);
|
|
}
|
|
|
|
void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
|
|
DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
|
|
if (bogusfd(oldfd) || bogusfd(newfd))
|
|
return;
|
|
// Ignore the case when user dups not yet connected socket.
|
|
FdDesc *od = fddesc(thr, pc, oldfd);
|
|
MemoryAccess(thr, pc, (uptr)od, 8, kAccessRead);
|
|
FdClose(thr, pc, newfd, write);
|
|
init(thr, pc, newfd, ref(od->sync), write);
|
|
}
|
|
|
|
void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
|
|
DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
|
|
FdSync *s = allocsync(thr, pc);
|
|
init(thr, pc, rfd, ref(s));
|
|
init(thr, pc, wfd, ref(s));
|
|
unref(thr, pc, s);
|
|
}
|
|
|
|
void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, allocsync(thr, pc));
|
|
}
|
|
|
|
void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, 0);
|
|
}
|
|
|
|
void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, 0);
|
|
}
|
|
|
|
void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, allocsync(thr, pc));
|
|
}
|
|
|
|
void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
// It can be a UDP socket.
|
|
init(thr, pc, fd, &fdctx.socksync);
|
|
}
|
|
|
|
void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
|
|
DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
// Synchronize connect->accept.
|
|
Acquire(thr, pc, (uptr)&fdctx.connectsync);
|
|
init(thr, pc, newfd, &fdctx.socksync);
|
|
}
|
|
|
|
void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
// Synchronize connect->accept.
|
|
Release(thr, pc, (uptr)&fdctx.connectsync);
|
|
}
|
|
|
|
void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, &fdctx.socksync);
|
|
}
|
|
|
|
uptr File2addr(const char *path) {
|
|
(void)path;
|
|
static u64 addr;
|
|
return (uptr)&addr;
|
|
}
|
|
|
|
uptr Dir2addr(const char *path) {
|
|
(void)path;
|
|
static u64 addr;
|
|
return (uptr)&addr;
|
|
}
|
|
|
|
} // namespace __tsan
|