to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
289 lines
9.3 KiB
C++
289 lines
9.3 KiB
C++
//===-- xray_allocator.h ---------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of XRay, a dynamic runtime instrumentation system.
|
|
//
|
|
// Defines the allocator interface for an arena allocator, used primarily for
|
|
// the profiling runtime.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef XRAY_ALLOCATOR_H
|
|
#define XRAY_ALLOCATOR_H
|
|
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "sanitizer_common/sanitizer_internal_defs.h"
|
|
#include "sanitizer_common/sanitizer_mutex.h"
|
|
#if SANITIZER_FUCHSIA
|
|
#include <zircon/process.h>
|
|
#include <zircon/status.h>
|
|
#include <zircon/syscalls.h>
|
|
#else
|
|
#include "sanitizer_common/sanitizer_posix.h"
|
|
#endif
|
|
#include "xray_defs.h"
|
|
#include "xray_utils.h"
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <sys/mman.h>
|
|
|
|
namespace __xray {
|
|
|
|
// We implement our own memory allocation routine which will bypass the
|
|
// internal allocator. This allows us to manage the memory directly, using
|
|
// mmap'ed memory to back the allocators.
|
|
template <class T> T *allocate() XRAY_NEVER_INSTRUMENT {
|
|
uptr RoundedSize = RoundUpTo(sizeof(T), GetPageSizeCached());
|
|
#if SANITIZER_FUCHSIA
|
|
zx_handle_t Vmo;
|
|
zx_status_t Status = _zx_vmo_create(RoundedSize, 0, &Vmo);
|
|
if (Status != ZX_OK) {
|
|
if (Verbosity())
|
|
Report("XRay Profiling: Failed to create VMO of size %zu: %s\n",
|
|
sizeof(T), _zx_status_get_string(Status));
|
|
return nullptr;
|
|
}
|
|
uintptr_t B;
|
|
Status =
|
|
_zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
|
|
Vmo, 0, sizeof(T), &B);
|
|
_zx_handle_close(Vmo);
|
|
if (Status != ZX_OK) {
|
|
if (Verbosity())
|
|
Report("XRay Profiling: Failed to map VMAR of size %zu: %s\n", sizeof(T),
|
|
_zx_status_get_string(Status));
|
|
return nullptr;
|
|
}
|
|
return reinterpret_cast<T *>(B);
|
|
#else
|
|
uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
int ErrNo = 0;
|
|
if (UNLIKELY(internal_iserror(B, &ErrNo))) {
|
|
if (Verbosity())
|
|
Report(
|
|
"XRay Profiling: Failed to allocate memory of size %d; Error = %d.\n",
|
|
RoundedSize, B);
|
|
return nullptr;
|
|
}
|
|
#endif
|
|
return reinterpret_cast<T *>(B);
|
|
}
|
|
|
|
template <class T> void deallocate(T *B) XRAY_NEVER_INSTRUMENT {
|
|
if (B == nullptr)
|
|
return;
|
|
uptr RoundedSize = RoundUpTo(sizeof(T), GetPageSizeCached());
|
|
#if SANITIZER_FUCHSIA
|
|
_zx_vmar_unmap(_zx_vmar_root_self(), reinterpret_cast<uintptr_t>(B),
|
|
RoundedSize);
|
|
#else
|
|
internal_munmap(B, RoundedSize);
|
|
#endif
|
|
}
|
|
|
|
template <class T = unsigned char>
|
|
T *allocateBuffer(size_t S) XRAY_NEVER_INSTRUMENT {
|
|
uptr RoundedSize = RoundUpTo(S * sizeof(T), GetPageSizeCached());
|
|
#if SANITIZER_FUCHSIA
|
|
zx_handle_t Vmo;
|
|
zx_status_t Status = _zx_vmo_create(RoundedSize, 0, &Vmo);
|
|
if (Status != ZX_OK) {
|
|
if (Verbosity())
|
|
Report("XRay Profiling: Failed to create VMO of size %zu: %s\n", S,
|
|
_zx_status_get_string(Status));
|
|
return nullptr;
|
|
}
|
|
uintptr_t B;
|
|
Status = _zx_vmar_map(_zx_vmar_root_self(),
|
|
ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, Vmo, 0, S, &B);
|
|
_zx_handle_close(Vmo);
|
|
if (Status != ZX_OK) {
|
|
if (Verbosity())
|
|
Report("XRay Profiling: Failed to map VMAR of size %zu: %s\n", S,
|
|
_zx_status_get_string(Status));
|
|
return nullptr;
|
|
}
|
|
#else
|
|
uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
int ErrNo = 0;
|
|
if (UNLIKELY(internal_iserror(B, &ErrNo))) {
|
|
if (Verbosity())
|
|
Report(
|
|
"XRay Profiling: Failed to allocate memory of size %d; Error = %d.\n",
|
|
RoundedSize, B);
|
|
return nullptr;
|
|
}
|
|
#endif
|
|
return reinterpret_cast<T *>(B);
|
|
}
|
|
|
|
template <class T> void deallocateBuffer(T *B, size_t S) XRAY_NEVER_INSTRUMENT {
|
|
if (B == nullptr)
|
|
return;
|
|
uptr RoundedSize = RoundUpTo(S * sizeof(T), GetPageSizeCached());
|
|
#if SANITIZER_FUCHSIA
|
|
_zx_vmar_unmap(_zx_vmar_root_self(), reinterpret_cast<uintptr_t>(B),
|
|
RoundedSize);
|
|
#else
|
|
internal_munmap(B, RoundedSize);
|
|
#endif
|
|
}
|
|
|
|
template <class T, class... U>
|
|
T *initArray(size_t N, U &&... Us) XRAY_NEVER_INSTRUMENT {
|
|
auto A = allocateBuffer<T>(N);
|
|
if (A != nullptr)
|
|
while (N > 0)
|
|
new (A + (--N)) T(std::forward<U>(Us)...);
|
|
return A;
|
|
}
|
|
|
|
/// The Allocator type hands out fixed-sized chunks of memory that are
|
|
/// cache-line aligned and sized. This is useful for placement of
|
|
/// performance-sensitive data in memory that's frequently accessed. The
|
|
/// allocator also self-limits the peak memory usage to a dynamically defined
|
|
/// maximum.
|
|
///
|
|
/// N is the lower-bound size of the block of memory to return from the
|
|
/// allocation function. N is used to compute the size of a block, which is
|
|
/// cache-line-size multiples worth of memory. We compute the size of a block by
|
|
/// determining how many cache lines worth of memory is required to subsume N.
|
|
///
|
|
/// The Allocator instance will manage its own memory acquired through mmap.
|
|
/// This severely constrains the platforms on which this can be used to POSIX
|
|
/// systems where mmap semantics are well-defined.
|
|
///
|
|
/// FIXME: Isolate the lower-level memory management to a different abstraction
|
|
/// that can be platform-specific.
|
|
template <size_t N> struct Allocator {
|
|
// The Allocator returns memory as Block instances.
|
|
struct Block {
|
|
/// Compute the minimum cache-line size multiple that is >= N.
|
|
static constexpr auto Size = nearest_boundary(N, kCacheLineSize);
|
|
void *Data;
|
|
};
|
|
|
|
private:
|
|
size_t MaxMemory{0};
|
|
unsigned char *BackingStore = nullptr;
|
|
unsigned char *AlignedNextBlock = nullptr;
|
|
size_t AllocatedBlocks = 0;
|
|
bool Owned;
|
|
SpinMutex Mutex{};
|
|
|
|
void *Alloc() XRAY_NEVER_INSTRUMENT {
|
|
SpinMutexLock Lock(&Mutex);
|
|
if (UNLIKELY(BackingStore == nullptr)) {
|
|
BackingStore = allocateBuffer(MaxMemory);
|
|
if (BackingStore == nullptr) {
|
|
if (Verbosity())
|
|
Report("XRay Profiling: Failed to allocate memory for allocator.\n");
|
|
return nullptr;
|
|
}
|
|
|
|
AlignedNextBlock = BackingStore;
|
|
|
|
// Ensure that NextBlock is aligned appropriately.
|
|
auto BackingStoreNum = reinterpret_cast<uintptr_t>(BackingStore);
|
|
auto AlignedNextBlockNum = nearest_boundary(
|
|
reinterpret_cast<uintptr_t>(AlignedNextBlock), kCacheLineSize);
|
|
if (diff(AlignedNextBlockNum, BackingStoreNum) > ptrdiff_t(MaxMemory)) {
|
|
deallocateBuffer(BackingStore, MaxMemory);
|
|
AlignedNextBlock = BackingStore = nullptr;
|
|
if (Verbosity())
|
|
Report("XRay Profiling: Cannot obtain enough memory from "
|
|
"preallocated region.\n");
|
|
return nullptr;
|
|
}
|
|
|
|
AlignedNextBlock = reinterpret_cast<unsigned char *>(AlignedNextBlockNum);
|
|
|
|
// Assert that AlignedNextBlock is cache-line aligned.
|
|
DCHECK_EQ(reinterpret_cast<uintptr_t>(AlignedNextBlock) % kCacheLineSize,
|
|
0);
|
|
}
|
|
|
|
if (((AllocatedBlocks + 1) * Block::Size) > MaxMemory)
|
|
return nullptr;
|
|
|
|
// Align the pointer we'd like to return to an appropriate alignment, then
|
|
// advance the pointer from where to start allocations.
|
|
void *Result = AlignedNextBlock;
|
|
AlignedNextBlock =
|
|
reinterpret_cast<unsigned char *>(AlignedNextBlock) + Block::Size;
|
|
++AllocatedBlocks;
|
|
return Result;
|
|
}
|
|
|
|
public:
|
|
explicit Allocator(size_t M) XRAY_NEVER_INSTRUMENT
|
|
: MaxMemory(RoundUpTo(M, kCacheLineSize)),
|
|
BackingStore(nullptr),
|
|
AlignedNextBlock(nullptr),
|
|
AllocatedBlocks(0),
|
|
Owned(true),
|
|
Mutex() {}
|
|
|
|
explicit Allocator(void *P, size_t M) XRAY_NEVER_INSTRUMENT
|
|
: MaxMemory(M),
|
|
BackingStore(reinterpret_cast<unsigned char *>(P)),
|
|
AlignedNextBlock(reinterpret_cast<unsigned char *>(P)),
|
|
AllocatedBlocks(0),
|
|
Owned(false),
|
|
Mutex() {}
|
|
|
|
Allocator(const Allocator &) = delete;
|
|
Allocator &operator=(const Allocator &) = delete;
|
|
|
|
Allocator(Allocator &&O) XRAY_NEVER_INSTRUMENT {
|
|
SpinMutexLock L0(&Mutex);
|
|
SpinMutexLock L1(&O.Mutex);
|
|
MaxMemory = O.MaxMemory;
|
|
O.MaxMemory = 0;
|
|
BackingStore = O.BackingStore;
|
|
O.BackingStore = nullptr;
|
|
AlignedNextBlock = O.AlignedNextBlock;
|
|
O.AlignedNextBlock = nullptr;
|
|
AllocatedBlocks = O.AllocatedBlocks;
|
|
O.AllocatedBlocks = 0;
|
|
Owned = O.Owned;
|
|
O.Owned = false;
|
|
}
|
|
|
|
Allocator &operator=(Allocator &&O) XRAY_NEVER_INSTRUMENT {
|
|
SpinMutexLock L0(&Mutex);
|
|
SpinMutexLock L1(&O.Mutex);
|
|
MaxMemory = O.MaxMemory;
|
|
O.MaxMemory = 0;
|
|
if (BackingStore != nullptr)
|
|
deallocateBuffer(BackingStore, MaxMemory);
|
|
BackingStore = O.BackingStore;
|
|
O.BackingStore = nullptr;
|
|
AlignedNextBlock = O.AlignedNextBlock;
|
|
O.AlignedNextBlock = nullptr;
|
|
AllocatedBlocks = O.AllocatedBlocks;
|
|
O.AllocatedBlocks = 0;
|
|
Owned = O.Owned;
|
|
O.Owned = false;
|
|
return *this;
|
|
}
|
|
|
|
Block Allocate() XRAY_NEVER_INSTRUMENT { return {Alloc()}; }
|
|
|
|
~Allocator() NOEXCEPT XRAY_NEVER_INSTRUMENT {
|
|
if (Owned && BackingStore != nullptr) {
|
|
deallocateBuffer(BackingStore, MaxMemory);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace __xray
|
|
|
|
#endif // XRAY_ALLOCATOR_H
|