Files
clang-p2996/flang/runtime/descriptor.cpp
peter klausler a48e41683a [flang] Run-time derived type initialization and destruction
Use derived type information tables to drive default component
initialization (when needed), component destruction, and calls to
final subroutines.  Perform these operations automatically for
ALLOCATE()/DEALLOCATE() APIs for allocatables, automatics, and
pointers.  Add APIs for use in lowering to perform these operations
for non-allocatable/automatic non-pointer variables.
Data pointer component initialization supports arbitrary constant
designators, a F'2008 feature, which may be a first for Fortran
implementations.

Differential Revision: https://reviews.llvm.org/D106297
2021-07-20 15:24:16 -07:00

301 lines
10 KiB
C++

//===-- runtime/descriptor.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "descriptor.h"
#include "derived.h"
#include "memory.h"
#include "stat.h"
#include "terminator.h"
#include "type-info.h"
#include <cassert>
#include <cstdlib>
#include <cstring>
namespace Fortran::runtime {
Descriptor::Descriptor(const Descriptor &that) { *this = that; }
Descriptor &Descriptor::operator=(const Descriptor &that) {
std::memcpy(this, &that, that.SizeInBytes());
return *this;
}
void Descriptor::Establish(TypeCode t, std::size_t elementBytes, void *p,
int rank, const SubscriptValue *extent, ISO::CFI_attribute_t attribute,
bool addendum) {
Terminator terminator{__FILE__, __LINE__};
// Subtle: the standard CFI_establish() function doesn't allow a zero
// elem_len argument in cases where elem_len is not ignored; and when it
// returns an error code (CFI_INVALID_ELEM_LEN in this case), it must not
// modify the descriptor. That design makes sense, maybe, for actual
// C interoperability, but we need to work around it here. A zero
// incoming element length is replaced by 4 so that it will be valid
// for all CHARACTER kinds.
std::size_t workaroundElemLen{elementBytes ? elementBytes : 4};
int cfiStatus{ISO::CFI_establish(
&raw_, p, attribute, t.raw(), workaroundElemLen, rank, extent)};
if (cfiStatus != CFI_SUCCESS) {
terminator.Crash(
"Descriptor::Establish: CFI_establish returned %d", cfiStatus, t.raw());
}
if (elementBytes == 0) {
raw_.elem_len = 0;
for (int j{0}; j < rank; ++j) {
GetDimension(j).SetByteStride(0);
}
}
raw_.f18Addendum = addendum;
DescriptorAddendum *a{Addendum()};
RUNTIME_CHECK(terminator, addendum == (a != nullptr));
if (a) {
new (a) DescriptorAddendum{};
}
}
void Descriptor::Establish(TypeCategory c, int kind, void *p, int rank,
const SubscriptValue *extent, ISO::CFI_attribute_t attribute,
bool addendum) {
Establish(TypeCode(c, kind), BytesFor(c, kind), p, rank, extent, attribute,
addendum);
}
void Descriptor::Establish(int characterKind, std::size_t characters, void *p,
int rank, const SubscriptValue *extent, ISO::CFI_attribute_t attribute,
bool addendum) {
Establish(TypeCode{TypeCategory::Character, characterKind},
characterKind * characters, p, rank, extent, attribute, addendum);
}
void Descriptor::Establish(const typeInfo::DerivedType &dt, void *p, int rank,
const SubscriptValue *extent, ISO::CFI_attribute_t attribute) {
Establish(TypeCode{TypeCategory::Derived, 0}, dt.sizeInBytes(), p, rank,
extent, attribute, true);
DescriptorAddendum *a{Addendum()};
Terminator terminator{__FILE__, __LINE__};
RUNTIME_CHECK(terminator, a != nullptr);
new (a) DescriptorAddendum{&dt};
}
OwningPtr<Descriptor> Descriptor::Create(TypeCode t, std::size_t elementBytes,
void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute, int derivedTypeLenParameters) {
std::size_t bytes{SizeInBytes(rank, true, derivedTypeLenParameters)};
Terminator terminator{__FILE__, __LINE__};
Descriptor *result{
reinterpret_cast<Descriptor *>(AllocateMemoryOrCrash(terminator, bytes))};
result->Establish(t, elementBytes, p, rank, extent, attribute, true);
return OwningPtr<Descriptor>{result};
}
OwningPtr<Descriptor> Descriptor::Create(TypeCategory c, int kind, void *p,
int rank, const SubscriptValue *extent, ISO::CFI_attribute_t attribute) {
return Create(
TypeCode(c, kind), BytesFor(c, kind), p, rank, extent, attribute);
}
OwningPtr<Descriptor> Descriptor::Create(int characterKind,
SubscriptValue characters, void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute) {
return Create(TypeCode{TypeCategory::Character, characterKind},
characterKind * characters, p, rank, extent, attribute);
}
OwningPtr<Descriptor> Descriptor::Create(const typeInfo::DerivedType &dt,
void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute) {
return Create(TypeCode{TypeCategory::Derived, 0}, dt.sizeInBytes(), p, rank,
extent, attribute, dt.LenParameters());
}
std::size_t Descriptor::SizeInBytes() const {
const DescriptorAddendum *addendum{Addendum()};
return sizeof *this - sizeof(Dimension) + raw_.rank * sizeof(Dimension) +
(addendum ? addendum->SizeInBytes() : 0);
}
std::size_t Descriptor::Elements() const {
int n{rank()};
std::size_t elements{1};
for (int j{0}; j < n; ++j) {
elements *= GetDimension(j).Extent();
}
return elements;
}
int Descriptor::Allocate() {
std::size_t byteSize{Elements() * ElementBytes()};
void *p{std::malloc(byteSize)};
if (!p && byteSize) {
return CFI_ERROR_MEM_ALLOCATION;
}
// TODO: image synchronization
raw_.base_addr = p;
if (int dims{rank()}) {
std::size_t stride{ElementBytes()};
for (int j{0}; j < dims; ++j) {
auto &dimension{GetDimension(j)};
dimension.SetByteStride(stride);
stride *= dimension.Extent();
}
}
return 0;
}
int Descriptor::Destroy(bool finalize) {
if (raw_.attribute == CFI_attribute_pointer) {
return StatOk;
} else {
if (auto *addendum{Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noDestructionNeeded()) {
runtime::Destroy(*this, finalize, *derived);
}
}
}
return Deallocate();
}
}
int Descriptor::Deallocate() { return ISO::CFI_deallocate(&raw_); }
bool Descriptor::IncrementSubscripts(
SubscriptValue *subscript, const int *permutation) const {
for (int j{0}; j < raw_.rank; ++j) {
int k{permutation ? permutation[j] : j};
const Dimension &dim{GetDimension(k)};
if (subscript[k]++ < dim.UpperBound()) {
return true;
}
subscript[k] = dim.LowerBound();
}
return false;
}
bool Descriptor::DecrementSubscripts(
SubscriptValue *subscript, const int *permutation) const {
for (int j{raw_.rank - 1}; j >= 0; --j) {
int k{permutation ? permutation[j] : j};
const Dimension &dim{GetDimension(k)};
if (--subscript[k] >= dim.LowerBound()) {
return true;
}
subscript[k] = dim.UpperBound();
}
return false;
}
std::size_t Descriptor::ZeroBasedElementNumber(
const SubscriptValue *subscript, const int *permutation) const {
std::size_t result{0};
std::size_t coefficient{1};
for (int j{0}; j < raw_.rank; ++j) {
int k{permutation ? permutation[j] : j};
const Dimension &dim{GetDimension(k)};
result += coefficient * (subscript[k] - dim.LowerBound());
coefficient *= dim.Extent();
}
return result;
}
bool Descriptor::SubscriptsForZeroBasedElementNumber(SubscriptValue *subscript,
std::size_t elementNumber, const int *permutation) const {
std::size_t coefficient{1};
std::size_t dimCoefficient[maxRank];
for (int j{0}; j < raw_.rank; ++j) {
int k{permutation ? permutation[j] : j};
const Dimension &dim{GetDimension(k)};
dimCoefficient[j] = coefficient;
coefficient *= dim.Extent();
}
if (elementNumber >= coefficient) {
return false; // out of range
}
for (int j{raw_.rank - 1}; j >= 0; --j) {
int k{permutation ? permutation[j] : j};
const Dimension &dim{GetDimension(k)};
std::size_t quotient{elementNumber / dimCoefficient[j]};
subscript[k] = quotient + dim.LowerBound();
elementNumber -= quotient * dimCoefficient[j];
}
return true;
}
bool Descriptor::EstablishPointerSection(const Descriptor &source,
const SubscriptValue *lower, const SubscriptValue *upper,
const SubscriptValue *stride) {
*this = source;
raw_.attribute = CFI_attribute_pointer;
int newRank{raw_.rank};
for (int j{0}; j < raw_.rank; ++j) {
if (!stride || stride[j] == 0) {
if (newRank > 0) {
--newRank;
} else {
return false;
}
}
}
raw_.rank = newRank;
return CFI_section(&raw_, &source.raw_, lower, upper, stride) == CFI_SUCCESS;
}
void Descriptor::Check() const {
// TODO
}
void Descriptor::Dump(FILE *f) const {
std::fprintf(f, "Descriptor @ %p:\n", reinterpret_cast<const void *>(this));
std::fprintf(f, " base_addr %p\n", raw_.base_addr);
std::fprintf(f, " elem_len %zd\n", static_cast<std::size_t>(raw_.elem_len));
std::fprintf(f, " version %d\n", static_cast<int>(raw_.version));
std::fprintf(f, " rank %d\n", static_cast<int>(raw_.rank));
std::fprintf(f, " type %d\n", static_cast<int>(raw_.type));
std::fprintf(f, " attribute %d\n", static_cast<int>(raw_.attribute));
std::fprintf(f, " addendum %d\n", static_cast<int>(raw_.f18Addendum));
for (int j{0}; j < raw_.rank; ++j) {
std::fprintf(f, " dim[%d] lower_bound %jd\n", j,
static_cast<std::intmax_t>(raw_.dim[j].lower_bound));
std::fprintf(f, " extent %jd\n",
static_cast<std::intmax_t>(raw_.dim[j].extent));
std::fprintf(f, " sm %jd\n",
static_cast<std::intmax_t>(raw_.dim[j].sm));
}
if (const DescriptorAddendum * addendum{Addendum()}) {
addendum->Dump(f);
}
}
DescriptorAddendum &DescriptorAddendum::operator=(
const DescriptorAddendum &that) {
derivedType_ = that.derivedType_;
auto lenParms{that.LenParameters()};
for (std::size_t j{0}; j < lenParms; ++j) {
len_[j] = that.len_[j];
}
return *this;
}
std::size_t DescriptorAddendum::SizeInBytes() const {
return SizeInBytes(LenParameters());
}
std::size_t DescriptorAddendum::LenParameters() const {
const auto *type{derivedType()};
return type ? type->LenParameters() : 0;
}
void DescriptorAddendum::Dump(FILE *f) const {
std::fprintf(
f, " derivedType @ %p\n", reinterpret_cast<const void *>(derivedType()));
std::size_t lenParms{LenParameters()};
for (std::size_t j{0}; j < lenParms; ++j) {
std::fprintf(f, " len[%zd] %jd\n", j, static_cast<std::intmax_t>(len_[j]));
}
}
} // namespace Fortran::runtime