Files
clang-p2996/flang/runtime/time-intrinsic.cpp
Jean Perier b3e392c081 [flang] Implement Posix version of DATE_AND_TIME runtime
Use gettimeofday and localtime_r to implement DATE_AND_TIME intrinsic.
The Windows version fallbacks to the "no date and time information
available" defined by the standard (strings set to blanks and values to
-HUGE).

The implementation uses an ifdef between windows and the rest because
from my tests, the SFINAE approach leads to undeclared name bogus errors
with clang 8 that seems to ignore failure to instantiate is not an error
for the function names (i.e., it understands it should not instantiate
the version using gettimeofday if it is not there, but still yields an
error that it is not declared on the spot where it is called in the
uninstantiated version).

Differential Revision: https://reviews.llvm.org/D108622
2021-08-25 11:16:52 +02:00

378 lines
14 KiB
C++

//===-- runtime/time-intrinsic.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements time-related intrinsic subroutines.
#include "time-intrinsic.h"
#include "descriptor.h"
#include "terminator.h"
#include "tools.h"
#include <algorithm>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#ifndef _WIN32
#include <sys/time.h> // gettimeofday
#endif
// CPU_TIME (Fortran 2018 16.9.57)
// SYSTEM_CLOCK (Fortran 2018 16.9.168)
//
// We can use std::clock() from the <ctime> header as a fallback implementation
// that should be available everywhere. This may not provide the best resolution
// and is particularly troublesome on (some?) POSIX systems where CLOCKS_PER_SEC
// is defined as 10^6 regardless of the actual precision of std::clock().
// Therefore, we will usually prefer platform-specific alternatives when they
// are available.
//
// We can use SFINAE to choose a platform-specific alternative. To do so, we
// introduce a helper function template, whose overload set will contain only
// implementations relying on interfaces which are actually available. Each
// overload will have a dummy parameter whose type indicates whether or not it
// should be preferred. Any other parameters required for SFINAE should have
// default values provided.
namespace {
// Types for the dummy parameter indicating the priority of a given overload.
// We will invoke our helper with an integer literal argument, so the overload
// with the highest priority should have the type int.
using fallback_implementation = double;
using preferred_implementation = int;
// This is the fallback implementation, which should work everywhere.
template <typename Unused = void> double GetCpuTime(fallback_implementation) {
std::clock_t timestamp{std::clock()};
if (timestamp != static_cast<std::clock_t>(-1)) {
return static_cast<double>(timestamp) / CLOCKS_PER_SEC;
}
// Return some negative value to represent failure.
return -1.0;
}
// POSIX implementation using clock_gettime. This is only enabled if
// clock_gettime is available.
template <typename T = int, typename U = struct timespec>
double GetCpuTime(preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
#if defined CLOCK_THREAD_CPUTIME_ID
#define CLOCKID CLOCK_THREAD_CPUTIME_ID
#elif defined CLOCK_PROCESS_CPUTIME_ID
#define CLOCKID CLOCK_PROCESS_CPUTIME_ID
#elif defined CLOCK_MONOTONIC
#define CLOCKID CLOCK_MONOTONIC
#else
#define CLOCKID CLOCK_REALTIME
#endif
struct timespec tspec;
if (clock_gettime(CLOCKID, &tspec) == 0) {
return tspec.tv_nsec * 1.0e-9 + tspec.tv_sec;
}
// Return some negative value to represent failure.
return -1.0;
}
using count_t =
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, 8>;
// This is the fallback implementation, which should work everywhere. Note that
// in general we can't recover after std::clock has reached its maximum value.
template <typename Unused = void>
count_t GetSystemClockCount(fallback_implementation) {
std::clock_t timestamp{std::clock()};
if (timestamp == static_cast<std::clock_t>(-1)) {
// Return -HUGE() to represent failure.
return -std::numeric_limits<count_t>::max();
}
// If our return type is large enough to hold any value returned by
// std::clock, our work is done. Otherwise, we have to wrap around.
static constexpr auto max{std::numeric_limits<count_t>::max()};
if constexpr (std::numeric_limits<std::clock_t>::max() <= max) {
return static_cast<count_t>(timestamp);
} else {
// Since std::clock_t could be a floating point type, we can't just use the
// % operator, so we have to wrap around manually.
return static_cast<count_t>(timestamp - max * std::floor(timestamp / max));
}
}
template <typename Unused = void>
count_t GetSystemClockCountRate(fallback_implementation) {
return CLOCKS_PER_SEC;
}
template <typename Unused = void>
count_t GetSystemClockCountMax(fallback_implementation) {
static constexpr auto max_clock_t = std::numeric_limits<std::clock_t>::max();
static constexpr auto max_count_t = std::numeric_limits<count_t>::max();
if constexpr (max_clock_t < max_count_t) {
return static_cast<count_t>(max_clock_t);
} else {
return max_count_t;
}
}
constexpr count_t NSECS_PER_SEC{1'000'000'000};
// POSIX implementation using clock_gettime. This is only enabled if
// clock_gettime is available.
template <typename T = int, typename U = struct timespec>
count_t GetSystemClockCount(preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
#if defined CLOCK_THREAD_CPUTIME_ID
#define CLOCKID CLOCK_THREAD_CPUTIME_ID
#elif defined CLOCK_PROCESS_CPUTIME_ID
#define CLOCKID CLOCK_PROCESS_CPUTIME_ID
#elif defined CLOCK_MONOTONIC
#define CLOCKID CLOCK_MONOTONIC
#else
#define CLOCKID CLOCK_REALTIME
#endif
struct timespec tspec;
if (clock_gettime(CLOCKID, &tspec) != 0) {
// Return -HUGE() to represent failure.
return -std::numeric_limits<count_t>::max();
}
// Wrap around to avoid overflows.
constexpr count_t max_secs{
std::numeric_limits<count_t>::max() / NSECS_PER_SEC};
count_t wrapped_secs{tspec.tv_sec % max_secs};
// At this point, wrapped_secs < max_secs, and max_secs has already been
// truncated by the division. Therefore, we should still have enough room to
// add tv_nsec, since it is < NSECS_PER_SEC.
return tspec.tv_nsec + wrapped_secs * NSECS_PER_SEC;
}
template <typename T = int, typename U = struct timespec>
count_t GetSystemClockCountRate(preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
return NSECS_PER_SEC;
}
template <typename T = int, typename U = struct timespec>
count_t GetSystemClockCountMax(preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
count_t max_secs{std::numeric_limits<count_t>::max() / NSECS_PER_SEC};
return max_secs * NSECS_PER_SEC - 1;
}
// DATE_AND_TIME (Fortran 2018 16.9.59)
// Helper to store integer value in result[at].
template <int KIND> struct StoreIntegerAt {
void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
std::int64_t value) const {
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>(at) = value;
}
};
// Helper to set an integer value to -HUGE
template <int KIND> struct StoreNegativeHugeAt {
void operator()(
const Fortran::runtime::Descriptor &result, std::size_t at) const {
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>(at) =
-std::numeric_limits<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>::max();
}
};
// Default implementation when date and time information is not available (set
// strings to blanks and values to -HUGE as defined by the standard).
void DateAndTimeUnavailable(Fortran::runtime::Terminator &terminator,
char *date, std::size_t dateChars, char *time, std::size_t timeChars,
char *zone, std::size_t zoneChars,
const Fortran::runtime::Descriptor *values) {
if (date) {
std::memset(date, static_cast<int>(' '), dateChars);
}
if (time) {
std::memset(time, static_cast<int>(' '), timeChars);
}
if (zone) {
std::memset(zone, static_cast<int>(' '), zoneChars);
}
if (values) {
auto typeCode{values->type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator,
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
typeCode &&
typeCode->first == Fortran::common::TypeCategory::Integer);
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
// KIND 1 here.
int kind{typeCode->second};
RUNTIME_CHECK(terminator, kind != 1);
for (std::size_t i = 0; i < 8; ++i) {
Fortran::runtime::ApplyIntegerKind<StoreNegativeHugeAt, void>(
kind, terminator, *values, i);
}
}
}
#ifndef _WIN32
// SFINAE helper to return the struct tm.tm_gmtoff which is not a POSIX standard
// field.
template <int KIND, typename TM = struct tm>
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
GetGmtOffset(const TM &tm, preferred_implementation,
decltype(tm.tm_gmtoff) *Enabled = nullptr) {
// Returns the GMT offset in minutes.
return tm.tm_gmtoff / 60;
}
template <int KIND, typename TM = struct tm>
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
GetGmtOffset(const TM &tm, fallback_implementation) {
// tm.tm_gmtoff is not available, there may be platform dependent alternatives
// (such as using timezone from <time.h> when available), but so far just
// return -HUGE to report that this information is not available.
return -std::numeric_limits<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>::max();
}
template <typename TM = struct tm> struct GmtOffsetHelper {
template <int KIND> struct StoreGmtOffset {
void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
TM &tm) const {
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>(at) =
GetGmtOffset<KIND>(tm, 0);
}
};
};
// Dispatch to posix implemetation when gettimeofday and localtime_r are
// available.
void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
timeval t;
if (gettimeofday(&t, nullptr) != 0) {
DateAndTimeUnavailable(
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
return;
}
time_t timer{t.tv_sec};
tm localTime;
localtime_r(&timer, &localTime);
std::intmax_t ms{t.tv_usec / 1000};
static constexpr std::size_t buffSize{16};
char buffer[buffSize];
auto copyBufferAndPad{
[&](char *dest, std::size_t destChars, std::size_t len) {
auto copyLen{std::min(len, destChars)};
std::memcpy(dest, buffer, copyLen);
for (auto i{copyLen}; i < destChars; ++i) {
dest[i] = ' ';
}
}};
if (date) {
auto len = std::strftime(buffer, buffSize, "%Y%m%d", &localTime);
copyBufferAndPad(date, dateChars, len);
}
if (time) {
auto len{std::snprintf(buffer, buffSize, "%02d%02d%02d.%03jd",
localTime.tm_hour, localTime.tm_min, localTime.tm_sec, ms)};
copyBufferAndPad(time, timeChars, len);
}
if (zone) {
// Note: this may leave the buffer empty on many platforms. Classic flang
// has a much more complex way of doing this (see __io_timezone in classic
// flang).
auto len{std::strftime(buffer, buffSize, "%z", &localTime)};
copyBufferAndPad(zone, zoneChars, len);
}
if (values) {
auto typeCode{values->type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator,
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
typeCode &&
typeCode->first == Fortran::common::TypeCategory::Integer);
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
// KIND 1 here.
int kind{typeCode->second};
RUNTIME_CHECK(terminator, kind != 1);
auto storeIntegerAt = [&](std::size_t atIndex, std::int64_t value) {
Fortran::runtime::ApplyIntegerKind<StoreIntegerAt, void>(
kind, terminator, *values, atIndex, value);
};
storeIntegerAt(0, localTime.tm_year + 1900);
storeIntegerAt(1, localTime.tm_mon + 1);
storeIntegerAt(2, localTime.tm_mday);
Fortran::runtime::ApplyIntegerKind<
GmtOffsetHelper<struct tm>::StoreGmtOffset, void>(
kind, terminator, *values, 3, localTime);
storeIntegerAt(4, localTime.tm_hour);
storeIntegerAt(5, localTime.tm_min);
storeIntegerAt(6, localTime.tm_sec);
storeIntegerAt(7, ms);
}
}
#else
// Fallback implementation when gettimeofday or localtime_r is not available
// (e.g. windows).
void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
// TODO: An actual implementation for non Posix system should be added.
// So far, implement as if the date and time is not available on those
// platforms.
DateAndTimeUnavailable(
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
}
#endif
} // anonymous namespace
namespace Fortran::runtime {
extern "C" {
double RTNAME(CpuTime)() { return GetCpuTime(0); }
CppTypeFor<Fortran::common::TypeCategory::Integer, 8> RTNAME(
SystemClockCount)() {
return GetSystemClockCount(0);
}
CppTypeFor<Fortran::common::TypeCategory::Integer, 8> RTNAME(
SystemClockCountRate)() {
return GetSystemClockCountRate(0);
}
CppTypeFor<Fortran::common::TypeCategory::Integer, 8> RTNAME(
SystemClockCountMax)() {
return GetSystemClockCountMax(0);
}
void RTNAME(DateAndTime)(char *date, std::size_t dateChars, char *time,
std::size_t timeChars, char *zone, std::size_t zoneChars,
const char *source, int line, const Descriptor *values) {
Fortran::runtime::Terminator terminator{source, line};
return GetDateAndTime(
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
}
} // extern "C"
} // namespace Fortran::runtime