This is another followup to D106591. Even if there is an instruction that clobbers one of the loads, this doesn't matter if it happens before the loads. Those instructions aren't affected by the transform at all. The gep-references-bb.ll is modified to preserve the spirit of the test, as the store to @g no longer impacts the transform. Differential Revision: https://reviews.llvm.org/D108782
923 lines
35 KiB
C++
923 lines
35 KiB
C++
//===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass turns chains of integer comparisons into memcmp (the memcmp is
|
|
// later typically inlined as a chain of efficient hardware comparisons). This
|
|
// typically benefits c++ member or nonmember operator==().
|
|
//
|
|
// The basic idea is to replace a longer chain of integer comparisons loaded
|
|
// from contiguous memory locations into a shorter chain of larger integer
|
|
// comparisons. Benefits are double:
|
|
// - There are less jumps, and therefore less opportunities for mispredictions
|
|
// and I-cache misses.
|
|
// - Code size is smaller, both because jumps are removed and because the
|
|
// encoding of a 2*n byte compare is smaller than that of two n-byte
|
|
// compares.
|
|
//
|
|
// Example:
|
|
//
|
|
// struct S {
|
|
// int a;
|
|
// char b;
|
|
// char c;
|
|
// uint16_t d;
|
|
// bool operator==(const S& o) const {
|
|
// return a == o.a && b == o.b && c == o.c && d == o.d;
|
|
// }
|
|
// };
|
|
//
|
|
// Is optimized as :
|
|
//
|
|
// bool S::operator==(const S& o) const {
|
|
// return memcmp(this, &o, 8) == 0;
|
|
// }
|
|
//
|
|
// Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/MergeICmps.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
#define DEBUG_TYPE "mergeicmps"
|
|
|
|
// A BCE atom "Binary Compare Expression Atom" represents an integer load
|
|
// that is a constant offset from a base value, e.g. `a` or `o.c` in the example
|
|
// at the top.
|
|
struct BCEAtom {
|
|
BCEAtom() = default;
|
|
BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
|
|
: GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
|
|
|
|
BCEAtom(const BCEAtom &) = delete;
|
|
BCEAtom &operator=(const BCEAtom &) = delete;
|
|
|
|
BCEAtom(BCEAtom &&that) = default;
|
|
BCEAtom &operator=(BCEAtom &&that) {
|
|
if (this == &that)
|
|
return *this;
|
|
GEP = that.GEP;
|
|
LoadI = that.LoadI;
|
|
BaseId = that.BaseId;
|
|
Offset = std::move(that.Offset);
|
|
return *this;
|
|
}
|
|
|
|
// We want to order BCEAtoms by (Base, Offset). However we cannot use
|
|
// the pointer values for Base because these are non-deterministic.
|
|
// To make sure that the sort order is stable, we first assign to each atom
|
|
// base value an index based on its order of appearance in the chain of
|
|
// comparisons. We call this index `BaseOrdering`. For example, for:
|
|
// b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
|
|
// | block 1 | | block 2 | | block 3 |
|
|
// b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
|
|
// which is before block 2.
|
|
// We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
|
|
bool operator<(const BCEAtom &O) const {
|
|
return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
|
|
}
|
|
|
|
GetElementPtrInst *GEP = nullptr;
|
|
LoadInst *LoadI = nullptr;
|
|
unsigned BaseId = 0;
|
|
APInt Offset;
|
|
};
|
|
|
|
// A class that assigns increasing ids to values in the order in which they are
|
|
// seen. See comment in `BCEAtom::operator<()``.
|
|
class BaseIdentifier {
|
|
public:
|
|
// Returns the id for value `Base`, after assigning one if `Base` has not been
|
|
// seen before.
|
|
int getBaseId(const Value *Base) {
|
|
assert(Base && "invalid base");
|
|
const auto Insertion = BaseToIndex.try_emplace(Base, Order);
|
|
if (Insertion.second)
|
|
++Order;
|
|
return Insertion.first->second;
|
|
}
|
|
|
|
private:
|
|
unsigned Order = 1;
|
|
DenseMap<const Value*, int> BaseToIndex;
|
|
};
|
|
|
|
// If this value is a load from a constant offset w.r.t. a base address, and
|
|
// there are no other users of the load or address, returns the base address and
|
|
// the offset.
|
|
BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
|
|
auto *const LoadI = dyn_cast<LoadInst>(Val);
|
|
if (!LoadI)
|
|
return {};
|
|
LLVM_DEBUG(dbgs() << "load\n");
|
|
if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
|
|
LLVM_DEBUG(dbgs() << "used outside of block\n");
|
|
return {};
|
|
}
|
|
// Do not optimize atomic loads to non-atomic memcmp
|
|
if (!LoadI->isSimple()) {
|
|
LLVM_DEBUG(dbgs() << "volatile or atomic\n");
|
|
return {};
|
|
}
|
|
Value *const Addr = LoadI->getOperand(0);
|
|
if (Addr->getType()->getPointerAddressSpace() != 0) {
|
|
LLVM_DEBUG(dbgs() << "from non-zero AddressSpace\n");
|
|
return {};
|
|
}
|
|
auto *const GEP = dyn_cast<GetElementPtrInst>(Addr);
|
|
if (!GEP)
|
|
return {};
|
|
LLVM_DEBUG(dbgs() << "GEP\n");
|
|
if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
|
|
LLVM_DEBUG(dbgs() << "used outside of block\n");
|
|
return {};
|
|
}
|
|
const auto &DL = GEP->getModule()->getDataLayout();
|
|
if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) {
|
|
LLVM_DEBUG(dbgs() << "not dereferenceable\n");
|
|
// We need to make sure that we can do comparison in any order, so we
|
|
// require memory to be unconditionnally dereferencable.
|
|
return {};
|
|
}
|
|
APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
|
|
if (!GEP->accumulateConstantOffset(DL, Offset))
|
|
return {};
|
|
return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()),
|
|
Offset);
|
|
}
|
|
|
|
// A comparison between two BCE atoms, e.g. `a == o.a` in the example at the
|
|
// top.
|
|
// Note: the terminology is misleading: the comparison is symmetric, so there
|
|
// is no real {l/r}hs. What we want though is to have the same base on the
|
|
// left (resp. right), so that we can detect consecutive loads. To ensure this
|
|
// we put the smallest atom on the left.
|
|
struct BCECmp {
|
|
BCEAtom Lhs;
|
|
BCEAtom Rhs;
|
|
int SizeBits;
|
|
const ICmpInst *CmpI;
|
|
|
|
BCECmp(BCEAtom L, BCEAtom R, int SizeBits, const ICmpInst *CmpI)
|
|
: Lhs(std::move(L)), Rhs(std::move(R)), SizeBits(SizeBits), CmpI(CmpI) {
|
|
if (Rhs < Lhs) std::swap(Rhs, Lhs);
|
|
}
|
|
};
|
|
|
|
// A basic block with a comparison between two BCE atoms.
|
|
// The block might do extra work besides the atom comparison, in which case
|
|
// doesOtherWork() returns true. Under some conditions, the block can be
|
|
// split into the atom comparison part and the "other work" part
|
|
// (see canSplit()).
|
|
class BCECmpBlock {
|
|
public:
|
|
typedef SmallDenseSet<const Instruction *, 8> InstructionSet;
|
|
|
|
BCECmpBlock(BCECmp Cmp, BasicBlock *BB, InstructionSet BlockInsts)
|
|
: BB(BB), BlockInsts(std::move(BlockInsts)), Cmp(std::move(Cmp)) {}
|
|
|
|
const BCEAtom &Lhs() const { return Cmp.Lhs; }
|
|
const BCEAtom &Rhs() const { return Cmp.Rhs; }
|
|
int SizeBits() const { return Cmp.SizeBits; }
|
|
|
|
// Returns true if the block does other works besides comparison.
|
|
bool doesOtherWork() const;
|
|
|
|
// Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
|
|
// instructions in the block.
|
|
bool canSplit(AliasAnalysis &AA) const;
|
|
|
|
// Return true if this all the relevant instructions in the BCE-cmp-block can
|
|
// be sunk below this instruction. By doing this, we know we can separate the
|
|
// BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
|
|
// block.
|
|
bool canSinkBCECmpInst(const Instruction *, AliasAnalysis &AA) const;
|
|
|
|
// We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
|
|
// instructions. Split the old block and move all non-BCE-cmp-insts into the
|
|
// new parent block.
|
|
void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
|
|
|
|
// The basic block where this comparison happens.
|
|
BasicBlock *BB;
|
|
// Instructions relating to the BCECmp and branch.
|
|
InstructionSet BlockInsts;
|
|
// The block requires splitting.
|
|
bool RequireSplit = false;
|
|
|
|
private:
|
|
BCECmp Cmp;
|
|
};
|
|
|
|
bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
|
|
AliasAnalysis &AA) const {
|
|
// If this instruction may clobber the loads and is in middle of the BCE cmp
|
|
// block instructions, then bail for now.
|
|
if (Inst->mayWriteToMemory()) {
|
|
auto MayClobber = [&](LoadInst *LI) {
|
|
// If a potentially clobbering instruction comes before the load,
|
|
// we can still safely sink the load.
|
|
return !Inst->comesBefore(LI) &&
|
|
isModSet(AA.getModRefInfo(Inst, MemoryLocation::get(LI)));
|
|
};
|
|
if (MayClobber(Cmp.Lhs.LoadI) || MayClobber(Cmp.Rhs.LoadI))
|
|
return false;
|
|
}
|
|
// Make sure this instruction does not use any of the BCE cmp block
|
|
// instructions as operand.
|
|
return llvm::none_of(Inst->operands(), [&](const Value *Op) {
|
|
const Instruction *OpI = dyn_cast<Instruction>(Op);
|
|
return OpI && BlockInsts.contains(OpI);
|
|
});
|
|
}
|
|
|
|
void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
|
|
llvm::SmallVector<Instruction *, 4> OtherInsts;
|
|
for (Instruction &Inst : *BB) {
|
|
if (BlockInsts.count(&Inst))
|
|
continue;
|
|
assert(canSinkBCECmpInst(&Inst, AA) && "Split unsplittable block");
|
|
// This is a non-BCE-cmp-block instruction. And it can be separated
|
|
// from the BCE-cmp-block instruction.
|
|
OtherInsts.push_back(&Inst);
|
|
}
|
|
|
|
// Do the actual spliting.
|
|
for (Instruction *Inst : reverse(OtherInsts)) {
|
|
Inst->moveBefore(&*NewParent->begin());
|
|
}
|
|
}
|
|
|
|
bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
|
|
for (Instruction &Inst : *BB) {
|
|
if (!BlockInsts.count(&Inst)) {
|
|
if (!canSinkBCECmpInst(&Inst, AA))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool BCECmpBlock::doesOtherWork() const {
|
|
// TODO(courbet): Can we allow some other things ? This is very conservative.
|
|
// We might be able to get away with anything does not have any side
|
|
// effects outside of the basic block.
|
|
// Note: The GEPs and/or loads are not necessarily in the same block.
|
|
for (const Instruction &Inst : *BB) {
|
|
if (!BlockInsts.count(&Inst))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Visit the given comparison. If this is a comparison between two valid
|
|
// BCE atoms, returns the comparison.
|
|
Optional<BCECmp> visitICmp(const ICmpInst *const CmpI,
|
|
const ICmpInst::Predicate ExpectedPredicate,
|
|
BaseIdentifier &BaseId) {
|
|
// The comparison can only be used once:
|
|
// - For intermediate blocks, as a branch condition.
|
|
// - For the final block, as an incoming value for the Phi.
|
|
// If there are any other uses of the comparison, we cannot merge it with
|
|
// other comparisons as we would create an orphan use of the value.
|
|
if (!CmpI->hasOneUse()) {
|
|
LLVM_DEBUG(dbgs() << "cmp has several uses\n");
|
|
return None;
|
|
}
|
|
if (CmpI->getPredicate() != ExpectedPredicate)
|
|
return None;
|
|
LLVM_DEBUG(dbgs() << "cmp "
|
|
<< (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
|
|
<< "\n");
|
|
auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
|
|
if (!Lhs.BaseId)
|
|
return None;
|
|
auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
|
|
if (!Rhs.BaseId)
|
|
return None;
|
|
const auto &DL = CmpI->getModule()->getDataLayout();
|
|
return BCECmp(std::move(Lhs), std::move(Rhs),
|
|
DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()), CmpI);
|
|
}
|
|
|
|
// Visit the given comparison block. If this is a comparison between two valid
|
|
// BCE atoms, returns the comparison.
|
|
Optional<BCECmpBlock> visitCmpBlock(Value *const Val, BasicBlock *const Block,
|
|
const BasicBlock *const PhiBlock,
|
|
BaseIdentifier &BaseId) {
|
|
if (Block->empty()) return None;
|
|
auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
|
|
if (!BranchI) return None;
|
|
LLVM_DEBUG(dbgs() << "branch\n");
|
|
Value *Cond;
|
|
ICmpInst::Predicate ExpectedPredicate;
|
|
if (BranchI->isUnconditional()) {
|
|
// In this case, we expect an incoming value which is the result of the
|
|
// comparison. This is the last link in the chain of comparisons (note
|
|
// that this does not mean that this is the last incoming value, blocks
|
|
// can be reordered).
|
|
Cond = Val;
|
|
ExpectedPredicate = ICmpInst::ICMP_EQ;
|
|
} else {
|
|
// In this case, we expect a constant incoming value (the comparison is
|
|
// chained).
|
|
const auto *const Const = cast<ConstantInt>(Val);
|
|
LLVM_DEBUG(dbgs() << "const\n");
|
|
if (!Const->isZero()) return None;
|
|
LLVM_DEBUG(dbgs() << "false\n");
|
|
assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
|
|
BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
|
|
Cond = BranchI->getCondition();
|
|
ExpectedPredicate =
|
|
FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
|
|
}
|
|
|
|
auto *CmpI = dyn_cast<ICmpInst>(Cond);
|
|
if (!CmpI) return None;
|
|
LLVM_DEBUG(dbgs() << "icmp\n");
|
|
|
|
Optional<BCECmp> Result = visitICmp(CmpI, ExpectedPredicate, BaseId);
|
|
if (!Result)
|
|
return None;
|
|
|
|
BCECmpBlock::InstructionSet BlockInsts(
|
|
{Result->Lhs.GEP, Result->Rhs.GEP, Result->Lhs.LoadI, Result->Rhs.LoadI,
|
|
Result->CmpI, BranchI});
|
|
return BCECmpBlock(std::move(*Result), Block, BlockInsts);
|
|
}
|
|
|
|
static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
|
|
BCECmpBlock &&Comparison) {
|
|
LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
|
|
<< "': Found cmp of " << Comparison.SizeBits()
|
|
<< " bits between " << Comparison.Lhs().BaseId << " + "
|
|
<< Comparison.Lhs().Offset << " and "
|
|
<< Comparison.Rhs().BaseId << " + "
|
|
<< Comparison.Rhs().Offset << "\n");
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
Comparisons.push_back(std::move(Comparison));
|
|
}
|
|
|
|
// A chain of comparisons.
|
|
class BCECmpChain {
|
|
public:
|
|
BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
|
|
AliasAnalysis &AA);
|
|
|
|
int size() const { return Comparisons_.size(); }
|
|
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
void dump() const;
|
|
#endif // MERGEICMPS_DOT_ON
|
|
|
|
bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
|
|
DomTreeUpdater &DTU);
|
|
|
|
private:
|
|
static bool IsContiguous(const BCECmpBlock &First,
|
|
const BCECmpBlock &Second) {
|
|
return First.Lhs().BaseId == Second.Lhs().BaseId &&
|
|
First.Rhs().BaseId == Second.Rhs().BaseId &&
|
|
First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
|
|
First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
|
|
}
|
|
|
|
PHINode &Phi_;
|
|
std::vector<BCECmpBlock> Comparisons_;
|
|
// The original entry block (before sorting);
|
|
BasicBlock *EntryBlock_;
|
|
};
|
|
|
|
BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
|
|
AliasAnalysis &AA)
|
|
: Phi_(Phi) {
|
|
assert(!Blocks.empty() && "a chain should have at least one block");
|
|
// Now look inside blocks to check for BCE comparisons.
|
|
std::vector<BCECmpBlock> Comparisons;
|
|
BaseIdentifier BaseId;
|
|
for (BasicBlock *const Block : Blocks) {
|
|
assert(Block && "invalid block");
|
|
Optional<BCECmpBlock> Comparison = visitCmpBlock(
|
|
Phi.getIncomingValueForBlock(Block), Block, Phi.getParent(), BaseId);
|
|
if (!Comparison) {
|
|
LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
|
|
return;
|
|
}
|
|
if (Comparison->doesOtherWork()) {
|
|
LLVM_DEBUG(dbgs() << "block '" << Comparison->BB->getName()
|
|
<< "' does extra work besides compare\n");
|
|
if (Comparisons.empty()) {
|
|
// This is the initial block in the chain, in case this block does other
|
|
// work, we can try to split the block and move the irrelevant
|
|
// instructions to the predecessor.
|
|
//
|
|
// If this is not the initial block in the chain, splitting it wont
|
|
// work.
|
|
//
|
|
// As once split, there will still be instructions before the BCE cmp
|
|
// instructions that do other work in program order, i.e. within the
|
|
// chain before sorting. Unless we can abort the chain at this point
|
|
// and start anew.
|
|
//
|
|
// NOTE: we only handle blocks a with single predecessor for now.
|
|
if (Comparison->canSplit(AA)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Split initial block '" << Comparison->BB->getName()
|
|
<< "' that does extra work besides compare\n");
|
|
Comparison->RequireSplit = true;
|
|
enqueueBlock(Comparisons, std::move(*Comparison));
|
|
} else {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "ignoring initial block '" << Comparison->BB->getName()
|
|
<< "' that does extra work besides compare\n");
|
|
}
|
|
continue;
|
|
}
|
|
// TODO(courbet): Right now we abort the whole chain. We could be
|
|
// merging only the blocks that don't do other work and resume the
|
|
// chain from there. For example:
|
|
// if (a[0] == b[0]) { // bb1
|
|
// if (a[1] == b[1]) { // bb2
|
|
// some_value = 3; //bb3
|
|
// if (a[2] == b[2]) { //bb3
|
|
// do a ton of stuff //bb4
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// This is:
|
|
//
|
|
// bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
|
|
// \ \ \ \
|
|
// ne ne ne \
|
|
// \ \ \ v
|
|
// +------------+-----------+----------> bb_phi
|
|
//
|
|
// We can only merge the first two comparisons, because bb3* does
|
|
// "other work" (setting some_value to 3).
|
|
// We could still merge bb1 and bb2 though.
|
|
return;
|
|
}
|
|
enqueueBlock(Comparisons, std::move(*Comparison));
|
|
}
|
|
|
|
// It is possible we have no suitable comparison to merge.
|
|
if (Comparisons.empty()) {
|
|
LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
|
|
return;
|
|
}
|
|
EntryBlock_ = Comparisons[0].BB;
|
|
Comparisons_ = std::move(Comparisons);
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
errs() << "BEFORE REORDERING:\n\n";
|
|
dump();
|
|
#endif // MERGEICMPS_DOT_ON
|
|
// Reorder blocks by LHS. We can do that without changing the
|
|
// semantics because we are only accessing dereferencable memory.
|
|
llvm::sort(Comparisons_,
|
|
[](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
|
|
return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
|
|
std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
|
|
});
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
errs() << "AFTER REORDERING:\n\n";
|
|
dump();
|
|
#endif // MERGEICMPS_DOT_ON
|
|
}
|
|
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
void BCECmpChain::dump() const {
|
|
errs() << "digraph dag {\n";
|
|
errs() << " graph [bgcolor=transparent];\n";
|
|
errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
|
|
errs() << " edge [color=black];\n";
|
|
for (size_t I = 0; I < Comparisons_.size(); ++I) {
|
|
const auto &Comparison = Comparisons_[I];
|
|
errs() << " \"" << I << "\" [label=\"%"
|
|
<< Comparison.Lhs().Base()->getName() << " + "
|
|
<< Comparison.Lhs().Offset << " == %"
|
|
<< Comparison.Rhs().Base()->getName() << " + "
|
|
<< Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
|
|
<< " bytes)\"];\n";
|
|
const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
|
|
if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
|
|
errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
|
|
}
|
|
errs() << " \"Phi\" [label=\"Phi\"];\n";
|
|
errs() << "}\n\n";
|
|
}
|
|
#endif // MERGEICMPS_DOT_ON
|
|
|
|
namespace {
|
|
|
|
// A class to compute the name of a set of merged basic blocks.
|
|
// This is optimized for the common case of no block names.
|
|
class MergedBlockName {
|
|
// Storage for the uncommon case of several named blocks.
|
|
SmallString<16> Scratch;
|
|
|
|
public:
|
|
explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
|
|
: Name(makeName(Comparisons)) {}
|
|
const StringRef Name;
|
|
|
|
private:
|
|
StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
|
|
assert(!Comparisons.empty() && "no basic block");
|
|
// Fast path: only one block, or no names at all.
|
|
if (Comparisons.size() == 1)
|
|
return Comparisons[0].BB->getName();
|
|
const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
|
|
[](int i, const BCECmpBlock &Cmp) {
|
|
return i + Cmp.BB->getName().size();
|
|
});
|
|
if (size == 0)
|
|
return StringRef("", 0);
|
|
|
|
// Slow path: at least two blocks, at least one block with a name.
|
|
Scratch.clear();
|
|
// We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
|
|
// separators.
|
|
Scratch.reserve(size + Comparisons.size() - 1);
|
|
const auto append = [this](StringRef str) {
|
|
Scratch.append(str.begin(), str.end());
|
|
};
|
|
append(Comparisons[0].BB->getName());
|
|
for (int I = 1, E = Comparisons.size(); I < E; ++I) {
|
|
const BasicBlock *const BB = Comparisons[I].BB;
|
|
if (!BB->getName().empty()) {
|
|
append("+");
|
|
append(BB->getName());
|
|
}
|
|
}
|
|
return Scratch.str();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Merges the given contiguous comparison blocks into one memcmp block.
|
|
static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
|
|
BasicBlock *const InsertBefore,
|
|
BasicBlock *const NextCmpBlock,
|
|
PHINode &Phi, const TargetLibraryInfo &TLI,
|
|
AliasAnalysis &AA, DomTreeUpdater &DTU) {
|
|
assert(!Comparisons.empty() && "merging zero comparisons");
|
|
LLVMContext &Context = NextCmpBlock->getContext();
|
|
const BCECmpBlock &FirstCmp = Comparisons[0];
|
|
|
|
// Create a new cmp block before next cmp block.
|
|
BasicBlock *const BB =
|
|
BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
|
|
NextCmpBlock->getParent(), InsertBefore);
|
|
IRBuilder<> Builder(BB);
|
|
// Add the GEPs from the first BCECmpBlock.
|
|
Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
|
|
Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
|
|
|
|
Value *IsEqual = nullptr;
|
|
LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
|
|
<< BB->getName() << "\n");
|
|
|
|
// If there is one block that requires splitting, we do it now, i.e.
|
|
// just before we know we will collapse the chain. The instructions
|
|
// can be executed before any of the instructions in the chain.
|
|
const auto ToSplit = llvm::find_if(
|
|
Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; });
|
|
if (ToSplit != Comparisons.end()) {
|
|
LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
|
|
ToSplit->split(BB, AA);
|
|
}
|
|
|
|
if (Comparisons.size() == 1) {
|
|
LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
|
|
Value *const LhsLoad =
|
|
Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs);
|
|
Value *const RhsLoad =
|
|
Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs);
|
|
// There are no blocks to merge, just do the comparison.
|
|
IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
|
|
} else {
|
|
const unsigned TotalSizeBits = std::accumulate(
|
|
Comparisons.begin(), Comparisons.end(), 0u,
|
|
[](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
|
|
|
|
// Create memcmp() == 0.
|
|
const auto &DL = Phi.getModule()->getDataLayout();
|
|
Value *const MemCmpCall = emitMemCmp(
|
|
Lhs, Rhs,
|
|
ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder,
|
|
DL, &TLI);
|
|
IsEqual = Builder.CreateICmpEQ(
|
|
MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
|
|
}
|
|
|
|
BasicBlock *const PhiBB = Phi.getParent();
|
|
// Add a branch to the next basic block in the chain.
|
|
if (NextCmpBlock == PhiBB) {
|
|
// Continue to phi, passing it the comparison result.
|
|
Builder.CreateBr(PhiBB);
|
|
Phi.addIncoming(IsEqual, BB);
|
|
DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
|
|
} else {
|
|
// Continue to next block if equal, exit to phi else.
|
|
Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
|
|
Phi.addIncoming(ConstantInt::getFalse(Context), BB);
|
|
DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
|
|
{DominatorTree::Insert, BB, PhiBB}});
|
|
}
|
|
return BB;
|
|
}
|
|
|
|
bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
|
|
DomTreeUpdater &DTU) {
|
|
assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain");
|
|
// First pass to check if there is at least one merge. If not, we don't do
|
|
// anything and we keep analysis passes intact.
|
|
const auto AtLeastOneMerged = [this]() {
|
|
for (size_t I = 1; I < Comparisons_.size(); ++I) {
|
|
if (IsContiguous(Comparisons_[I - 1], Comparisons_[I]))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
if (!AtLeastOneMerged())
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
|
|
<< EntryBlock_->getName() << "\n");
|
|
|
|
// Effectively merge blocks. We go in the reverse direction from the phi block
|
|
// so that the next block is always available to branch to.
|
|
const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num,
|
|
BasicBlock *InsertBefore,
|
|
BasicBlock *Next) {
|
|
return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num),
|
|
InsertBefore, Next, Phi_, TLI, AA, DTU);
|
|
};
|
|
int NumMerged = 1;
|
|
BasicBlock *NextCmpBlock = Phi_.getParent();
|
|
for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) {
|
|
if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) {
|
|
LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName()
|
|
<< " into " << Comparisons_[I + 1].BB->getName()
|
|
<< "\n");
|
|
++NumMerged;
|
|
} else {
|
|
NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock);
|
|
NumMerged = 1;
|
|
}
|
|
}
|
|
// Insert the entry block for the new chain before the old entry block.
|
|
// If the old entry block was the function entry, this ensures that the new
|
|
// entry can become the function entry.
|
|
NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock);
|
|
|
|
// Replace the original cmp chain with the new cmp chain by pointing all
|
|
// predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
|
|
// blocks in the old chain unreachable.
|
|
while (!pred_empty(EntryBlock_)) {
|
|
BasicBlock* const Pred = *pred_begin(EntryBlock_);
|
|
LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
|
|
<< "\n");
|
|
Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
|
|
DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
|
|
{DominatorTree::Insert, Pred, NextCmpBlock}});
|
|
}
|
|
|
|
// If the old cmp chain was the function entry, we need to update the function
|
|
// entry.
|
|
const bool ChainEntryIsFnEntry = EntryBlock_->isEntryBlock();
|
|
if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
|
|
LLVM_DEBUG(dbgs() << "Changing function entry from "
|
|
<< EntryBlock_->getName() << " to "
|
|
<< NextCmpBlock->getName() << "\n");
|
|
DTU.getDomTree().setNewRoot(NextCmpBlock);
|
|
DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
|
|
}
|
|
EntryBlock_ = nullptr;
|
|
|
|
// Delete merged blocks. This also removes incoming values in phi.
|
|
SmallVector<BasicBlock *, 16> DeadBlocks;
|
|
for (auto &Cmp : Comparisons_) {
|
|
LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n");
|
|
DeadBlocks.push_back(Cmp.BB);
|
|
}
|
|
DeleteDeadBlocks(DeadBlocks, &DTU);
|
|
|
|
Comparisons_.clear();
|
|
return true;
|
|
}
|
|
|
|
std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
|
|
BasicBlock *const LastBlock,
|
|
int NumBlocks) {
|
|
// Walk up from the last block to find other blocks.
|
|
std::vector<BasicBlock *> Blocks(NumBlocks);
|
|
assert(LastBlock && "invalid last block");
|
|
BasicBlock *CurBlock = LastBlock;
|
|
for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
|
|
if (CurBlock->hasAddressTaken()) {
|
|
// Somebody is jumping to the block through an address, all bets are
|
|
// off.
|
|
LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
|
|
<< " has its address taken\n");
|
|
return {};
|
|
}
|
|
Blocks[BlockIndex] = CurBlock;
|
|
auto *SinglePredecessor = CurBlock->getSinglePredecessor();
|
|
if (!SinglePredecessor) {
|
|
// The block has two or more predecessors.
|
|
LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
|
|
<< " has two or more predecessors\n");
|
|
return {};
|
|
}
|
|
if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
|
|
// The block does not link back to the phi.
|
|
LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
|
|
<< " does not link back to the phi\n");
|
|
return {};
|
|
}
|
|
CurBlock = SinglePredecessor;
|
|
}
|
|
Blocks[0] = CurBlock;
|
|
return Blocks;
|
|
}
|
|
|
|
bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
|
|
DomTreeUpdater &DTU) {
|
|
LLVM_DEBUG(dbgs() << "processPhi()\n");
|
|
if (Phi.getNumIncomingValues() <= 1) {
|
|
LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
|
|
return false;
|
|
}
|
|
// We are looking for something that has the following structure:
|
|
// bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
|
|
// \ \ \ \
|
|
// ne ne ne \
|
|
// \ \ \ v
|
|
// +------------+-----------+----------> bb_phi
|
|
//
|
|
// - The last basic block (bb4 here) must branch unconditionally to bb_phi.
|
|
// It's the only block that contributes a non-constant value to the Phi.
|
|
// - All other blocks (b1, b2, b3) must have exactly two successors, one of
|
|
// them being the phi block.
|
|
// - All intermediate blocks (bb2, bb3) must have only one predecessor.
|
|
// - Blocks cannot do other work besides the comparison, see doesOtherWork()
|
|
|
|
// The blocks are not necessarily ordered in the phi, so we start from the
|
|
// last block and reconstruct the order.
|
|
BasicBlock *LastBlock = nullptr;
|
|
for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
|
|
if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
|
|
if (LastBlock) {
|
|
// There are several non-constant values.
|
|
LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
|
|
return false;
|
|
}
|
|
if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
|
|
cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
|
|
Phi.getIncomingBlock(I)) {
|
|
// Non-constant incoming value is not from a cmp instruction or not
|
|
// produced by the last block. We could end up processing the value
|
|
// producing block more than once.
|
|
//
|
|
// This is an uncommon case, so we bail.
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "skip: non-constant value not from cmp or not from last block.\n");
|
|
return false;
|
|
}
|
|
LastBlock = Phi.getIncomingBlock(I);
|
|
}
|
|
if (!LastBlock) {
|
|
// There is no non-constant block.
|
|
LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
|
|
return false;
|
|
}
|
|
if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
|
|
LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
|
|
return false;
|
|
}
|
|
|
|
const auto Blocks =
|
|
getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
|
|
if (Blocks.empty()) return false;
|
|
BCECmpChain CmpChain(Blocks, Phi, AA);
|
|
|
|
if (CmpChain.size() < 2) {
|
|
LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
|
|
return false;
|
|
}
|
|
|
|
return CmpChain.simplify(TLI, AA, DTU);
|
|
}
|
|
|
|
static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
|
|
const TargetTransformInfo &TTI, AliasAnalysis &AA,
|
|
DominatorTree *DT) {
|
|
LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
|
|
|
|
// We only try merging comparisons if the target wants to expand memcmp later.
|
|
// The rationale is to avoid turning small chains into memcmp calls.
|
|
if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
|
|
return false;
|
|
|
|
// If we don't have memcmp avaiable we can't emit calls to it.
|
|
if (!TLI.has(LibFunc_memcmp))
|
|
return false;
|
|
|
|
DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
|
|
DomTreeUpdater::UpdateStrategy::Eager);
|
|
|
|
bool MadeChange = false;
|
|
|
|
for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
|
|
// A Phi operation is always first in a basic block.
|
|
if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
|
|
MadeChange |= processPhi(*Phi, TLI, AA, DTU);
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
class MergeICmpsLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
MergeICmpsLegacyPass() : FunctionPass(ID) {
|
|
initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F)) return false;
|
|
const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
// MergeICmps does not need the DominatorTree, but we update it if it's
|
|
// already available.
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
|
|
}
|
|
|
|
private:
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
char MergeICmpsLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
|
|
"Merge contiguous icmps into a memcmp", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
|
|
"Merge contiguous icmps into a memcmp", false, false)
|
|
|
|
Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
|
|
|
|
PreservedAnalyses MergeICmpsPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
auto &AA = AM.getResult<AAManager>(F);
|
|
auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
|
|
const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
|
|
if (!MadeChanges)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|