The motivation is that the update script has at least two deviations (`<...>@GOT`/`<...>@PLT`/ and not hiding pointer arithmetics) from what pretty much all the checklines were generated with, and most of the tests are still not updated, so each time one of the non-up-to-date tests is updated to see the effect of the code change, there is a lot of noise. Instead of having to deal with that each time, let's just deal with everything at once. This has been done via: ``` cd llvm-project/llvm/test/CodeGen/X86 grep -rl "; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py" | xargs -L1 <...>/llvm-project/llvm/utils/update_llc_test_checks.py --llc-binary <...>/llvm-project/build/bin/llc ``` Not all tests were regenerated, however.
166 lines
6.7 KiB
LLVM
166 lines
6.7 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
|
|
; RUN: llc < %s -mtriple=x86_64-- -mattr=+sse2 | FileCheck %s --check-prefix=SSE
|
|
; RUN: llc < %s -mtriple=x86_64-- -mattr=+avx2 | FileCheck %s --check-prefix=AVX
|
|
|
|
; xor undef, undef --> 0 because it's not worth fighting to make that return undef?
|
|
|
|
define <4 x i64> @xor_insert_insert(<2 x i64> %x, <2 x i64> %y) {
|
|
; SSE-LABEL: xor_insert_insert:
|
|
; SSE: # %bb.0:
|
|
; SSE-NEXT: xorps %xmm1, %xmm0
|
|
; SSE-NEXT: xorps %xmm1, %xmm1
|
|
; SSE-NEXT: retq
|
|
;
|
|
; AVX-LABEL: xor_insert_insert:
|
|
; AVX: # %bb.0:
|
|
; AVX-NEXT: vxorps %xmm1, %xmm0, %xmm0
|
|
; AVX-NEXT: retq
|
|
%xw = shufflevector <2 x i64> %x, <2 x i64> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
|
|
%yw = shufflevector <2 x i64> %y, <2 x i64> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
|
|
%r = xor <4 x i64> %xw, %yw
|
|
ret <4 x i64> %r
|
|
}
|
|
|
|
define <4 x i64> @xor_insert_insert_high_half(<2 x i64> %x, <2 x i64> %y) {
|
|
; SSE-LABEL: xor_insert_insert_high_half:
|
|
; SSE: # %bb.0:
|
|
; SSE-NEXT: xorps %xmm0, %xmm1
|
|
; SSE-NEXT: xorps %xmm0, %xmm0
|
|
; SSE-NEXT: retq
|
|
;
|
|
; AVX-LABEL: xor_insert_insert_high_half:
|
|
; AVX: # %bb.0:
|
|
; AVX-NEXT: vxorps %xmm1, %xmm0, %xmm0
|
|
; AVX-NEXT: vxorps %xmm1, %xmm1, %xmm1
|
|
; AVX-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
|
|
; AVX-NEXT: retq
|
|
%xw = shufflevector <2 x i64> %x, <2 x i64> undef, <4 x i32> <i32 undef, i32 undef, i32 0, i32 1>
|
|
%yw = shufflevector <2 x i64> %y, <2 x i64> undef, <4 x i32> <i32 undef, i32 undef, i32 0, i32 1>
|
|
%r = xor <4 x i64> %xw, %yw
|
|
ret <4 x i64> %r
|
|
}
|
|
|
|
; All elements of the add are undefined:
|
|
; x[0] , x[1] , x[2] , x[3], u , u , u , u
|
|
; + u , u , u , u , 42 , 43 , 44 , 45
|
|
|
|
define <8 x i32> @add_undef_elts(<4 x i32> %x) {
|
|
; SSE-LABEL: add_undef_elts:
|
|
; SSE: # %bb.0:
|
|
; SSE-NEXT: retq
|
|
;
|
|
; AVX-LABEL: add_undef_elts:
|
|
; AVX: # %bb.0:
|
|
; AVX-NEXT: retq
|
|
%extend = shufflevector <4 x i32> %x, <4 x i32> undef, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef>
|
|
%bogus_bo = add <8 x i32> %extend, <i32 undef, i32 undef, i32 undef, i32 undef, i32 42, i32 43, i32 44, i32 12>
|
|
%arbitrary_shuf = shufflevector <8 x i32> %bogus_bo, <8 x i32> undef, <8 x i32> <i32 6, i32 0, i32 5, i32 4, i32 3, i32 2, i32 1, i32 7>
|
|
ret <8 x i32> %arbitrary_shuf
|
|
}
|
|
|
|
; Verify that constant operand 0 for a sub works too.
|
|
|
|
define <8 x i32> @sub_undef_elts(<4 x i32> %x) {
|
|
; SSE-LABEL: sub_undef_elts:
|
|
; SSE: # %bb.0:
|
|
; SSE-NEXT: retq
|
|
;
|
|
; AVX-LABEL: sub_undef_elts:
|
|
; AVX: # %bb.0:
|
|
; AVX-NEXT: retq
|
|
%extend = shufflevector <4 x i32> %x, <4 x i32> undef, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef>
|
|
%bogus_bo = sub <8 x i32> <i32 undef, i32 undef, i32 undef, i32 undef, i32 42, i32 43, i32 44, i32 12>, %extend
|
|
%arbitrary_shuf = shufflevector <8 x i32> %bogus_bo, <8 x i32> undef, <8 x i32> <i32 1, i32 0, i32 5, i32 4, i32 3, i32 2, i32 6, i32 7>
|
|
ret <8 x i32> %arbitrary_shuf
|
|
}
|
|
|
|
; and undef, C --> 0, so this tests that we are tracking known zero lanes.
|
|
|
|
define <4 x i64> @and_undef_elts(<2 x i64> %x) {
|
|
; SSE-LABEL: and_undef_elts:
|
|
; SSE: # %bb.0:
|
|
; SSE-NEXT: xorps %xmm0, %xmm0
|
|
; SSE-NEXT: xorps %xmm1, %xmm1
|
|
; SSE-NEXT: retq
|
|
;
|
|
; AVX-LABEL: and_undef_elts:
|
|
; AVX: # %bb.0:
|
|
; AVX-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
|
|
; AVX-NEXT: vandps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
|
|
; AVX-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[3,0,1,2]
|
|
; AVX-NEXT: retq
|
|
%extend = shufflevector <2 x i64> %x, <2 x i64> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
|
|
%bogus_bo = and <4 x i64> %extend, <i64 undef, i64 undef, i64 42, i64 43>
|
|
%arbitrary_shuf = shufflevector <4 x i64> %bogus_bo, <4 x i64> undef, <4 x i32> <i32 3, i32 0, i32 1, i32 2>
|
|
ret <4 x i64> %arbitrary_shuf
|
|
}
|
|
|
|
; or undef, C --> -1, so this tests that we are tracking known all-ones lanes.
|
|
|
|
define <4 x i64> @or_undef_elts(<2 x i64> %x) {
|
|
; SSE-LABEL: or_undef_elts:
|
|
; SSE: # %bb.0:
|
|
; SSE-NEXT: pcmpeqd %xmm0, %xmm0
|
|
; SSE-NEXT: pcmpeqd %xmm1, %xmm1
|
|
; SSE-NEXT: retq
|
|
;
|
|
; AVX-LABEL: or_undef_elts:
|
|
; AVX: # %bb.0:
|
|
; AVX-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
|
|
; AVX-NEXT: vorps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
|
|
; AVX-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[3,0,1,2]
|
|
; AVX-NEXT: retq
|
|
%extend = shufflevector <2 x i64> %x, <2 x i64> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
|
|
%bogus_bo = or <4 x i64> %extend, <i64 undef, i64 undef, i64 42, i64 43>
|
|
%arbitrary_shuf = shufflevector <4 x i64> %bogus_bo, <4 x i64> undef, <4 x i32> <i32 3, i32 0, i32 1, i32 2>
|
|
ret <4 x i64> %arbitrary_shuf
|
|
}
|
|
|
|
; Verify that this isn't limited to high/low halves.
|
|
|
|
define <8 x i32> @xor_undef_elts(<4 x i32> %x) {
|
|
; SSE-LABEL: xor_undef_elts:
|
|
; SSE: # %bb.0:
|
|
; SSE-NEXT: retq
|
|
;
|
|
; AVX-LABEL: xor_undef_elts:
|
|
; AVX: # %bb.0:
|
|
; AVX-NEXT: retq
|
|
%extend = shufflevector <4 x i32> %x, <4 x i32> undef, <8 x i32> <i32 undef, i32 undef, i32 1, i32 3, i32 0, i32 2, i32 undef, i32 undef>
|
|
%bogus_bo = xor <8 x i32> %extend, <i32 42, i32 43, i32 undef, i32 undef, i32 undef, i32 undef, i32 44, i32 12>
|
|
%arbitrary_shuf = shufflevector <8 x i32> %bogus_bo, <8 x i32> undef, <8 x i32> <i32 6, i32 1, i32 5, i32 4, i32 3, i32 2, i32 0, i32 7>
|
|
ret <8 x i32> %arbitrary_shuf
|
|
}
|
|
|
|
; Verify that this isn't limited to high/low halves
|
|
; Special case: the undef-ness of the 1st shuffle may be lost if we turn that into vector concat.
|
|
|
|
define <8 x i32> @xor_undef_elts_alt(<4 x i32> %x) {
|
|
; SSE-LABEL: xor_undef_elts_alt:
|
|
; SSE: # %bb.0:
|
|
; SSE-NEXT: movaps %xmm0, %xmm1
|
|
; SSE-NEXT: movaps {{.*#+}} xmm2 = <u,u,44,12>
|
|
; SSE-NEXT: xorps %xmm0, %xmm2
|
|
; SSE-NEXT: xorps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm1
|
|
; SSE-NEXT: movaps %xmm1, %xmm0
|
|
; SSE-NEXT: shufps {{.*#+}} xmm0 = xmm0[1,0],xmm2[2,0]
|
|
; SSE-NEXT: shufps {{.*#+}} xmm0 = xmm0[2,0],xmm2[1,0]
|
|
; SSE-NEXT: shufps {{.*#+}} xmm2 = xmm2[3,0],xmm1[0,0]
|
|
; SSE-NEXT: shufps {{.*#+}} xmm1 = xmm1[3,2],xmm2[2,0]
|
|
; SSE-NEXT: retq
|
|
;
|
|
; AVX-LABEL: xor_undef_elts_alt:
|
|
; AVX: # %bb.0:
|
|
; AVX-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
|
|
; AVX-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
|
|
; AVX-NEXT: vxorps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
|
|
; AVX-NEXT: vmovaps {{.*#+}} ymm1 = [6,1,5,4,3,2,0,7]
|
|
; AVX-NEXT: vpermps %ymm0, %ymm1, %ymm0
|
|
; AVX-NEXT: retq
|
|
%extend = shufflevector <4 x i32> %x, <4 x i32> undef, <8 x i32> <i32 undef, i32 undef, i32 2, i32 3, i32 0, i32 1, i32 undef, i32 undef>
|
|
%bogus_bo = xor <8 x i32> %extend, <i32 42, i32 43, i32 undef, i32 undef, i32 undef, i32 undef, i32 44, i32 12>
|
|
%arbitrary_shuf = shufflevector <8 x i32> %bogus_bo, <8 x i32> undef, <8 x i32> <i32 6, i32 1, i32 5, i32 4, i32 3, i32 2, i32 0, i32 7>
|
|
ret <8 x i32> %arbitrary_shuf
|
|
}
|
|
|