Files
clang-p2996/mlir/lib/Dialect/GPU/IR/GPUDialect.cpp
Mehdi Amini c41b16c26b Change ASM Op printer to print the operation name in the framework instead of leaving it up to each individual operation
This aligns the printer with the parser contract: the operation isn't part of the user-controllable part of the syntax.

Differential Revision: https://reviews.llvm.org/D108804
2021-08-31 17:52:40 +00:00

1124 lines
42 KiB
C++

//===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the GPU kernel-related dialect and its operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/FunctionImplementation.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::gpu;
#include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc"
//===----------------------------------------------------------------------===//
// MMAMatrixType
//===----------------------------------------------------------------------===//
MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType,
StringRef operand) {
return Base::get(elementType.getContext(), shape, elementType, operand);
}
MMAMatrixType
MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<int64_t> shape, Type elementType,
StringRef operand) {
return Base::getChecked(emitError, elementType.getContext(), shape,
elementType, operand);
}
unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; }
ArrayRef<int64_t> MMAMatrixType::getShape() const {
return getImpl()->getShape();
}
Type MMAMatrixType::getElementType() const { return getImpl()->elementType; }
StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); }
bool MMAMatrixType::isValidElementType(Type elementType) {
return elementType.isF16() || elementType.isF32();
}
LogicalResult
MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<int64_t> shape, Type elementType,
StringRef operand) {
if (!operand.equals("AOp") && !operand.equals("BOp") &&
!operand.equals("COp"))
return emitError() << "operand expected to be one of AOp, BOp or COp";
if (shape.size() != 2)
return emitError() << "MMAMatrixType must have exactly two dimensions";
if (!MMAMatrixType::isValidElementType(elementType))
return emitError() << "MMAMatrixType elements must be F16 or F32";
return success();
}
//===----------------------------------------------------------------------===//
// GPUDialect
//===----------------------------------------------------------------------===//
/// GPU memory space identifiers.
enum GPUMemorySpace {
/// Generic memory space identifier.
kGenericMemorySpace = 0,
/// Global memory space identifier.
kGlobalMemorySpace = 1,
/// Shared memory space identifier.
kSharedMemorySpace = 3
};
bool GPUDialect::isKernel(Operation *op) {
UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName());
return static_cast<bool>(isKernelAttr);
}
void GPUDialect::initialize() {
addTypes<AsyncTokenType>();
addTypes<MMAMatrixType>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/GPU/GPUOps.cpp.inc"
>();
}
Type GPUDialect::parseType(DialectAsmParser &parser) const {
// Parse the main keyword for the type.
StringRef keyword;
if (parser.parseKeyword(&keyword))
return Type();
MLIRContext *context = getContext();
// Handle 'async token' types.
if (keyword == "async.token")
return AsyncTokenType::get(context);
if (keyword == "mma_matrix") {
llvm::SMLoc beginLoc = parser.getNameLoc();
// Parse '<'.
if (parser.parseLess())
return nullptr;
// Parse the size and elementType.
SmallVector<int64_t> shape;
Type elementType;
if (parser.parseDimensionList(shape, /*allowDynamic=*/false) ||
parser.parseType(elementType))
return nullptr;
// Parse ','
if (parser.parseComma())
return nullptr;
// Parse operand.
std::string operand;
if (failed(parser.parseOptionalString(&operand)))
return nullptr;
// Parse '>'.
if (parser.parseGreater())
return nullptr;
return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn(
parser.getEncodedSourceLoc(beginLoc)),
shape, elementType, operand);
}
parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword);
return Type();
}
void GPUDialect::printType(Type type, DialectAsmPrinter &os) const {
TypeSwitch<Type>(type)
.Case<AsyncTokenType>([&](Type) { os << "async.token"; })
.Case<MMAMatrixType>([&](MMAMatrixType fragTy) {
os << "mma_matrix<";
auto shape = fragTy.getShape();
for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim)
os << *dim << 'x';
os << shape.back() << 'x' << fragTy.getElementType();
os << ", \"" << fragTy.getOperand() << "\"" << '>';
})
.Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); });
}
LogicalResult GPUDialect::verifyOperationAttribute(Operation *op,
NamedAttribute attr) {
if (!attr.second.isa<UnitAttr>() ||
attr.first != getContainerModuleAttrName())
return success();
auto module = dyn_cast<ModuleOp>(op);
if (!module)
return op->emitError("expected '")
<< getContainerModuleAttrName() << "' attribute to be attached to '"
<< ModuleOp::getOperationName() << '\'';
auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult {
// Ignore launches that are nested more or less deep than functions in the
// module we are currently checking.
if (!launchOp->getParentOp() ||
launchOp->getParentOp()->getParentOp() != module)
return success();
// Ignore launch ops with missing attributes here. The errors will be
// reported by the verifiers of those ops.
if (!launchOp->getAttrOfType<SymbolRefAttr>(
LaunchFuncOp::getKernelAttrName()))
return success();
// Check that `launch_func` refers to a well-formed GPU kernel module.
StringAttr kernelModuleName = launchOp.getKernelModuleName();
auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName);
if (!kernelModule)
return launchOp.emitOpError()
<< "kernel module '" << kernelModuleName.getValue()
<< "' is undefined";
// Check that `launch_func` refers to a well-formed kernel function.
Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr());
auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc);
auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc);
if (!kernelGPUFunction && !kernelLLVMFunction)
return launchOp.emitOpError("kernel function '")
<< launchOp.kernel() << "' is undefined";
if (!kernelFunc->getAttrOfType<mlir::UnitAttr>(
GPUDialect::getKernelFuncAttrName()))
return launchOp.emitOpError("kernel function is missing the '")
<< GPUDialect::getKernelFuncAttrName() << "' attribute";
// TODO: if the kernel function has been converted to
// the LLVM dialect but the caller hasn't (which happens during the
// separate compilation), do not check type correspondence as it would
// require the verifier to be aware of the LLVM type conversion.
if (kernelLLVMFunction)
return success();
unsigned actualNumArguments = launchOp.getNumKernelOperands();
unsigned expectedNumArguments = kernelGPUFunction.getNumArguments();
if (expectedNumArguments != actualNumArguments)
return launchOp.emitOpError("got ")
<< actualNumArguments << " kernel operands but expected "
<< expectedNumArguments;
auto functionType = kernelGPUFunction.getType();
for (unsigned i = 0; i < expectedNumArguments; ++i) {
if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) {
return launchOp.emitOpError("type of function argument ")
<< i << " does not match";
}
}
return success();
});
return walkResult.wasInterrupted() ? failure() : success();
}
template <typename T>
static LogicalResult verifyIndexOp(T op) {
auto dimension = op.dimension();
if (dimension != "x" && dimension != "y" && dimension != "z")
return op.emitError("dimension \"") << dimension << "\" is invalid";
return success();
}
static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) {
if (allReduce.body().empty() != allReduce.op().hasValue())
return allReduce.emitError(
"expected either an op attribute or a non-empty body");
if (!allReduce.body().empty()) {
if (allReduce.body().getNumArguments() != 2)
return allReduce.emitError("expected two region arguments");
for (auto argument : allReduce.body().getArguments()) {
if (argument.getType() != allReduce.getType())
return allReduce.emitError("incorrect region argument type");
}
unsigned yieldCount = 0;
for (Block &block : allReduce.body()) {
if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) {
if (yield.getNumOperands() != 1)
return allReduce.emitError("expected one gpu.yield operand");
if (yield.getOperand(0).getType() != allReduce.getType())
return allReduce.emitError("incorrect gpu.yield type");
++yieldCount;
}
}
if (yieldCount == 0)
return allReduce.emitError("expected gpu.yield op in region");
} else {
StringRef opName = *allReduce.op();
if ((opName == "and" || opName == "or" || opName == "xor") &&
!allReduce.getType().isa<IntegerType>()) {
return allReduce.emitError()
<< '`' << opName << '`'
<< " accumulator is only compatible with Integer type";
}
}
return success();
}
static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) {
auto type = shuffleOp.value().getType();
if (shuffleOp.result().getType() != type) {
return shuffleOp.emitOpError()
<< "requires the same type for value operand and result";
}
if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) {
return shuffleOp.emitOpError()
<< "requires value operand type to be f32 or i32";
}
return success();
}
static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) {
p << ' ' << op.getOperands() << ' ' << op.mode() << " : "
<< op.value().getType();
}
static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) {
SmallVector<OpAsmParser::OperandType, 3> operandInfo;
if (parser.parseOperandList(operandInfo, 3))
return failure();
StringRef mode;
if (parser.parseKeyword(&mode))
return failure();
state.addAttribute("mode", parser.getBuilder().getStringAttr(mode));
Type valueType;
Type int32Type = parser.getBuilder().getIntegerType(32);
Type int1Type = parser.getBuilder().getI1Type();
if (parser.parseColonType(valueType) ||
parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type},
parser.getCurrentLocation(), state.operands) ||
parser.addTypesToList({valueType, int1Type}, state.types))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// AsyncOpInterface
//===----------------------------------------------------------------------===//
void gpu::addAsyncDependency(Operation *op, Value token) {
op->insertOperands(0, {token});
if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>())
return;
auto attrName =
OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr();
auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName);
if (!sizeAttr)
return; // Async dependencies is the only variadic operand.
SmallVector<int32_t, 8> sizes;
for (auto size : sizeAttr.getIntValues())
sizes.push_back(size.getSExtValue());
++sizes.front();
op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes));
}
//===----------------------------------------------------------------------===//
// LaunchOp
//===----------------------------------------------------------------------===//
void LaunchOp::build(OpBuilder &builder, OperationState &result,
Value gridSizeX, Value gridSizeY, Value gridSizeZ,
Value blockSizeX, Value blockSizeY, Value blockSizeZ) {
// Add grid and block sizes as op operands, followed by the data operands.
result.addOperands(
{gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ});
// Create a kernel body region with kNumConfigRegionAttributes + N arguments,
// where the first kNumConfigRegionAttributes arguments have `index` type and
// the rest have the same types as the data operands.
Region *kernelRegion = result.addRegion();
Block *body = new Block();
body->addArguments(
std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType()));
kernelRegion->push_back(body);
}
KernelDim3 LaunchOp::getBlockIds() {
assert(!body().empty() && "LaunchOp body must not be empty.");
auto args = body().getArguments();
return KernelDim3{args[0], args[1], args[2]};
}
KernelDim3 LaunchOp::getThreadIds() {
assert(!body().empty() && "LaunchOp body must not be empty.");
auto args = body().getArguments();
return KernelDim3{args[3], args[4], args[5]};
}
KernelDim3 LaunchOp::getGridSize() {
assert(!body().empty() && "LaunchOp body must not be empty.");
auto args = body().getArguments();
return KernelDim3{args[6], args[7], args[8]};
}
KernelDim3 LaunchOp::getBlockSize() {
assert(!body().empty() && "LaunchOp body must not be empty.");
auto args = body().getArguments();
return KernelDim3{args[9], args[10], args[11]};
}
KernelDim3 LaunchOp::getGridSizeOperandValues() {
return KernelDim3{getOperand(0), getOperand(1), getOperand(2)};
}
KernelDim3 LaunchOp::getBlockSizeOperandValues() {
return KernelDim3{getOperand(3), getOperand(4), getOperand(5)};
}
static LogicalResult verify(LaunchOp op) {
// Kernel launch takes kNumConfigOperands leading operands for grid/block
// sizes and transforms them into kNumConfigRegionAttributes region arguments
// for block/thread identifiers and grid/block sizes.
if (!op.body().empty()) {
if (op.body().getNumArguments() !=
LaunchOp::kNumConfigOperands + op.getNumOperands())
return op.emitOpError("unexpected number of region arguments");
}
// Block terminators without successors are expected to exit the kernel region
// and must be `gpu.terminator`.
for (Block &block : op.body()) {
if (block.empty())
continue;
if (block.back().getNumSuccessors() != 0)
continue;
if (!isa<gpu::TerminatorOp>(&block.back())) {
return block.back()
.emitError()
.append("expected '", gpu::TerminatorOp::getOperationName(),
"' or a terminator with successors")
.attachNote(op.getLoc())
.append("in '", LaunchOp::getOperationName(), "' body region");
}
}
return success();
}
// Pretty-print the kernel grid/block size assignment as
// (%iter-x, %iter-y, %iter-z) in
// (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use)
// where %size-* and %iter-* will correspond to the body region arguments.
static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size,
KernelDim3 operands, KernelDim3 ids) {
p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in (";
p << size.x << " = " << operands.x << ", ";
p << size.y << " = " << operands.y << ", ";
p << size.z << " = " << operands.z << ')';
}
static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) {
// Print the launch configuration.
p << ' ' << op.getBlocksKeyword();
printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(),
op.getBlockIds());
p << ' ' << op.getThreadsKeyword();
printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(),
op.getThreadIds());
p.printRegion(op.body(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict(op->getAttrs());
}
// Parse the size assignment blocks for blocks and threads. These have the form
// (%region_arg, %region_arg, %region_arg) in
// (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand)
// where %region_arg are percent-identifiers for the region arguments to be
// introduced further (SSA defs), and %operand are percent-identifiers for the
// SSA value uses.
static ParseResult
parseSizeAssignment(OpAsmParser &parser,
MutableArrayRef<OpAsmParser::OperandType> sizes,
MutableArrayRef<OpAsmParser::OperandType> regionSizes,
MutableArrayRef<OpAsmParser::OperandType> indices) {
assert(indices.size() == 3 && "space for three indices expected");
SmallVector<OpAsmParser::OperandType, 3> args;
if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3,
OpAsmParser::Delimiter::Paren) ||
parser.parseKeyword("in") || parser.parseLParen())
return failure();
std::move(args.begin(), args.end(), indices.begin());
for (int i = 0; i < 3; ++i) {
if (i != 0 && parser.parseComma())
return failure();
if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() ||
parser.parseOperand(sizes[i]))
return failure();
}
return parser.parseRParen();
}
// Parses a Launch operation.
// operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment
// `threads` `(` ssa-id-list `)` `in` ssa-reassignment
// region attr-dict?
// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)`
static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) {
// Sizes of the grid and block.
SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes(
LaunchOp::kNumConfigOperands);
MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes);
// Actual (data) operands passed to the kernel.
SmallVector<OpAsmParser::OperandType, 4> dataOperands;
// Region arguments to be created.
SmallVector<OpAsmParser::OperandType, 16> regionArgs(
LaunchOp::kNumConfigRegionAttributes);
MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs);
// Parse the size assignment segments: the first segment assigns grid sizes
// and defines values for block identifiers; the second segment assigns block
// sizes and defines values for thread identifiers. In the region argument
// list, identifiers precede sizes, and block-related values precede
// thread-related values.
if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) ||
parseSizeAssignment(parser, sizesRef.take_front(3),
regionArgsRef.slice(6, 3),
regionArgsRef.slice(0, 3)) ||
parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) ||
parseSizeAssignment(parser, sizesRef.drop_front(3),
regionArgsRef.slice(9, 3),
regionArgsRef.slice(3, 3)) ||
parser.resolveOperands(sizes, parser.getBuilder().getIndexType(),
result.operands))
return failure();
// Introduce the body region and parse it. The region has
// kNumConfigRegionAttributes arguments that correspond to
// block/thread identifiers and grid/block sizes, all of the `index` type.
Type index = parser.getBuilder().getIndexType();
SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes(
LaunchOp::kNumConfigRegionAttributes, index);
Region *body = result.addRegion();
return failure(parser.parseRegion(*body, regionArgs, dataTypes) ||
parser.parseOptionalAttrDict(result.attributes));
}
//===----------------------------------------------------------------------===//
// LaunchFuncOp
//===----------------------------------------------------------------------===//
void LaunchFuncOp::build(OpBuilder &builder, OperationState &result,
GPUFuncOp kernelFunc, KernelDim3 gridSize,
KernelDim3 blockSize, ValueRange kernelOperands) {
// Add grid and block sizes as op operands, followed by the data operands.
result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x,
blockSize.y, blockSize.z});
result.addOperands(kernelOperands);
auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>();
auto kernelSymbol =
SymbolRefAttr::get(kernelModule.getNameAttr(),
{SymbolRefAttr::get(kernelFunc.getNameAttr())});
result.addAttribute(getKernelAttrName(), kernelSymbol);
SmallVector<int32_t, 8> segmentSizes(8, 1);
segmentSizes.front() = 0; // Initially no async dependencies.
segmentSizes.back() = static_cast<int32_t>(kernelOperands.size());
result.addAttribute(getOperandSegmentSizeAttr(),
builder.getI32VectorAttr(segmentSizes));
}
unsigned LaunchFuncOp::getNumKernelOperands() {
return getNumOperands() - asyncDependencies().size() - kNumConfigOperands;
}
StringAttr LaunchFuncOp::getKernelModuleName() {
return kernel().getRootReference();
}
StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); }
Value LaunchFuncOp::getKernelOperand(unsigned i) {
return getOperand(asyncDependencies().size() + kNumConfigOperands + i);
}
KernelDim3 LaunchFuncOp::getGridSizeOperandValues() {
auto operands = getOperands().drop_front(asyncDependencies().size());
return KernelDim3{operands[0], operands[1], operands[2]};
}
KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() {
auto operands = getOperands().drop_front(asyncDependencies().size());
return KernelDim3{operands[3], operands[4], operands[5]};
}
static LogicalResult verify(LaunchFuncOp op) {
auto module = op->getParentOfType<ModuleOp>();
if (!module)
return op.emitOpError("expected to belong to a module");
if (!module->getAttrOfType<UnitAttr>(
GPUDialect::getContainerModuleAttrName()))
return op.emitOpError(
"expected the closest surrounding module to have the '" +
GPUDialect::getContainerModuleAttrName() + "' attribute");
auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName());
if (!kernelAttr)
return op.emitOpError("symbol reference attribute '" +
op.getKernelAttrName() + "' must be specified");
return success();
}
static ParseResult
parseLaunchFuncOperands(OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::OperandType> &argNames,
SmallVectorImpl<Type> &argTypes) {
if (parser.parseOptionalKeyword("args"))
return success();
SmallVector<NamedAttrList, 4> argAttrs;
bool isVariadic = false;
return function_like_impl::parseFunctionArgumentList(
parser, /*allowAttributes=*/false,
/*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic);
}
static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *,
OperandRange operands, TypeRange types) {
if (operands.empty())
return;
printer << "args(";
llvm::interleaveComma(llvm::zip(operands, types), printer,
[&](const auto &pair) {
printer.printOperand(std::get<0>(pair));
printer << " : ";
printer.printType(std::get<1>(pair));
});
printer << ")";
}
//===----------------------------------------------------------------------===//
// GPUFuncOp
//===----------------------------------------------------------------------===//
/// Adds a new block argument that corresponds to buffers located in
/// workgroup memory.
BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) {
auto attrName = getNumWorkgroupAttributionsAttrName();
auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName);
(*this)->setAttr(attrName,
IntegerAttr::get(attr.getType(), attr.getValue() + 1));
return getBody().insertArgument(getType().getNumInputs() + attr.getInt(),
type);
}
/// Adds a new block argument that corresponds to buffers located in
/// private memory.
BlockArgument GPUFuncOp::addPrivateAttribution(Type type) {
// Buffers on the private memory always come after buffers on the workgroup
// memory.
return getBody().addArgument(type);
}
void GPUFuncOp::build(OpBuilder &builder, OperationState &result,
StringRef name, FunctionType type,
TypeRange workgroupAttributions,
TypeRange privateAttributions,
ArrayRef<NamedAttribute> attrs) {
result.addAttribute(SymbolTable::getSymbolAttrName(),
builder.getStringAttr(name));
result.addAttribute(getTypeAttrName(), TypeAttr::get(type));
result.addAttribute(getNumWorkgroupAttributionsAttrName(),
builder.getI64IntegerAttr(workgroupAttributions.size()));
result.addAttributes(attrs);
Region *body = result.addRegion();
Block *entryBlock = new Block;
entryBlock->addArguments(type.getInputs());
entryBlock->addArguments(workgroupAttributions);
entryBlock->addArguments(privateAttributions);
body->getBlocks().push_back(entryBlock);
}
/// Parses a GPU function memory attribution.
///
/// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)?
/// (`private` `(` ssa-id-and-type-list `)`)?
///
/// Note that this function parses only one of the two similar parts, with the
/// keyword provided as argument.
static ParseResult
parseAttributions(OpAsmParser &parser, StringRef keyword,
SmallVectorImpl<OpAsmParser::OperandType> &args,
SmallVectorImpl<Type> &argTypes) {
// If we could not parse the keyword, just assume empty list and succeed.
if (failed(parser.parseOptionalKeyword(keyword)))
return success();
if (failed(parser.parseLParen()))
return failure();
// Early exit for an empty list.
if (succeeded(parser.parseOptionalRParen()))
return success();
do {
OpAsmParser::OperandType arg;
Type type;
if (parser.parseRegionArgument(arg) || parser.parseColonType(type))
return failure();
args.push_back(arg);
argTypes.push_back(type);
} while (succeeded(parser.parseOptionalComma()));
return parser.parseRParen();
}
/// Parses a GPU function.
///
/// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)`
/// (`->` function-result-list)? memory-attribution `kernel`?
/// function-attributes? region
static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 8> entryArgs;
SmallVector<NamedAttrList, 1> argAttrs;
SmallVector<NamedAttrList, 1> resultAttrs;
SmallVector<Type, 8> argTypes;
SmallVector<Type, 4> resultTypes;
bool isVariadic;
// Parse the function name.
StringAttr nameAttr;
if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(),
result.attributes))
return failure();
auto signatureLocation = parser.getCurrentLocation();
if (failed(function_like_impl::parseFunctionSignature(
parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs,
isVariadic, resultTypes, resultAttrs)))
return failure();
if (entryArgs.empty() && !argTypes.empty())
return parser.emitError(signatureLocation)
<< "gpu.func requires named arguments";
// Construct the function type. More types will be added to the region, but
// not to the function type.
Builder &builder = parser.getBuilder();
auto type = builder.getFunctionType(argTypes, resultTypes);
result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type));
// Parse workgroup memory attributions.
if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(),
entryArgs, argTypes)))
return failure();
// Store the number of operands we just parsed as the number of workgroup
// memory attributions.
unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs();
result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(),
builder.getI64IntegerAttr(numWorkgroupAttrs));
// Parse private memory attributions.
if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(),
entryArgs, argTypes)))
return failure();
// Parse the kernel attribute if present.
if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword())))
result.addAttribute(GPUDialect::getKernelFuncAttrName(),
builder.getUnitAttr());
// Parse attributes.
if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
return failure();
function_like_impl::addArgAndResultAttrs(builder, result, argAttrs,
resultAttrs);
// Parse the region. If no argument names were provided, take all names
// (including those of attributions) from the entry block.
auto *body = result.addRegion();
return parser.parseRegion(*body, entryArgs, argTypes);
}
static void printAttributions(OpAsmPrinter &p, StringRef keyword,
ArrayRef<BlockArgument> values) {
if (values.empty())
return;
p << ' ' << keyword << '(';
llvm::interleaveComma(
values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); });
p << ')';
}
/// Prints a GPU Func op.
static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) {
p << ' ';
p.printSymbolName(op.getName());
FunctionType type = op.getType();
function_like_impl::printFunctionSignature(
p, op.getOperation(), type.getInputs(),
/*isVariadic=*/false, type.getResults());
printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions());
printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions());
if (op.isKernel())
p << ' ' << op.getKernelKeyword();
function_like_impl::printFunctionAttributes(
p, op.getOperation(), type.getNumInputs(), type.getNumResults(),
{op.getNumWorkgroupAttributionsAttrName(),
GPUDialect::getKernelFuncAttrName()});
p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false);
}
/// Hook for FunctionLike verifier.
LogicalResult GPUFuncOp::verifyType() {
Type type = getTypeAttr().getValue();
if (!type.isa<FunctionType>())
return emitOpError("requires '" + getTypeAttrName() +
"' attribute of function type");
if (isKernel() && getType().getNumResults() != 0)
return emitOpError() << "expected void return type for kernel function";
return success();
}
static LogicalResult verifyAttributions(Operation *op,
ArrayRef<BlockArgument> attributions,
unsigned memorySpace) {
for (Value v : attributions) {
auto type = v.getType().dyn_cast<MemRefType>();
if (!type)
return op->emitOpError() << "expected memref type in attribution";
if (type.getMemorySpaceAsInt() != memorySpace) {
return op->emitOpError()
<< "expected memory space " << memorySpace << " in attribution";
}
}
return success();
}
/// Verifies the body of the function.
LogicalResult GPUFuncOp::verifyBody() {
unsigned numFuncArguments = getNumArguments();
unsigned numWorkgroupAttributions = getNumWorkgroupAttributions();
unsigned numBlockArguments = front().getNumArguments();
if (numBlockArguments < numFuncArguments + numWorkgroupAttributions)
return emitOpError() << "expected at least "
<< numFuncArguments + numWorkgroupAttributions
<< " arguments to body region";
ArrayRef<Type> funcArgTypes = getType().getInputs();
for (unsigned i = 0; i < numFuncArguments; ++i) {
Type blockArgType = front().getArgument(i).getType();
if (funcArgTypes[i] != blockArgType)
return emitOpError() << "expected body region argument #" << i
<< " to be of type " << funcArgTypes[i] << ", got "
<< blockArgType;
}
if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(),
GPUDialect::getWorkgroupAddressSpace())) ||
failed(verifyAttributions(getOperation(), getPrivateAttributions(),
GPUDialect::getPrivateAddressSpace())))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(gpu::ReturnOp returnOp) {
GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>();
FunctionType funType = function.getType();
if (funType.getNumResults() != returnOp.operands().size())
return returnOp.emitOpError()
.append("expected ", funType.getNumResults(), " result operands")
.attachNote(function.getLoc())
.append("return type declared here");
for (auto pair : llvm::enumerate(
llvm::zip(function.getType().getResults(), returnOp.operands()))) {
Type type;
Value operand;
std::tie(type, operand) = pair.value();
if (type != operand.getType())
return returnOp.emitOpError() << "unexpected type `" << operand.getType()
<< "' for operand #" << pair.index();
}
return success();
}
//===----------------------------------------------------------------------===//
// GPUModuleOp
//===----------------------------------------------------------------------===//
void GPUModuleOp::build(OpBuilder &builder, OperationState &result,
StringRef name) {
ensureTerminator(*result.addRegion(), builder, result.location);
result.attributes.push_back(builder.getNamedAttr(
::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)));
}
static ParseResult parseGPUModuleOp(OpAsmParser &parser,
OperationState &result) {
StringAttr nameAttr;
if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
result.attributes))
return failure();
// If module attributes are present, parse them.
if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
return failure();
// Parse the module body.
auto *body = result.addRegion();
if (parser.parseRegion(*body, None, None))
return failure();
// Ensure that this module has a valid terminator.
GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location);
return success();
}
static void print(OpAsmPrinter &p, GPUModuleOp op) {
p << ' ';
p.printSymbolName(op.getName());
p.printOptionalAttrDictWithKeyword(op->getAttrs(),
{SymbolTable::getSymbolAttrName()});
p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
}
//===----------------------------------------------------------------------===//
// GPUMemcpyOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(MemcpyOp op) {
auto srcType = op.src().getType();
auto dstType = op.dst().getType();
if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType))
return op.emitOpError("arguments have incompatible element type");
if (failed(verifyCompatibleShape(srcType, dstType)))
return op.emitOpError("arguments have incompatible shape");
return success();
}
static ParseResult parseAsyncDependencies(
OpAsmParser &parser, Type &asyncTokenType,
SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) {
auto loc = parser.getCurrentLocation();
if (succeeded(parser.parseOptionalKeyword("async"))) {
if (parser.getNumResults() == 0)
return parser.emitError(loc, "needs to be named when marked 'async'");
asyncTokenType = parser.getBuilder().getType<AsyncTokenType>();
}
return parser.parseOperandList(asyncDependencies,
OpAsmParser::Delimiter::OptionalSquare);
}
static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op,
Type asyncTokenType,
OperandRange asyncDependencies) {
if (asyncTokenType)
printer << "async ";
if (asyncDependencies.empty())
return;
printer << "[";
llvm::interleaveComma(asyncDependencies, printer);
printer << "]";
}
//===----------------------------------------------------------------------===//
// GPU_SubgroupMmaLoadMatrixOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(SubgroupMmaLoadMatrixOp op) {
auto srcType = op.srcMemref().getType();
auto resType = op.res().getType();
auto resMatrixType = resType.cast<gpu::MMAMatrixType>();
auto operand = resMatrixType.getOperand();
auto srcMemrefType = srcType.cast<MemRefType>();
auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt();
if (!srcMemrefType.getAffineMaps().empty() &&
!srcMemrefType.getAffineMaps().front().isIdentity())
return op.emitError("expected identity layout map for source memref");
if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace &&
srcMemSpace != kGlobalMemorySpace)
return op.emitError(
"source memorySpace kGenericMemorySpace, kSharedMemorySpace or "
"kGlobalMemorySpace only allowed");
if (!operand.equals("AOp") && !operand.equals("BOp") &&
!operand.equals("COp"))
return op.emitError("only AOp, BOp and COp can be loaded");
return success();
}
//===----------------------------------------------------------------------===//
// GPU_SubgroupMmaStoreMatrixOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(SubgroupMmaStoreMatrixOp op) {
auto srcType = op.src().getType();
auto dstType = op.dstMemref().getType();
auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>();
auto dstMemrefType = dstType.cast<MemRefType>();
auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt();
if (!dstMemrefType.getAffineMaps().empty() &&
!dstMemrefType.getAffineMaps().front().isIdentity())
return op.emitError("expected identity layout map for destination memref");
if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace &&
dstMemSpace != kGlobalMemorySpace)
return op.emitError(
"destination memorySpace of kGenericMemorySpace, "
"kGlobalMemorySpace or kSharedMemorySpace only allowed");
if (!srcMatrixType.getOperand().equals("COp"))
return op.emitError(
"expected the operand matrix being stored to have 'COp' operand type");
return success();
}
//===----------------------------------------------------------------------===//
// GPU_SubgroupMmaComputeOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(SubgroupMmaComputeOp op) {
enum OperandMap { A, B, C };
SmallVector<MMAMatrixType, 3> opTypes;
auto populateOpInfo = [&opTypes, &op]() {
opTypes.push_back(op.opA().getType().cast<MMAMatrixType>());
opTypes.push_back(op.opB().getType().cast<MMAMatrixType>());
opTypes.push_back(op.opC().getType().cast<MMAMatrixType>());
};
populateOpInfo();
if (!opTypes[A].getOperand().equals("AOp") ||
!opTypes[B].getOperand().equals("BOp") ||
!opTypes[C].getOperand().equals("COp"))
return op.emitError("operands must be in the order AOp, BOp, COp");
ArrayRef<int64_t> aShape, bShape, cShape;
aShape = opTypes[A].getShape();
bShape = opTypes[B].getShape();
cShape = opTypes[C].getShape();
if (aShape[1] != bShape[0] || aShape[0] != cShape[0] ||
bShape[1] != cShape[1])
return op.emitError("operand shapes do not satisfy matmul constraints");
return success();
}
/// This is a common class used for patterns of the form
/// "someop(memrefcast) -> someop". It folds the source of any memref.cast
/// into the root operation directly.
static LogicalResult foldMemRefCast(Operation *op) {
bool folded = false;
for (OpOperand &operand : op->getOpOperands()) {
auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>();
if (cast) {
operand.set(cast.getOperand());
folded = true;
}
}
return success(folded);
}
LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<::mlir::OpFoldResult> &results) {
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// GPU_AllocOp
//===----------------------------------------------------------------------===//
namespace {
/// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to
/// `memref::AllocOp`.
struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> {
using OpRewritePattern<memref::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::DimOp dimOp,
PatternRewriter &rewriter) const override {
auto index = dimOp.index().getDefiningOp<ConstantIndexOp>();
if (!index)
return failure();
auto memrefType = dimOp.source().getType().dyn_cast<MemRefType>();
if (!memrefType || !memrefType.isDynamicDim(index.getValue()))
return failure();
auto alloc = dimOp.source().getDefiningOp<AllocOp>();
if (!alloc)
return failure();
Value substituteOp = *(alloc.dynamicSizes().begin() +
memrefType.getDynamicDimIndex(index.getValue()));
rewriter.replaceOp(dimOp, substituteOp);
return success();
}
};
} // end anonymous namespace.
void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyDimOfAllocOp>(context);
}
#include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/GPU/GPUOps.cpp.inc"