Files
clang-p2996/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
Mehdi Amini c41b16c26b Change ASM Op printer to print the operation name in the framework instead of leaving it up to each individual operation
This aligns the printer with the parser contract: the operation isn't part of the user-controllable part of the syntax.

Differential Revision: https://reviews.llvm.org/D108804
2021-08-31 17:52:40 +00:00

2462 lines
97 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/Interfaces/ViewLikeInterface.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
using namespace mlir::memref;
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *MemRefDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return builder.create<mlir::ConstantOp>(loc, type, value);
}
//===----------------------------------------------------------------------===//
// Common canonicalization pattern support logic
//===----------------------------------------------------------------------===//
/// This is a common class used for patterns of the form
/// "someop(memrefcast) -> someop". It folds the source of any memref.cast
/// into the root operation directly.
static LogicalResult foldMemRefCast(Operation *op, Value inner = nullptr) {
bool folded = false;
for (OpOperand &operand : op->getOpOperands()) {
auto cast = operand.get().getDefiningOp<CastOp>();
if (cast && operand.get() != inner &&
!cast.getOperand().getType().isa<UnrankedMemRefType>()) {
operand.set(cast.getOperand());
folded = true;
}
}
return success(folded);
}
//===----------------------------------------------------------------------===//
// Helpers for GlobalOp
//===----------------------------------------------------------------------===//
static Type getTensorTypeFromMemRefType(Type type) {
if (auto memref = type.dyn_cast<MemRefType>())
return RankedTensorType::get(memref.getShape(), memref.getElementType());
if (auto memref = type.dyn_cast<UnrankedMemRefType>())
return UnrankedTensorType::get(memref.getElementType());
return NoneType::get(type.getContext());
}
//===----------------------------------------------------------------------===//
// AllocOp / AllocaOp
//===----------------------------------------------------------------------===//
template <typename AllocLikeOp>
static LogicalResult verifyAllocLikeOp(AllocLikeOp op) {
static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value,
"applies to only alloc or alloca");
auto memRefType = op.getResult().getType().template dyn_cast<MemRefType>();
if (!memRefType)
return op.emitOpError("result must be a memref");
if (static_cast<int64_t>(op.dynamicSizes().size()) !=
memRefType.getNumDynamicDims())
return op.emitOpError("dimension operand count does not equal memref "
"dynamic dimension count");
unsigned numSymbols = 0;
if (!memRefType.getAffineMaps().empty())
numSymbols = memRefType.getAffineMaps().front().getNumSymbols();
if (op.symbolOperands().size() != numSymbols)
return op.emitOpError("symbol operand count does not equal memref symbol "
"count: expected ")
<< numSymbols << ", got " << op.symbolOperands().size();
return success();
}
static LogicalResult verify(AllocOp op) { return verifyAllocLikeOp(op); }
static LogicalResult verify(AllocaOp op) {
// An alloca op needs to have an ancestor with an allocation scope trait.
if (!op->getParentWithTrait<OpTrait::AutomaticAllocationScope>())
return op.emitOpError(
"requires an ancestor op with AutomaticAllocationScope trait");
return verifyAllocLikeOp(op);
}
namespace {
/// Fold constant dimensions into an alloc like operation.
template <typename AllocLikeOp>
struct SimplifyAllocConst : public OpRewritePattern<AllocLikeOp> {
using OpRewritePattern<AllocLikeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AllocLikeOp alloc,
PatternRewriter &rewriter) const override {
// Check to see if any dimensions operands are constants. If so, we can
// substitute and drop them.
if (llvm::none_of(alloc.dynamicSizes(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
auto memrefType = alloc.getType();
// Ok, we have one or more constant operands. Collect the non-constant ones
// and keep track of the resultant memref type to build.
SmallVector<int64_t, 4> newShapeConstants;
newShapeConstants.reserve(memrefType.getRank());
SmallVector<Value, 4> dynamicSizes;
unsigned dynamicDimPos = 0;
for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) {
int64_t dimSize = memrefType.getDimSize(dim);
// If this is already static dimension, keep it.
if (dimSize != -1) {
newShapeConstants.push_back(dimSize);
continue;
}
auto dynamicSize = alloc.dynamicSizes()[dynamicDimPos];
auto *defOp = dynamicSize.getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic shape dimension will be folded.
newShapeConstants.push_back(constantIndexOp.getValue());
} else {
// Dynamic shape dimension not folded; copy dynamicSize from old memref.
newShapeConstants.push_back(-1);
dynamicSizes.push_back(dynamicSize);
}
dynamicDimPos++;
}
// Create new memref type (which will have fewer dynamic dimensions).
MemRefType newMemRefType =
MemRefType::Builder(memrefType).setShape(newShapeConstants);
assert(static_cast<int64_t>(dynamicSizes.size()) ==
newMemRefType.getNumDynamicDims());
// Create and insert the alloc op for the new memref.
auto newAlloc = rewriter.create<AllocLikeOp>(
alloc.getLoc(), newMemRefType, dynamicSizes, alloc.symbolOperands(),
alloc.alignmentAttr());
// Insert a cast so we have the same type as the old alloc.
auto resultCast =
rewriter.create<CastOp>(alloc.getLoc(), newAlloc, alloc.getType());
rewriter.replaceOp(alloc, {resultCast});
return success();
}
};
/// Fold alloc operations with no users or only store and dealloc uses.
template <typename T>
struct SimplifyDeadAlloc : public OpRewritePattern<T> {
using OpRewritePattern<T>::OpRewritePattern;
LogicalResult matchAndRewrite(T alloc,
PatternRewriter &rewriter) const override {
if (llvm::any_of(alloc->getUsers(), [&](Operation *op) {
if (auto storeOp = dyn_cast<StoreOp>(op))
return storeOp.value() == alloc;
return !isa<DeallocOp>(op);
}))
return failure();
for (Operation *user : llvm::make_early_inc_range(alloc->getUsers()))
rewriter.eraseOp(user);
rewriter.eraseOp(alloc);
return success();
}
};
} // end anonymous namespace.
void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyAllocConst<AllocOp>, SimplifyDeadAlloc<AllocOp>>(context);
}
void AllocaOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyAllocConst<AllocaOp>, SimplifyDeadAlloc<AllocaOp>>(
context);
}
//===----------------------------------------------------------------------===//
// AllocaScopeOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, AllocaScopeOp &op) {
bool printBlockTerminators = false;
p << " ";
if (!op.results().empty()) {
p << " -> (" << op.getResultTypes() << ")";
printBlockTerminators = true;
}
p.printRegion(op.bodyRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
p.printOptionalAttrDict(op->getAttrs());
}
static ParseResult parseAllocaScopeOp(OpAsmParser &parser,
OperationState &result) {
// Create a region for the body.
result.regions.reserve(1);
Region *bodyRegion = result.addRegion();
// Parse optional results type list.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Parse the body region.
if (parser.parseRegion(*bodyRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
AllocaScopeOp::ensureTerminator(*bodyRegion, parser.getBuilder(),
result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static LogicalResult verify(AllocaScopeOp op) {
if (failed(RegionBranchOpInterface::verifyTypes(op)))
return failure();
return success();
}
void AllocaScopeOp::getSuccessorRegions(
Optional<unsigned> index, ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
if (index.hasValue()) {
regions.push_back(RegionSuccessor(getResults()));
return;
}
regions.push_back(RegionSuccessor(&bodyRegion()));
}
//===----------------------------------------------------------------------===//
// AssumeAlignmentOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(AssumeAlignmentOp op) {
unsigned alignment = op.alignment();
if (!llvm::isPowerOf2_32(alignment))
return op.emitOpError("alignment must be power of 2");
return success();
}
//===----------------------------------------------------------------------===//
// BufferCastOp
//===----------------------------------------------------------------------===//
OpFoldResult BufferCastOp::fold(ArrayRef<Attribute>) {
if (auto tensorLoad = tensor().getDefiningOp<TensorLoadOp>())
if (tensorLoad.memref().getType() == getType())
return tensorLoad.memref();
return {};
}
namespace {
/// Replace tensor_cast + buffer_cast by buffer_cast + memref_cast.
struct BufferCast : public OpRewritePattern<BufferCastOp> {
using OpRewritePattern<BufferCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BufferCastOp bufferCast,
PatternRewriter &rewriter) const final {
auto tensorCastOperand =
bufferCast.getOperand().getDefiningOp<tensor::CastOp>();
if (!tensorCastOperand)
return failure();
auto srcTensorType =
tensorCastOperand.getOperand().getType().dyn_cast<RankedTensorType>();
if (!srcTensorType)
return failure();
auto memrefType = MemRefType::get(srcTensorType.getShape(),
srcTensorType.getElementType());
Value memref = rewriter.create<BufferCastOp>(
bufferCast.getLoc(), memrefType, tensorCastOperand.getOperand());
rewriter.replaceOpWithNewOp<CastOp>(bufferCast, bufferCast.getType(),
memref);
return success();
}
};
/// Canonicalize memref.tensor_load + memref.buffer_cast to memref.cast when
/// type mismatches prevent `BufferCastOp::fold` to kick in.
struct TensorLoadToMemRef : public OpRewritePattern<BufferCastOp> {
using OpRewritePattern<BufferCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BufferCastOp bufferCast,
PatternRewriter &rewriter) const final {
auto tensorLoad = bufferCast.tensor().getDefiningOp<TensorLoadOp>();
// Bail unless we have a tensor_load + memref.buffer_cast with different
// types. `BufferCastOp::fold` handles the same type case.
if (!tensorLoad || tensorLoad.memref().getType() == bufferCast.getType())
return failure();
// If types are definitely not cast-compatible, bail.
if (!CastOp::areCastCompatible(tensorLoad.memref().getType(),
bufferCast.getType()))
return failure();
// We already know that the types are potentially cast-compatible. However
// in case the affine maps are different, we may need to use a copy if we go
// from dynamic to static offset or stride (the canonicalization cannot know
// at this point that it is really cast compatible).
auto isGuaranteedCastCompatible = [](MemRefType source, MemRefType target) {
int64_t sourceOffset, targetOffset;
SmallVector<int64_t, 4> sourceStrides, targetStrides;
if (failed(getStridesAndOffset(source, sourceStrides, sourceOffset)) ||
failed(getStridesAndOffset(target, targetStrides, targetOffset)))
return false;
auto dynamicToStatic = [](int64_t a, int64_t b) {
return a == MemRefType::getDynamicStrideOrOffset() &&
b != MemRefType::getDynamicStrideOrOffset();
};
if (dynamicToStatic(sourceOffset, targetOffset))
return false;
for (auto it : zip(sourceStrides, targetStrides))
if (dynamicToStatic(std::get<0>(it), std::get<1>(it)))
return false;
return true;
};
auto tensorLoadType = tensorLoad.memref().getType().dyn_cast<MemRefType>();
auto bufferCastType = bufferCast.getType().dyn_cast<MemRefType>();
if (tensorLoadType && bufferCastType &&
!isGuaranteedCastCompatible(tensorLoadType, bufferCastType)) {
MemRefType resultType = bufferCastType;
auto loc = bufferCast.getLoc();
SmallVector<Value, 4> dynamicOperands;
for (int i = 0; i < resultType.getRank(); ++i) {
if (resultType.getShape()[i] != ShapedType::kDynamicSize)
continue;
auto index = rewriter.createOrFold<ConstantIndexOp>(loc, i);
Value size = rewriter.create<tensor::DimOp>(loc, tensorLoad, index);
dynamicOperands.push_back(size);
}
auto copy =
rewriter.create<memref::AllocOp>(loc, resultType, dynamicOperands);
rewriter.create<CopyOp>(loc, tensorLoad.memref(), copy);
rewriter.replaceOp(bufferCast, {copy});
} else
rewriter.replaceOpWithNewOp<CastOp>(bufferCast, bufferCast.getType(),
tensorLoad.memref());
return success();
}
};
} // namespace
void BufferCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<BufferCast, TensorLoadToMemRef>(context);
}
//===----------------------------------------------------------------------===//
// CastOp
//===----------------------------------------------------------------------===//
/// Determines whether MemRef_CastOp casts to a more dynamic version of the
/// source memref. This is useful to to fold a memref.cast into a consuming op
/// and implement canonicalization patterns for ops in different dialects that
/// may consume the results of memref.cast operations. Such foldable memref.cast
/// operations are typically inserted as `view` and `subview` ops are
/// canonicalized, to preserve the type compatibility of their uses.
///
/// Returns true when all conditions are met:
/// 1. source and result are ranked memrefs with strided semantics and same
/// element type and rank.
/// 2. each of the source's size, offset or stride has more static information
/// than the corresponding result's size, offset or stride.
///
/// Example 1:
/// ```mlir
/// %1 = memref.cast %0 : memref<8x16xf32> to memref<?x?xf32>
/// %2 = consumer %1 ... : memref<?x?xf32> ...
/// ```
///
/// may fold into:
///
/// ```mlir
/// %2 = consumer %0 ... : memref<8x16xf32> ...
/// ```
///
/// Example 2:
/// ```
/// %1 = memref.cast %0 : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>>
/// to memref<?x?xf32>
/// consumer %1 : memref<?x?xf32> ...
/// ```
///
/// may fold into:
///
/// ```
/// consumer %0 ... : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>>
/// ```
bool CastOp::canFoldIntoConsumerOp(CastOp castOp) {
MemRefType sourceType = castOp.source().getType().dyn_cast<MemRefType>();
MemRefType resultType = castOp.getType().dyn_cast<MemRefType>();
// Requires ranked MemRefType.
if (!sourceType || !resultType)
return false;
// Requires same elemental type.
if (sourceType.getElementType() != resultType.getElementType())
return false;
// Requires same rank.
if (sourceType.getRank() != resultType.getRank())
return false;
// Only fold casts between strided memref forms.
int64_t sourceOffset, resultOffset;
SmallVector<int64_t, 4> sourceStrides, resultStrides;
if (failed(getStridesAndOffset(sourceType, sourceStrides, sourceOffset)) ||
failed(getStridesAndOffset(resultType, resultStrides, resultOffset)))
return false;
// If cast is towards more static sizes along any dimension, don't fold.
for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) {
auto ss = std::get<0>(it), st = std::get<1>(it);
if (ss != st)
if (MemRefType::isDynamic(ss) && !MemRefType::isDynamic(st))
return false;
}
// If cast is towards more static offset along any dimension, don't fold.
if (sourceOffset != resultOffset)
if (MemRefType::isDynamicStrideOrOffset(sourceOffset) &&
!MemRefType::isDynamicStrideOrOffset(resultOffset))
return false;
// If cast is towards more static strides along any dimension, don't fold.
for (auto it : llvm::zip(sourceStrides, resultStrides)) {
auto ss = std::get<0>(it), st = std::get<1>(it);
if (ss != st)
if (MemRefType::isDynamicStrideOrOffset(ss) &&
!MemRefType::isDynamicStrideOrOffset(st))
return false;
}
return true;
}
bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
auto aT = a.dyn_cast<MemRefType>();
auto bT = b.dyn_cast<MemRefType>();
auto uaT = a.dyn_cast<UnrankedMemRefType>();
auto ubT = b.dyn_cast<UnrankedMemRefType>();
if (aT && bT) {
if (aT.getElementType() != bT.getElementType())
return false;
if (aT.getAffineMaps() != bT.getAffineMaps()) {
int64_t aOffset, bOffset;
SmallVector<int64_t, 4> aStrides, bStrides;
if (failed(getStridesAndOffset(aT, aStrides, aOffset)) ||
failed(getStridesAndOffset(bT, bStrides, bOffset)) ||
aStrides.size() != bStrides.size())
return false;
// Strides along a dimension/offset are compatible if the value in the
// source memref is static and the value in the target memref is the
// same. They are also compatible if either one is dynamic (see
// description of MemRefCastOp for details).
auto checkCompatible = [](int64_t a, int64_t b) {
return (a == MemRefType::getDynamicStrideOrOffset() ||
b == MemRefType::getDynamicStrideOrOffset() || a == b);
};
if (!checkCompatible(aOffset, bOffset))
return false;
for (auto aStride : enumerate(aStrides))
if (!checkCompatible(aStride.value(), bStrides[aStride.index()]))
return false;
}
if (aT.getMemorySpace() != bT.getMemorySpace())
return false;
// They must have the same rank, and any specified dimensions must match.
if (aT.getRank() != bT.getRank())
return false;
for (unsigned i = 0, e = aT.getRank(); i != e; ++i) {
int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i);
if (aDim != -1 && bDim != -1 && aDim != bDim)
return false;
}
return true;
} else {
if (!aT && !uaT)
return false;
if (!bT && !ubT)
return false;
// Unranked to unranked casting is unsupported
if (uaT && ubT)
return false;
auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType();
auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType();
if (aEltType != bEltType)
return false;
auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace();
auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace();
if (aMemSpace != bMemSpace)
return false;
return true;
}
return false;
}
OpFoldResult CastOp::fold(ArrayRef<Attribute> operands) {
return succeeded(foldMemRefCast(*this)) ? getResult() : Value();
}
//===----------------------------------------------------------------------===//
// CloneOp
//===----------------------------------------------------------------------===//
void CloneOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Read::get(), input(),
SideEffects::DefaultResource::get());
effects.emplace_back(MemoryEffects::Write::get(), output(),
SideEffects::DefaultResource::get());
effects.emplace_back(MemoryEffects::Allocate::get(), output(),
SideEffects::DefaultResource::get());
}
namespace {
/// Merge the clone and its source (by converting the clone to a cast) when
/// possible.
struct SimplifyClones : public OpRewritePattern<CloneOp> {
using OpRewritePattern<CloneOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CloneOp cloneOp,
PatternRewriter &rewriter) const override {
if (cloneOp.use_empty()) {
rewriter.eraseOp(cloneOp);
return success();
}
Value source = cloneOp.input();
// This only finds dealloc operations for the immediate value. It should
// also consider aliases. That would also make the safety check below
// redundant.
llvm::Optional<Operation *> maybeCloneDeallocOp =
findDealloc(cloneOp.output());
// Skip if either of them has > 1 deallocate operations.
if (!maybeCloneDeallocOp.hasValue())
return failure();
llvm::Optional<Operation *> maybeSourceDeallocOp = findDealloc(source);
if (!maybeSourceDeallocOp.hasValue())
return failure();
Operation *cloneDeallocOp = *maybeCloneDeallocOp;
Operation *sourceDeallocOp = *maybeSourceDeallocOp;
// If both are deallocated in the same block, their in-block lifetimes
// might not fully overlap, so we cannot decide which one to drop.
if (cloneDeallocOp && sourceDeallocOp &&
cloneDeallocOp->getBlock() == sourceDeallocOp->getBlock())
return failure();
Block *currentBlock = cloneOp->getBlock();
Operation *redundantDealloc = nullptr;
if (cloneDeallocOp && cloneDeallocOp->getBlock() == currentBlock) {
redundantDealloc = cloneDeallocOp;
} else if (sourceDeallocOp && sourceDeallocOp->getBlock() == currentBlock) {
redundantDealloc = sourceDeallocOp;
}
if (!redundantDealloc)
return failure();
// Safety check that there are no other deallocations inbetween
// cloneOp and redundantDealloc, as otherwise we might deallocate an alias
// of source before the uses of the clone. With alias information, we could
// restrict this to only fail of the dealloc's operand is an alias
// of the source.
for (Operation *pos = cloneOp->getNextNode(); pos != redundantDealloc;
pos = pos->getNextNode()) {
auto effectInterface = dyn_cast<MemoryEffectOpInterface>(pos);
if (!effectInterface)
continue;
if (effectInterface.hasEffect<MemoryEffects::Free>())
return failure();
}
rewriter.replaceOpWithNewOp<memref::CastOp>(cloneOp, cloneOp.getType(),
source);
rewriter.eraseOp(redundantDealloc);
return success();
}
};
} // end anonymous namespace.
void CloneOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyClones>(context);
}
OpFoldResult CloneOp::fold(ArrayRef<Attribute> operands) {
return succeeded(foldMemRefCast(*this)) ? getResult() : Value();
}
//===----------------------------------------------------------------------===//
// DeallocOp
//===----------------------------------------------------------------------===//
LogicalResult DeallocOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dealloc(memrefcast) -> dealloc
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// DimOp
//===----------------------------------------------------------------------===//
void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
int64_t index) {
auto loc = result.location;
Value indexValue = builder.create<ConstantIndexOp>(loc, index);
build(builder, result, source, indexValue);
}
void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
Value index) {
auto indexTy = builder.getIndexType();
build(builder, result, indexTy, source, index);
}
Optional<int64_t> DimOp::getConstantIndex() {
if (auto constantOp = index().getDefiningOp<ConstantOp>())
return constantOp.getValue().cast<IntegerAttr>().getInt();
return {};
}
static LogicalResult verify(DimOp op) {
// Assume unknown index to be in range.
Optional<int64_t> index = op.getConstantIndex();
if (!index.hasValue())
return success();
// Check that constant index is not knowingly out of range.
auto type = op.source().getType();
if (auto memrefType = type.dyn_cast<MemRefType>()) {
if (index.getValue() >= memrefType.getRank())
return op.emitOpError("index is out of range");
} else if (type.isa<UnrankedMemRefType>()) {
// Assume index to be in range.
} else {
llvm_unreachable("expected operand with memref type");
}
return success();
}
OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
// All forms of folding require a known index.
auto index = operands[1].dyn_cast_or_null<IntegerAttr>();
if (!index)
return {};
// Folding for unranked types (UnrankedMemRefType) is not supported.
auto memrefType = source().getType().dyn_cast<MemRefType>();
if (!memrefType)
return {};
// Fold if the shape extent along the given index is known.
if (!memrefType.isDynamicDim(index.getInt())) {
Builder builder(getContext());
return builder.getIndexAttr(memrefType.getShape()[index.getInt()]);
}
// The size at the given index is now known to be a dynamic size.
unsigned unsignedIndex = index.getValue().getZExtValue();
// Fold dim to the size argument for an `AllocOp`, `ViewOp`, or `SubViewOp`.
Operation *definingOp = source().getDefiningOp();
if (auto alloc = dyn_cast_or_null<AllocOp>(definingOp))
return *(alloc.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(unsignedIndex));
if (auto alloca = dyn_cast_or_null<AllocaOp>(definingOp))
return *(alloca.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(unsignedIndex));
if (auto view = dyn_cast_or_null<ViewOp>(definingOp))
return *(view.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(unsignedIndex));
if (auto sizeInterface =
dyn_cast_or_null<OffsetSizeAndStrideOpInterface>(definingOp)) {
assert(sizeInterface.isDynamicSize(unsignedIndex) &&
"Expected dynamic subview size");
return sizeInterface.getDynamicSize(unsignedIndex);
}
// dim(memrefcast) -> dim
if (succeeded(foldMemRefCast(*this)))
return getResult();
return {};
}
namespace {
/// Fold dim of a memref reshape operation to a load into the reshape's shape
/// operand.
struct DimOfMemRefReshape : public OpRewritePattern<DimOp> {
using OpRewritePattern<DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DimOp dim,
PatternRewriter &rewriter) const override {
auto reshape = dim.source().getDefiningOp<ReshapeOp>();
if (!reshape)
return failure();
// Place the load directly after the reshape to ensure that the shape memref
// was not mutated.
rewriter.setInsertionPointAfter(reshape);
Location loc = dim.getLoc();
Value load = rewriter.create<LoadOp>(loc, reshape.shape(), dim.index());
if (load.getType() != dim.getType())
load = rewriter.create<IndexCastOp>(loc, dim.getType(), load);
rewriter.replaceOp(dim, load);
return success();
}
};
/// Fold dim of a cast into the dim of the source of the memref cast.
struct DimOfCastOp : public OpRewritePattern<DimOp> {
using OpRewritePattern<DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DimOp dimOp,
PatternRewriter &rewriter) const override {
auto castOp = dimOp.source().getDefiningOp<BufferCastOp>();
if (!castOp)
return failure();
Value newSource = castOp.getOperand();
rewriter.replaceOpWithNewOp<tensor::DimOp>(dimOp, newSource, dimOp.index());
return success();
}
};
} // end anonymous namespace.
void DimOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<DimOfMemRefReshape, DimOfCastOp>(context);
}
// ---------------------------------------------------------------------------
// DmaStartOp
// ---------------------------------------------------------------------------
void DmaStartOp::build(OpBuilder &builder, OperationState &result,
Value srcMemRef, ValueRange srcIndices, Value destMemRef,
ValueRange destIndices, Value numElements,
Value tagMemRef, ValueRange tagIndices, Value stride,
Value elementsPerStride) {
result.addOperands(srcMemRef);
result.addOperands(srcIndices);
result.addOperands(destMemRef);
result.addOperands(destIndices);
result.addOperands({numElements, tagMemRef});
result.addOperands(tagIndices);
if (stride)
result.addOperands({stride, elementsPerStride});
}
void DmaStartOp::print(OpAsmPrinter &p) {
p << " " << getSrcMemRef() << '[' << getSrcIndices() << "], "
<< getDstMemRef() << '[' << getDstIndices() << "], " << getNumElements()
<< ", " << getTagMemRef() << '[' << getTagIndices() << ']';
if (isStrided())
p << ", " << getStride() << ", " << getNumElementsPerStride();
p.printOptionalAttrDict((*this)->getAttrs());
p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType()
<< ", " << getTagMemRef().getType();
}
// Parse DmaStartOp.
// Ex:
// %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size,
// %tag[%index], %stride, %num_elt_per_stride :
// : memref<3076 x f32, 0>,
// memref<1024 x f32, 2>,
// memref<1 x i32>
//
ParseResult DmaStartOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcMemRefInfo;
SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos;
OpAsmParser::OperandType dstMemRefInfo;
SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos;
OpAsmParser::OperandType numElementsInfo;
OpAsmParser::OperandType tagMemrefInfo;
SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos;
SmallVector<OpAsmParser::OperandType, 2> strideInfo;
SmallVector<Type, 3> types;
auto indexType = parser.getBuilder().getIndexType();
// Parse and resolve the following list of operands:
// *) source memref followed by its indices (in square brackets).
// *) destination memref followed by its indices (in square brackets).
// *) dma size in KiB.
if (parser.parseOperand(srcMemRefInfo) ||
parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(dstMemRefInfo) ||
parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
parser.parseComma() || parser.parseOperand(tagMemrefInfo) ||
parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square))
return failure();
// Parse optional stride and elements per stride.
if (parser.parseTrailingOperandList(strideInfo))
return failure();
bool isStrided = strideInfo.size() == 2;
if (!strideInfo.empty() && !isStrided) {
return parser.emitError(parser.getNameLoc(),
"expected two stride related operands");
}
if (parser.parseColonTypeList(types))
return failure();
if (types.size() != 3)
return parser.emitError(parser.getNameLoc(), "fewer/more types expected");
if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) ||
parser.resolveOperands(srcIndexInfos, indexType, result.operands) ||
parser.resolveOperand(dstMemRefInfo, types[1], result.operands) ||
parser.resolveOperands(dstIndexInfos, indexType, result.operands) ||
// size should be an index.
parser.resolveOperand(numElementsInfo, indexType, result.operands) ||
parser.resolveOperand(tagMemrefInfo, types[2], result.operands) ||
// tag indices should be index.
parser.resolveOperands(tagIndexInfos, indexType, result.operands))
return failure();
if (isStrided) {
if (parser.resolveOperands(strideInfo, indexType, result.operands))
return failure();
}
return success();
}
LogicalResult DmaStartOp::verify() {
unsigned numOperands = getNumOperands();
// Mandatory non-variadic operands are: src memref, dst memref, tag memref and
// the number of elements.
if (numOperands < 4)
return emitOpError("expected at least 4 operands");
// Check types of operands. The order of these calls is important: the later
// calls rely on some type properties to compute the operand position.
// 1. Source memref.
if (!getSrcMemRef().getType().isa<MemRefType>())
return emitOpError("expected source to be of memref type");
if (numOperands < getSrcMemRefRank() + 4)
return emitOpError() << "expected at least " << getSrcMemRefRank() + 4
<< " operands";
if (!getSrcIndices().empty() &&
!llvm::all_of(getSrcIndices().getTypes(),
[](Type t) { return t.isIndex(); }))
return emitOpError("expected source indices to be of index type");
// 2. Destination memref.
if (!getDstMemRef().getType().isa<MemRefType>())
return emitOpError("expected destination to be of memref type");
unsigned numExpectedOperands = getSrcMemRefRank() + getDstMemRefRank() + 4;
if (numOperands < numExpectedOperands)
return emitOpError() << "expected at least " << numExpectedOperands
<< " operands";
if (!getDstIndices().empty() &&
!llvm::all_of(getDstIndices().getTypes(),
[](Type t) { return t.isIndex(); }))
return emitOpError("expected destination indices to be of index type");
// 3. Number of elements.
if (!getNumElements().getType().isIndex())
return emitOpError("expected num elements to be of index type");
// 4. Tag memref.
if (!getTagMemRef().getType().isa<MemRefType>())
return emitOpError("expected tag to be of memref type");
numExpectedOperands += getTagMemRefRank();
if (numOperands < numExpectedOperands)
return emitOpError() << "expected at least " << numExpectedOperands
<< " operands";
if (!getTagIndices().empty() &&
!llvm::all_of(getTagIndices().getTypes(),
[](Type t) { return t.isIndex(); }))
return emitOpError("expected tag indices to be of index type");
// Optional stride-related operands must be either both present or both
// absent.
if (numOperands != numExpectedOperands &&
numOperands != numExpectedOperands + 2)
return emitOpError("incorrect number of operands");
// 5. Strides.
if (isStrided()) {
if (!getStride().getType().isIndex() ||
!getNumElementsPerStride().getType().isIndex())
return emitOpError(
"expected stride and num elements per stride to be of type index");
}
return success();
}
LogicalResult DmaStartOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dma_start(memrefcast) -> dma_start
return foldMemRefCast(*this);
}
// ---------------------------------------------------------------------------
// DmaWaitOp
// ---------------------------------------------------------------------------
void DmaWaitOp::build(OpBuilder &builder, OperationState &result,
Value tagMemRef, ValueRange tagIndices,
Value numElements) {
result.addOperands(tagMemRef);
result.addOperands(tagIndices);
result.addOperands(numElements);
}
void DmaWaitOp::print(OpAsmPrinter &p) {
p << " " << getTagMemRef() << '[' << getTagIndices() << "], "
<< getNumElements();
p.printOptionalAttrDict((*this)->getAttrs());
p << " : " << getTagMemRef().getType();
}
// Parse DmaWaitOp.
// Eg:
// dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4>
//
ParseResult DmaWaitOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType tagMemrefInfo;
SmallVector<OpAsmParser::OperandType, 2> tagIndexInfos;
Type type;
auto indexType = parser.getBuilder().getIndexType();
OpAsmParser::OperandType numElementsInfo;
// Parse tag memref, its indices, and dma size.
if (parser.parseOperand(tagMemrefInfo) ||
parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
parser.parseColonType(type) ||
parser.resolveOperand(tagMemrefInfo, type, result.operands) ||
parser.resolveOperands(tagIndexInfos, indexType, result.operands) ||
parser.resolveOperand(numElementsInfo, indexType, result.operands))
return failure();
return success();
}
LogicalResult DmaWaitOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dma_wait(memrefcast) -> dma_wait
return foldMemRefCast(*this);
}
LogicalResult DmaWaitOp::verify() {
// Mandatory non-variadic operands are tag and the number of elements.
if (getNumOperands() < 2)
return emitOpError() << "expected at least 2 operands";
// Check types of operands. The order of these calls is important: the later
// calls rely on some type properties to compute the operand position.
if (!getTagMemRef().getType().isa<MemRefType>())
return emitOpError() << "expected tag to be of memref type";
if (getNumOperands() != 2 + getTagMemRefRank())
return emitOpError() << "expected " << 2 + getTagMemRefRank()
<< " operands";
if (!getTagIndices().empty() &&
!llvm::all_of(getTagIndices().getTypes(),
[](Type t) { return t.isIndex(); }))
return emitOpError() << "expected tag indices to be of index type";
if (!getNumElements().getType().isIndex())
return emitOpError()
<< "expected the number of elements to be of index type";
return success();
}
//===----------------------------------------------------------------------===//
// GlobalOp
//===----------------------------------------------------------------------===//
static void printGlobalMemrefOpTypeAndInitialValue(OpAsmPrinter &p, GlobalOp op,
TypeAttr type,
Attribute initialValue) {
p << type;
if (!op.isExternal()) {
p << " = ";
if (op.isUninitialized())
p << "uninitialized";
else
p.printAttributeWithoutType(initialValue);
}
}
static ParseResult
parseGlobalMemrefOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr,
Attribute &initialValue) {
Type type;
if (parser.parseType(type))
return failure();
auto memrefType = type.dyn_cast<MemRefType>();
if (!memrefType || !memrefType.hasStaticShape())
return parser.emitError(parser.getNameLoc())
<< "type should be static shaped memref, but got " << type;
typeAttr = TypeAttr::get(type);
if (parser.parseOptionalEqual())
return success();
if (succeeded(parser.parseOptionalKeyword("uninitialized"))) {
initialValue = UnitAttr::get(parser.getBuilder().getContext());
return success();
}
Type tensorType = getTensorTypeFromMemRefType(memrefType);
if (parser.parseAttribute(initialValue, tensorType))
return failure();
if (!initialValue.isa<ElementsAttr>())
return parser.emitError(parser.getNameLoc())
<< "initial value should be a unit or elements attribute";
return success();
}
static LogicalResult verify(GlobalOp op) {
auto memrefType = op.type().dyn_cast<MemRefType>();
if (!memrefType || !memrefType.hasStaticShape())
return op.emitOpError("type should be static shaped memref, but got ")
<< op.type();
// Verify that the initial value, if present, is either a unit attribute or
// an elements attribute.
if (op.initial_value().hasValue()) {
Attribute initValue = op.initial_value().getValue();
if (!initValue.isa<UnitAttr>() && !initValue.isa<ElementsAttr>())
return op.emitOpError("initial value should be a unit or elements "
"attribute, but got ")
<< initValue;
// Check that the type of the initial value is compatible with the type of
// the global variable.
if (initValue.isa<ElementsAttr>()) {
Type initType = initValue.getType();
Type tensorType = getTensorTypeFromMemRefType(memrefType);
if (initType != tensorType)
return op.emitOpError("initial value expected to be of type ")
<< tensorType << ", but was of type " << initType;
}
}
// TODO: verify visibility for declarations.
return success();
}
//===----------------------------------------------------------------------===//
// GetGlobalOp
//===----------------------------------------------------------------------===//
LogicalResult
GetGlobalOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
// Verify that the result type is same as the type of the referenced
// memref.global op.
auto global =
symbolTable.lookupNearestSymbolFrom<GlobalOp>(*this, nameAttr());
if (!global)
return emitOpError("'")
<< name() << "' does not reference a valid global memref";
Type resultType = result().getType();
if (global.type() != resultType)
return emitOpError("result type ")
<< resultType << " does not match type " << global.type()
<< " of the global memref @" << name();
return success();
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(LoadOp op) {
if (op.getNumOperands() != 1 + op.getMemRefType().getRank())
return op.emitOpError("incorrect number of indices for load");
return success();
}
OpFoldResult LoadOp::fold(ArrayRef<Attribute> cstOperands) {
/// load(memrefcast) -> load
if (succeeded(foldMemRefCast(*this)))
return getResult();
return OpFoldResult();
}
namespace {
/// Fold a load on a buffer_cast operation into an tensor.extract on the
/// corresponding tensor.
struct LoadOfBufferCast : public OpRewritePattern<LoadOp> {
using OpRewritePattern<LoadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(LoadOp load,
PatternRewriter &rewriter) const override {
auto buffercast = load.memref().getDefiningOp<BufferCastOp>();
if (!buffercast)
return failure();
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(load, buffercast.tensor(),
load.indices());
return success();
}
};
} // end anonymous namespace.
void LoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<LoadOfBufferCast>(context);
}
//===----------------------------------------------------------------------===//
// PrefetchOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, PrefetchOp op) {
p << " " << op.memref() << '[';
p.printOperands(op.indices());
p << ']' << ", " << (op.isWrite() ? "write" : "read");
p << ", locality<" << op.localityHint();
p << ">, " << (op.isDataCache() ? "data" : "instr");
p.printOptionalAttrDict(
op->getAttrs(),
/*elidedAttrs=*/{"localityHint", "isWrite", "isDataCache"});
p << " : " << op.getMemRefType();
}
static ParseResult parsePrefetchOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
IntegerAttr localityHint;
MemRefType type;
StringRef readOrWrite, cacheType;
auto indexTy = parser.getBuilder().getIndexType();
auto i32Type = parser.getBuilder().getIntegerType(32);
if (parser.parseOperand(memrefInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseKeyword(&readOrWrite) ||
parser.parseComma() || parser.parseKeyword("locality") ||
parser.parseLess() ||
parser.parseAttribute(localityHint, i32Type, "localityHint",
result.attributes) ||
parser.parseGreater() || parser.parseComma() ||
parser.parseKeyword(&cacheType) || parser.parseColonType(type) ||
parser.resolveOperand(memrefInfo, type, result.operands) ||
parser.resolveOperands(indexInfo, indexTy, result.operands))
return failure();
if (!readOrWrite.equals("read") && !readOrWrite.equals("write"))
return parser.emitError(parser.getNameLoc(),
"rw specifier has to be 'read' or 'write'");
result.addAttribute(
PrefetchOp::getIsWriteAttrName(),
parser.getBuilder().getBoolAttr(readOrWrite.equals("write")));
if (!cacheType.equals("data") && !cacheType.equals("instr"))
return parser.emitError(parser.getNameLoc(),
"cache type has to be 'data' or 'instr'");
result.addAttribute(
PrefetchOp::getIsDataCacheAttrName(),
parser.getBuilder().getBoolAttr(cacheType.equals("data")));
return success();
}
static LogicalResult verify(PrefetchOp op) {
if (op.getNumOperands() != 1 + op.getMemRefType().getRank())
return op.emitOpError("too few indices");
return success();
}
LogicalResult PrefetchOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
// prefetch(memrefcast) -> prefetch
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// ReinterpretCastOp
//===----------------------------------------------------------------------===//
/// Build a ReinterpretCastOp with all dynamic entries: `staticOffsets`,
/// `staticSizes` and `staticStrides` are automatically filled with
/// source-memref-rank sentinel values that encode dynamic entries.
void ReinterpretCastOp::build(OpBuilder &b, OperationState &result,
MemRefType resultType, Value source,
OpFoldResult offset, ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offset, dynamicOffsets, staticOffsets,
ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
ShapedType::kDynamicStrideOrOffset);
build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
dynamicStrides, b.getI64ArrayAttr(staticOffsets),
b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
result.addAttributes(attrs);
}
void ReinterpretCastOp::build(OpBuilder &b, OperationState &result,
MemRefType resultType, Value source,
int64_t offset, ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> sizeValues =
llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult {
return b.getI64IntegerAttr(v);
}));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [&](int64_t v) -> OpFoldResult {
return b.getI64IntegerAttr(v);
}));
build(b, result, resultType, source, b.getI64IntegerAttr(offset), sizeValues,
strideValues, attrs);
}
void ReinterpretCastOp::build(OpBuilder &b, OperationState &result,
MemRefType resultType, Value source, Value offset,
ValueRange sizes, ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
build(b, result, resultType, source, offset, sizeValues, strideValues, attrs);
}
// TODO: ponder whether we want to allow missing trailing sizes/strides that are
// completed automatically, like we have for subview and extract_slice.
static LogicalResult verify(ReinterpretCastOp op) {
// The source and result memrefs should be in the same memory space.
auto srcType = op.source().getType().cast<BaseMemRefType>();
auto resultType = op.getType().cast<MemRefType>();
if (srcType.getMemorySpace() != resultType.getMemorySpace())
return op.emitError("different memory spaces specified for source type ")
<< srcType << " and result memref type " << resultType;
if (srcType.getElementType() != resultType.getElementType())
return op.emitError("different element types specified for source type ")
<< srcType << " and result memref type " << resultType;
// Match sizes in result memref type and in static_sizes attribute.
for (auto &en :
llvm::enumerate(llvm::zip(resultType.getShape(),
extractFromI64ArrayAttr(op.static_sizes())))) {
int64_t resultSize = std::get<0>(en.value());
int64_t expectedSize = std::get<1>(en.value());
if (resultSize != expectedSize)
return op.emitError("expected result type with size = ")
<< expectedSize << " instead of " << resultSize
<< " in dim = " << en.index();
}
// Match offset and strides in static_offset and static_strides attributes if
// result memref type has an affine map specified.
if (!resultType.getAffineMaps().empty()) {
int64_t resultOffset;
SmallVector<int64_t, 4> resultStrides;
if (failed(getStridesAndOffset(resultType, resultStrides, resultOffset)))
return failure();
// Match offset in result memref type and in static_offsets attribute.
int64_t expectedOffset =
extractFromI64ArrayAttr(op.static_offsets()).front();
if (resultOffset != expectedOffset)
return op.emitError("expected result type with offset = ")
<< resultOffset << " instead of " << expectedOffset;
// Match strides in result memref type and in static_strides attribute.
for (auto &en : llvm::enumerate(llvm::zip(
resultStrides, extractFromI64ArrayAttr(op.static_strides())))) {
int64_t resultStride = std::get<0>(en.value());
int64_t expectedStride = std::get<1>(en.value());
if (resultStride != expectedStride)
return op.emitError("expected result type with stride = ")
<< expectedStride << " instead of " << resultStride
<< " in dim = " << en.index();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Reassociative reshape ops
//===----------------------------------------------------------------------===//
SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() {
return getSymbolLessAffineMaps(getReassociationExprs());
}
SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() {
return convertReassociationIndicesToExprs(getContext(),
getReassociationIndices());
}
SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() {
return getSymbolLessAffineMaps(getReassociationExprs());
}
SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() {
return convertReassociationIndicesToExprs(getContext(),
getReassociationIndices());
}
static void print(OpAsmPrinter &p, ExpandShapeOp op) {
::mlir::printReshapeOp<ExpandShapeOp>(p, op);
}
static void print(OpAsmPrinter &p, CollapseShapeOp op) {
::mlir::printReshapeOp<CollapseShapeOp>(p, op);
}
/// Detect whether memref dims [dim, dim + extent) can be reshaped without
/// copies.
static bool isReshapableDimBand(unsigned dim, unsigned extent,
ArrayRef<int64_t> sizes,
ArrayRef<AffineExpr> strides) {
assert(sizes.size() == strides.size() && "mismatched ranks");
// off by 1 indexing to avoid out of bounds
// V
for (auto idx = dim, e = dim + extent; idx + 1 < e; ++idx) {
// Only bands of static shapes are reshapable. This is due to the fact that
// there is no relation between dynamic sizes and dynamic strides: we do not
// have enough information to know whether a "-1" size corresponds to the
// proper symbol in the AffineExpr of a stride.
if (ShapedType::isDynamic(sizes[dim + 1]))
return false;
// TODO: Refine this by passing the proper nDims and nSymbols so we can
// simplify on the fly and catch more reshapable cases.
if (strides[idx] != strides[idx + 1] * sizes[idx + 1])
return false;
}
return true;
}
/// Compute the MemRefType obtained by applying the `reassociation` (which is
/// expected to be valid) to `type`.
/// If `type` is Contiguous MemRefType, this always produce a contiguous
/// MemRefType.
static MemRefType
computeReshapeCollapsedType(MemRefType type,
ArrayRef<AffineMap> reassociation) {
auto sizes = type.getShape();
AffineExpr offset;
SmallVector<AffineExpr, 4> strides;
auto status = getStridesAndOffset(type, strides, offset);
(void)status;
assert(succeeded(status) && "expected strided memref");
SmallVector<int64_t, 4> newSizes;
newSizes.reserve(reassociation.size());
SmallVector<AffineExpr, 4> newStrides;
newStrides.reserve(reassociation.size());
// Use the fact that reassociation is valid to simplify the logic: only use
// each map's rank.
assert(isReassociationValid(reassociation) && "invalid reassociation");
unsigned currentDim = 0;
for (AffineMap m : reassociation) {
unsigned dim = m.getNumResults();
int64_t size = 1;
AffineExpr stride = strides[currentDim + dim - 1];
if (!isReshapableDimBand(currentDim, dim, sizes, strides)) {
size = ShapedType::kDynamicSize;
stride = AffineExpr();
} else {
for (unsigned d = 0; d < dim; ++d)
size *= sizes[currentDim + d];
}
newSizes.push_back(size);
newStrides.push_back(stride);
currentDim += dim;
}
// Early-exit: if `type` is contiguous, the result must be contiguous.
if (canonicalizeStridedLayout(type).getAffineMaps().empty())
return MemRefType::Builder(type).setShape(newSizes).setAffineMaps({});
// Convert back to int64_t because we don't have enough information to create
// new strided layouts from AffineExpr only. This corresponds to a case where
// copies may be necessary.
int64_t intOffset = ShapedType::kDynamicStrideOrOffset;
if (auto o = offset.dyn_cast<AffineConstantExpr>())
intOffset = o.getValue();
SmallVector<int64_t, 4> intStrides;
intStrides.reserve(strides.size());
for (auto stride : newStrides) {
if (auto cst = stride.dyn_cast_or_null<AffineConstantExpr>())
intStrides.push_back(cst.getValue());
else
intStrides.push_back(ShapedType::kDynamicStrideOrOffset);
}
auto layout =
makeStridedLinearLayoutMap(intStrides, intOffset, type.getContext());
return canonicalizeStridedLayout(
MemRefType::Builder(type).setShape(newSizes).setAffineMaps({layout}));
}
void ExpandShapeOp::build(OpBuilder &b, OperationState &result, Value src,
ArrayRef<ReassociationIndices> reassociation,
ArrayRef<NamedAttribute> attrs) {
auto memRefType = src.getType().cast<MemRefType>();
auto resultType = computeReshapeCollapsedType(
memRefType, getSymbolLessAffineMaps(convertReassociationIndicesToExprs(
b.getContext(), reassociation)));
build(b, result, resultType, src, attrs);
result.addAttribute(getReassociationAttrName(),
getReassociationIndicesAttribute(b, reassociation));
}
void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src,
ArrayRef<ReassociationIndices> reassociation,
ArrayRef<NamedAttribute> attrs) {
auto memRefType = src.getType().cast<MemRefType>();
auto resultType = computeReshapeCollapsedType(
memRefType, getSymbolLessAffineMaps(convertReassociationIndicesToExprs(
b.getContext(), reassociation)));
build(b, result, resultType, src, attrs);
result.addAttribute(getReassociationAttrName(),
getReassociationIndicesAttribute(b, reassociation));
}
template <typename ReshapeOp,
bool isExpansion = std::is_same<ReshapeOp, ExpandShapeOp>::value>
static LogicalResult verifyReshapeOp(ReshapeOp op, MemRefType expandedType,
MemRefType collapsedType) {
if (failed(
verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion)))
return failure();
auto maps = op.getReassociationMaps();
MemRefType expectedType = computeReshapeCollapsedType(expandedType, maps);
if (collapsedType != expectedType)
return op.emitOpError("expected collapsed type to be ")
<< expectedType << ", but got " << collapsedType;
return success();
}
static LogicalResult verify(ExpandShapeOp op) {
return verifyReshapeOp(op, op.getResultType(), op.getSrcType());
}
void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<CollapseReshapeOps<ExpandShapeOp>,
CollapseMixedReshapeOps<ExpandShapeOp, CollapseShapeOp>>(context);
}
static LogicalResult verify(CollapseShapeOp op) {
return verifyReshapeOp(op, op.getSrcType(), op.getResultType());
}
struct CollapseShapeOpMemRefCastFolder
: public OpRewritePattern<CollapseShapeOp> {
public:
using OpRewritePattern<CollapseShapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CollapseShapeOp op,
PatternRewriter &rewriter) const override {
auto cast = op.getOperand().getDefiningOp<CastOp>();
if (!cast)
return failure();
if (!CastOp::canFoldIntoConsumerOp(cast))
return failure();
Type newResultType = computeReshapeCollapsedType(
cast.getOperand().getType().cast<MemRefType>(),
op.getReassociationMaps());
if (newResultType == op.getResultType()) {
rewriter.updateRootInPlace(
op, [&]() { op.srcMutable().assign(cast.source()); });
} else {
Value newOp = rewriter.create<CollapseShapeOp>(
op->getLoc(), cast.source(), op.getReassociationIndices());
rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), newOp);
}
return success();
}
};
void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<CollapseReshapeOps<CollapseShapeOp>,
CollapseMixedReshapeOps<CollapseShapeOp, ExpandShapeOp>,
CollapseShapeOpMemRefCastFolder>(context);
}
OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) {
if (succeeded(foldMemRefCast(*this)))
return getResult();
return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands);
}
OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) {
return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands);
}
//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ReshapeOp op) {
Type operandType = op.source().getType();
Type resultType = op.result().getType();
Type operandElementType = operandType.cast<ShapedType>().getElementType();
Type resultElementType = resultType.cast<ShapedType>().getElementType();
if (operandElementType != resultElementType)
return op.emitOpError("element types of source and destination memref "
"types should be the same");
if (auto operandMemRefType = operandType.dyn_cast<MemRefType>())
if (!operandMemRefType.getAffineMaps().empty())
return op.emitOpError(
"source memref type should have identity affine map");
int64_t shapeSize = op.shape().getType().cast<MemRefType>().getDimSize(0);
auto resultMemRefType = resultType.dyn_cast<MemRefType>();
if (resultMemRefType) {
if (!resultMemRefType.getAffineMaps().empty())
return op.emitOpError(
"result memref type should have identity affine map");
if (shapeSize == ShapedType::kDynamicSize)
return op.emitOpError("cannot use shape operand with dynamic length to "
"reshape to statically-ranked memref type");
if (shapeSize != resultMemRefType.getRank())
return op.emitOpError(
"length of shape operand differs from the result's memref rank");
}
return success();
}
//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(StoreOp op) {
if (op.getNumOperands() != 2 + op.getMemRefType().getRank())
return op.emitOpError("store index operand count not equal to memref rank");
return success();
}
LogicalResult StoreOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// store(memrefcast) -> store
return foldMemRefCast(*this, getValueToStore());
}
//===----------------------------------------------------------------------===//
// SubViewOp
//===----------------------------------------------------------------------===//
namespace {
/// Helpers to write more idiomatic operations.
namespace saturated_arith {
struct Wrapper {
explicit Wrapper(int64_t v) : v(v) {}
operator int64_t() { return v; }
int64_t v;
};
Wrapper operator+(Wrapper a, int64_t b) {
if (ShapedType::isDynamicStrideOrOffset(a) ||
ShapedType::isDynamicStrideOrOffset(b))
return Wrapper(ShapedType::kDynamicStrideOrOffset);
return Wrapper(a.v + b);
}
Wrapper operator*(Wrapper a, int64_t b) {
if (ShapedType::isDynamicStrideOrOffset(a) ||
ShapedType::isDynamicStrideOrOffset(b))
return Wrapper(ShapedType::kDynamicStrideOrOffset);
return Wrapper(a.v * b);
}
} // end namespace saturated_arith
} // end namespace
/// A subview result type can be fully inferred from the source type and the
/// static representation of offsets, sizes and strides. Special sentinels
/// encode the dynamic case.
Type SubViewOp::inferResultType(MemRefType sourceMemRefType,
ArrayRef<int64_t> leadingStaticOffsets,
ArrayRef<int64_t> leadingStaticSizes,
ArrayRef<int64_t> leadingStaticStrides) {
// A subview may specify only a leading subset of offset/sizes/strides in
// which case we complete with offset=0, sizes from memref type and strides=1.
unsigned rank = sourceMemRefType.getRank();
assert(leadingStaticOffsets.size() <= rank &&
"unexpected leadingStaticOffsets overflow");
assert(leadingStaticSizes.size() <= rank &&
"unexpected leadingStaticSizes overflow");
assert(leadingStaticStrides.size() <= rank &&
"unexpected leadingStaticStrides overflow");
auto staticOffsets = llvm::to_vector<4>(leadingStaticOffsets);
auto staticSizes = llvm::to_vector<4>(leadingStaticSizes);
auto staticStrides = llvm::to_vector<4>(leadingStaticStrides);
unsigned numTrailingOffsets = rank - staticOffsets.size();
unsigned numTrailingSizes = rank - staticSizes.size();
unsigned numTrailingStrides = rank - staticStrides.size();
staticOffsets.append(numTrailingOffsets, 0);
llvm::append_range(staticSizes,
sourceMemRefType.getShape().take_back(numTrailingSizes));
staticStrides.append(numTrailingStrides, 1);
// Extract source offset and strides.
int64_t sourceOffset;
SmallVector<int64_t, 4> sourceStrides;
auto res = getStridesAndOffset(sourceMemRefType, sourceStrides, sourceOffset);
assert(succeeded(res) && "SubViewOp expected strided memref type");
(void)res;
// Compute target offset whose value is:
// `sourceOffset + sum_i(staticOffset_i * sourceStrides_i)`.
int64_t targetOffset = sourceOffset;
for (auto it : llvm::zip(staticOffsets, sourceStrides)) {
auto staticOffset = std::get<0>(it), targetStride = std::get<1>(it);
using namespace saturated_arith;
targetOffset = Wrapper(targetOffset) + Wrapper(staticOffset) * targetStride;
}
// Compute target stride whose value is:
// `sourceStrides_i * staticStrides_i`.
SmallVector<int64_t, 4> targetStrides;
targetStrides.reserve(staticOffsets.size());
for (auto it : llvm::zip(sourceStrides, staticStrides)) {
auto sourceStride = std::get<0>(it), staticStride = std::get<1>(it);
using namespace saturated_arith;
targetStrides.push_back(Wrapper(sourceStride) * staticStride);
}
// The type is now known.
return MemRefType::get(
staticSizes, sourceMemRefType.getElementType(),
makeStridedLinearLayoutMap(targetStrides, targetOffset,
sourceMemRefType.getContext()),
sourceMemRefType.getMemorySpace());
}
Type SubViewOp::inferResultType(MemRefType sourceMemRefType,
ArrayRef<OpFoldResult> leadingStaticOffsets,
ArrayRef<OpFoldResult> leadingStaticSizes,
ArrayRef<OpFoldResult> leadingStaticStrides) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
staticOffsets, ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
staticStrides, ShapedType::kDynamicStrideOrOffset);
return SubViewOp::inferResultType(sourceMemRefType, staticOffsets,
staticSizes, staticStrides)
.cast<MemRefType>();
}
Type SubViewOp::inferRankReducedResultType(
unsigned resultRank, MemRefType sourceRankedTensorType,
ArrayRef<int64_t> leadingStaticOffsets,
ArrayRef<int64_t> leadingStaticSizes,
ArrayRef<int64_t> leadingStaticStrides) {
auto inferredType =
inferResultType(sourceRankedTensorType, leadingStaticOffsets,
leadingStaticSizes, leadingStaticStrides)
.cast<MemRefType>();
assert(inferredType.getRank() >= resultRank && "expected ");
int rankDiff = inferredType.getRank() - resultRank;
if (rankDiff > 0) {
auto shape = inferredType.getShape();
llvm::SmallDenseSet<unsigned> dimsToProject;
mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject);
SmallVector<int64_t> projectedShape;
for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
if (!dimsToProject.contains(pos))
projectedShape.push_back(shape[pos]);
AffineMap map;
auto maps = inferredType.getAffineMaps();
if (!maps.empty() && maps.front())
map = getProjectedMap(maps.front(), dimsToProject);
inferredType =
MemRefType::get(projectedShape, inferredType.getElementType(), map,
inferredType.getMemorySpace());
}
return inferredType;
}
Type SubViewOp::inferRankReducedResultType(
unsigned resultRank, MemRefType sourceRankedTensorType,
ArrayRef<OpFoldResult> leadingStaticOffsets,
ArrayRef<OpFoldResult> leadingStaticSizes,
ArrayRef<OpFoldResult> leadingStaticStrides) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
staticOffsets, ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
staticStrides, ShapedType::kDynamicStrideOrOffset);
return SubViewOp::inferRankReducedResultType(
resultRank, sourceRankedTensorType, staticOffsets, staticSizes,
staticStrides);
}
// Build a SubViewOp with mixed static and dynamic entries and custom result
// type. If the type passed is nullptr, it is inferred.
void SubViewOp::build(OpBuilder &b, OperationState &result,
MemRefType resultType, Value source,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
ShapedType::kDynamicStrideOrOffset);
auto sourceMemRefType = source.getType().cast<MemRefType>();
// Structuring implementation this way avoids duplication between builders.
if (!resultType) {
resultType = SubViewOp::inferResultType(sourceMemRefType, staticOffsets,
staticSizes, staticStrides)
.cast<MemRefType>();
}
build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
dynamicStrides, b.getI64ArrayAttr(staticOffsets),
b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
result.addAttributes(attrs);
}
// Build a SubViewOp with mixed static and dynamic entries and inferred result
// type.
void SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
build(b, result, MemRefType(), source, offsets, sizes, strides, attrs);
}
// Build a SubViewOp with static entries and inferred result type.
void SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult {
return b.getI64IntegerAttr(v);
}));
SmallVector<OpFoldResult> sizeValues =
llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult {
return b.getI64IntegerAttr(v);
}));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [&](int64_t v) -> OpFoldResult {
return b.getI64IntegerAttr(v);
}));
build(b, result, source, offsetValues, sizeValues, strideValues, attrs);
}
// Build a SubViewOp with dynamic entries and custom result type. If the
// type passed is nullptr, it is inferred.
void SubViewOp::build(OpBuilder &b, OperationState &result,
MemRefType resultType, Value source,
ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult {
return b.getI64IntegerAttr(v);
}));
SmallVector<OpFoldResult> sizeValues =
llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult {
return b.getI64IntegerAttr(v);
}));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [&](int64_t v) -> OpFoldResult {
return b.getI64IntegerAttr(v);
}));
build(b, result, resultType, source, offsetValues, sizeValues, strideValues,
attrs);
}
// Build a SubViewOp with dynamic entries and custom result type. If the type
// passed is nullptr, it is inferred.
void SubViewOp::build(OpBuilder &b, OperationState &result,
MemRefType resultType, Value source, ValueRange offsets,
ValueRange sizes, ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
}
// Build a SubViewOp with dynamic entries and inferred result type.
void SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
ValueRange offsets, ValueRange sizes, ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
build(b, result, MemRefType(), source, offsets, sizes, strides, attrs);
}
/// For ViewLikeOpInterface.
Value SubViewOp::getViewSource() { return source(); }
enum SubViewVerificationResult {
Success,
RankTooLarge,
SizeMismatch,
ElemTypeMismatch,
MemSpaceMismatch,
AffineMapMismatch
};
/// Checks if `original` Type type can be rank reduced to `reduced` type.
/// This function is slight variant of `is subsequence` algorithm where
/// not matching dimension must be 1.
static SubViewVerificationResult
isRankReducedType(Type originalType, Type candidateReducedType,
std::string *errMsg = nullptr) {
if (originalType == candidateReducedType)
return SubViewVerificationResult::Success;
if (!originalType.isa<MemRefType>())
return SubViewVerificationResult::Success;
if (originalType.isa<MemRefType>() && !candidateReducedType.isa<MemRefType>())
return SubViewVerificationResult::Success;
ShapedType originalShapedType = originalType.cast<ShapedType>();
ShapedType candidateReducedShapedType =
candidateReducedType.cast<ShapedType>();
// Rank and size logic is valid for all ShapedTypes.
ArrayRef<int64_t> originalShape = originalShapedType.getShape();
ArrayRef<int64_t> candidateReducedShape =
candidateReducedShapedType.getShape();
unsigned originalRank = originalShape.size(),
candidateReducedRank = candidateReducedShape.size();
if (candidateReducedRank > originalRank)
return SubViewVerificationResult::RankTooLarge;
auto optionalUnusedDimsMask =
computeRankReductionMask(originalShape, candidateReducedShape);
// Sizes cannot be matched in case empty vector is returned.
if (!optionalUnusedDimsMask.hasValue())
return SubViewVerificationResult::SizeMismatch;
if (originalShapedType.getElementType() !=
candidateReducedShapedType.getElementType())
return SubViewVerificationResult::ElemTypeMismatch;
// Strided layout logic is relevant for MemRefType only.
MemRefType original = originalType.cast<MemRefType>();
MemRefType candidateReduced = candidateReducedType.cast<MemRefType>();
if (original.getMemorySpace() != candidateReduced.getMemorySpace())
return SubViewVerificationResult::MemSpaceMismatch;
llvm::SmallDenseSet<unsigned> unusedDims = optionalUnusedDimsMask.getValue();
auto inferredType =
getProjectedMap(getStridedLinearLayoutMap(original), unusedDims);
AffineMap candidateLayout;
if (candidateReduced.getAffineMaps().empty())
candidateLayout = getStridedLinearLayoutMap(candidateReduced);
else
candidateLayout = candidateReduced.getAffineMaps().front();
assert(inferredType.getNumResults() == 1 &&
candidateLayout.getNumResults() == 1);
if (inferredType.getNumSymbols() != candidateLayout.getNumSymbols() ||
inferredType.getNumDims() != candidateLayout.getNumDims()) {
if (errMsg) {
llvm::raw_string_ostream os(*errMsg);
os << "inferred type: " << inferredType;
}
return SubViewVerificationResult::AffineMapMismatch;
}
// Check that the difference of the affine maps simplifies to 0.
AffineExpr diffExpr =
inferredType.getResult(0) - candidateLayout.getResult(0);
diffExpr = simplifyAffineExpr(diffExpr, inferredType.getNumDims(),
inferredType.getNumSymbols());
auto cst = diffExpr.dyn_cast<AffineConstantExpr>();
if (!(cst && cst.getValue() == 0)) {
if (errMsg) {
llvm::raw_string_ostream os(*errMsg);
os << "inferred type: " << inferredType;
}
return SubViewVerificationResult::AffineMapMismatch;
}
return SubViewVerificationResult::Success;
}
template <typename OpTy>
static LogicalResult produceSubViewErrorMsg(SubViewVerificationResult result,
OpTy op, Type expectedType,
StringRef errMsg = "") {
auto memrefType = expectedType.cast<ShapedType>();
switch (result) {
case SubViewVerificationResult::Success:
return success();
case SubViewVerificationResult::RankTooLarge:
return op.emitError("expected result rank to be smaller or equal to ")
<< "the source rank. " << errMsg;
case SubViewVerificationResult::SizeMismatch:
return op.emitError("expected result type to be ")
<< expectedType
<< " or a rank-reduced version. (mismatch of result sizes) "
<< errMsg;
case SubViewVerificationResult::ElemTypeMismatch:
return op.emitError("expected result element type to be ")
<< memrefType.getElementType() << errMsg;
case SubViewVerificationResult::MemSpaceMismatch:
return op.emitError("expected result and source memory spaces to match.")
<< errMsg;
case SubViewVerificationResult::AffineMapMismatch:
return op.emitError("expected result type to be ")
<< expectedType
<< " or a rank-reduced version. (mismatch of result affine map) "
<< errMsg;
}
llvm_unreachable("unexpected subview verification result");
}
/// Verifier for SubViewOp.
static LogicalResult verify(SubViewOp op) {
MemRefType baseType = op.getSourceType();
MemRefType subViewType = op.getType();
// The base memref and the view memref should be in the same memory space.
if (baseType.getMemorySpace() != subViewType.getMemorySpace())
return op.emitError("different memory spaces specified for base memref "
"type ")
<< baseType << " and subview memref type " << subViewType;
// Verify that the base memref type has a strided layout map.
if (!isStrided(baseType))
return op.emitError("base type ") << baseType << " is not strided";
// Verify result type against inferred type.
auto expectedType = SubViewOp::inferResultType(
baseType, extractFromI64ArrayAttr(op.static_offsets()),
extractFromI64ArrayAttr(op.static_sizes()),
extractFromI64ArrayAttr(op.static_strides()));
std::string errMsg;
auto result = isRankReducedType(expectedType, subViewType, &errMsg);
return produceSubViewErrorMsg(result, op, expectedType, errMsg);
}
raw_ostream &mlir::operator<<(raw_ostream &os, Range &range) {
return os << "range " << range.offset << ":" << range.size << ":"
<< range.stride;
}
/// Return the list of Range (i.e. offset, size, stride). Each Range
/// entry contains either the dynamic value or a ConstantIndexOp constructed
/// with `b` at location `loc`.
SmallVector<Range, 8> mlir::getOrCreateRanges(OffsetSizeAndStrideOpInterface op,
OpBuilder &b, Location loc) {
std::array<unsigned, 3> ranks = op.getArrayAttrMaxRanks();
assert(ranks[0] == ranks[1] && "expected offset and sizes of equal ranks");
assert(ranks[1] == ranks[2] && "expected sizes and strides of equal ranks");
SmallVector<Range, 8> res;
unsigned rank = ranks[0];
res.reserve(rank);
for (unsigned idx = 0; idx < rank; ++idx) {
Value offset =
op.isDynamicOffset(idx)
? op.getDynamicOffset(idx)
: b.create<ConstantIndexOp>(loc, op.getStaticOffset(idx));
Value size = op.isDynamicSize(idx)
? op.getDynamicSize(idx)
: b.create<ConstantIndexOp>(loc, op.getStaticSize(idx));
Value stride =
op.isDynamicStride(idx)
? op.getDynamicStride(idx)
: b.create<ConstantIndexOp>(loc, op.getStaticStride(idx));
res.emplace_back(Range{offset, size, stride});
}
return res;
}
/// Infer the canonical type of the result of a subview operation. Returns a
/// type with rank `resultRank` that is either the rank of the rank-reduced
/// type, or the non-rank-reduced type.
static MemRefType
getCanonicalSubViewResultType(unsigned resultRank, MemRefType sourceType,
ArrayRef<OpFoldResult> mixedOffsets,
ArrayRef<OpFoldResult> mixedSizes,
ArrayRef<OpFoldResult> mixedStrides) {
auto resultType =
SubViewOp::inferRankReducedResultType(
resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides)
.cast<MemRefType>();
if (resultType.getRank() != resultRank) {
resultType = SubViewOp::inferResultType(sourceType, mixedOffsets,
mixedSizes, mixedStrides)
.cast<MemRefType>();
}
return resultType;
}
namespace {
/// Pattern to rewrite a subview op with MemRefCast arguments.
/// This essentially pushes memref.cast past its consuming subview when
/// `canFoldIntoConsumerOp` is true.
///
/// Example:
/// ```
/// %0 = memref.cast %V : memref<16x16xf32> to memref<?x?xf32>
/// %1 = memref.subview %0[0, 0][3, 4][1, 1] :
/// memref<?x?xf32> to memref<3x4xf32, offset:?, strides:[?, 1]>
/// ```
/// is rewritten into:
/// ```
/// %0 = memref.subview %V: memref<16x16xf32> to memref<3x4xf32, #[[map0]]>
/// %1 = memref.cast %0: memref<3x4xf32, offset:0, strides:[16, 1]> to
/// memref<3x4xf32, offset:?, strides:[?, 1]>
/// ```
class SubViewOpMemRefCastFolder final : public OpRewritePattern<SubViewOp> {
public:
using OpRewritePattern<SubViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubViewOp subViewOp,
PatternRewriter &rewriter) const override {
// Any constant operand, just return to let SubViewOpConstantFolder kick in.
if (llvm::any_of(subViewOp.getOperands(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
auto castOp = subViewOp.source().getDefiningOp<CastOp>();
if (!castOp)
return failure();
if (!CastOp::canFoldIntoConsumerOp(castOp))
return failure();
/// Deduce the resultType of the SubViewOp using `inferSubViewResultType` on
/// the cast source operand type and the SubViewOp static information. This
/// is the resulting type if the MemRefCastOp were folded.
auto resultType = getCanonicalSubViewResultType(
subViewOp.getType().getRank(),
castOp.source().getType().cast<MemRefType>(),
subViewOp.getMixedOffsets(), subViewOp.getMixedSizes(),
subViewOp.getMixedStrides());
Value newSubView = rewriter.create<SubViewOp>(
subViewOp.getLoc(), resultType, castOp.source(), subViewOp.offsets(),
subViewOp.sizes(), subViewOp.strides(), subViewOp.static_offsets(),
subViewOp.static_sizes(), subViewOp.static_strides());
rewriter.replaceOpWithNewOp<CastOp>(subViewOp, subViewOp.getType(),
newSubView);
return success();
}
};
} // namespace
/// Return the canonical type of the result of a subview.
struct SubViewReturnTypeCanonicalizer {
MemRefType operator()(SubViewOp op, ArrayRef<OpFoldResult> mixedOffsets,
ArrayRef<OpFoldResult> mixedSizes,
ArrayRef<OpFoldResult> mixedStrides) {
return getCanonicalSubViewResultType(op.getType().getRank(),
op.getSourceType(), mixedOffsets,
mixedSizes, mixedStrides);
}
};
/// A canonicalizer wrapper to replace SubViewOps.
struct SubViewCanonicalizer {
void operator()(PatternRewriter &rewriter, SubViewOp op, SubViewOp newOp) {
rewriter.replaceOpWithNewOp<CastOp>(op, newOp, op.getType());
}
};
void SubViewOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results
.add<OpWithOffsetSizesAndStridesConstantArgumentFolder<
SubViewOp, SubViewReturnTypeCanonicalizer, SubViewCanonicalizer>,
SubViewOpMemRefCastFolder>(context);
}
OpFoldResult SubViewOp::fold(ArrayRef<Attribute> operands) {
auto resultShapedType = getResult().getType().cast<ShapedType>();
auto sourceShapedType = source().getType().cast<ShapedType>();
if (resultShapedType.hasStaticShape() &&
resultShapedType == sourceShapedType) {
return getViewSource();
}
return {};
}
//===----------------------------------------------------------------------===//
// TensorLoadOp
//===----------------------------------------------------------------------===//
OpFoldResult TensorLoadOp::fold(ArrayRef<Attribute>) {
if (auto bufferCast = memref().getDefiningOp<BufferCastOp>())
// Approximate alias analysis by conservatively folding only when no there
// is no interleaved operation.
if (bufferCast->getBlock() == this->getOperation()->getBlock() &&
bufferCast->getNextNode() == this->getOperation())
return bufferCast.tensor();
return {};
}
namespace {
struct DimOfTensorLoadFolder : public OpRewritePattern<tensor::DimOp> {
using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::DimOp dimOp,
PatternRewriter &rewriter) const override {
auto tensorLoadOp = dimOp.source().getDefiningOp<TensorLoadOp>();
if (!tensorLoadOp)
return failure();
rewriter.replaceOpWithNewOp<DimOp>(dimOp, tensorLoadOp.memref(),
dimOp.index());
return success();
}
};
} // namespace
void TensorLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<DimOfTensorLoadFolder>(context);
}
//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//
/// Build a strided memref type by applying `permutationMap` tp `memRefType`.
static MemRefType inferTransposeResultType(MemRefType memRefType,
AffineMap permutationMap) {
auto rank = memRefType.getRank();
auto originalSizes = memRefType.getShape();
// Compute permuted sizes.
SmallVector<int64_t, 4> sizes(rank, 0);
for (auto en : llvm::enumerate(permutationMap.getResults()))
sizes[en.index()] =
originalSizes[en.value().cast<AffineDimExpr>().getPosition()];
// Compute permuted strides.
int64_t offset;
SmallVector<int64_t, 4> strides;
auto res = getStridesAndOffset(memRefType, strides, offset);
assert(succeeded(res) && strides.size() == static_cast<unsigned>(rank));
(void)res;
auto map =
makeStridedLinearLayoutMap(strides, offset, memRefType.getContext());
map = permutationMap ? map.compose(permutationMap) : map;
return MemRefType::Builder(memRefType).setShape(sizes).setAffineMaps(map);
}
void TransposeOp::build(OpBuilder &b, OperationState &result, Value in,
AffineMapAttr permutation,
ArrayRef<NamedAttribute> attrs) {
auto permutationMap = permutation.getValue();
assert(permutationMap);
auto memRefType = in.getType().cast<MemRefType>();
// Compute result type.
MemRefType resultType = inferTransposeResultType(memRefType, permutationMap);
build(b, result, resultType, in, attrs);
result.addAttribute(TransposeOp::getPermutationAttrName(), permutation);
}
// transpose $in $permutation attr-dict : type($in) `to` type(results)
static void print(OpAsmPrinter &p, TransposeOp op) {
p << " " << op.in() << " " << op.permutation();
p.printOptionalAttrDict(op->getAttrs(),
{TransposeOp::getPermutationAttrName()});
p << " : " << op.in().getType() << " to " << op.getType();
}
static ParseResult parseTransposeOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType in;
AffineMap permutation;
MemRefType srcType, dstType;
if (parser.parseOperand(in) || parser.parseAffineMap(permutation) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(srcType) ||
parser.resolveOperand(in, srcType, result.operands) ||
parser.parseKeywordType("to", dstType) ||
parser.addTypeToList(dstType, result.types))
return failure();
result.addAttribute(TransposeOp::getPermutationAttrName(),
AffineMapAttr::get(permutation));
return success();
}
static LogicalResult verify(TransposeOp op) {
if (!op.permutation().isPermutation())
return op.emitOpError("expected a permutation map");
if (op.permutation().getNumDims() != op.getShapedType().getRank())
return op.emitOpError(
"expected a permutation map of same rank as the input");
auto srcType = op.in().getType().cast<MemRefType>();
auto dstType = op.getType().cast<MemRefType>();
auto transposedType = inferTransposeResultType(srcType, op.permutation());
if (dstType != transposedType)
return op.emitOpError("output type ")
<< dstType << " does not match transposed input type " << srcType
<< ", " << transposedType;
return success();
}
OpFoldResult TransposeOp::fold(ArrayRef<Attribute>) {
if (succeeded(foldMemRefCast(*this)))
return getResult();
return {};
}
//===----------------------------------------------------------------------===//
// ViewOp
//===----------------------------------------------------------------------===//
static ParseResult parseViewOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcInfo;
SmallVector<OpAsmParser::OperandType, 1> offsetInfo;
SmallVector<OpAsmParser::OperandType, 4> sizesInfo;
auto indexType = parser.getBuilder().getIndexType();
Type srcType, dstType;
llvm::SMLoc offsetLoc;
if (parser.parseOperand(srcInfo) || parser.getCurrentLocation(&offsetLoc) ||
parser.parseOperandList(offsetInfo, OpAsmParser::Delimiter::Square))
return failure();
if (offsetInfo.size() != 1)
return parser.emitError(offsetLoc) << "expects 1 offset operand";
return failure(
parser.parseOperandList(sizesInfo, OpAsmParser::Delimiter::Square) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(srcType) ||
parser.resolveOperand(srcInfo, srcType, result.operands) ||
parser.resolveOperands(offsetInfo, indexType, result.operands) ||
parser.resolveOperands(sizesInfo, indexType, result.operands) ||
parser.parseKeywordType("to", dstType) ||
parser.addTypeToList(dstType, result.types));
}
static void print(OpAsmPrinter &p, ViewOp op) {
p << ' ' << op.getOperand(0) << '[';
p.printOperand(op.byte_shift());
p << "][" << op.sizes() << ']';
p.printOptionalAttrDict(op->getAttrs());
p << " : " << op.getOperand(0).getType() << " to " << op.getType();
}
static LogicalResult verify(ViewOp op) {
auto baseType = op.getOperand(0).getType().cast<MemRefType>();
auto viewType = op.getType();
// The base memref should have identity layout map (or none).
if (baseType.getAffineMaps().size() > 1 ||
(baseType.getAffineMaps().size() == 1 &&
!baseType.getAffineMaps()[0].isIdentity()))
return op.emitError("unsupported map for base memref type ") << baseType;
// The result memref should have identity layout map (or none).
if (viewType.getAffineMaps().size() > 1 ||
(viewType.getAffineMaps().size() == 1 &&
!viewType.getAffineMaps()[0].isIdentity()))
return op.emitError("unsupported map for result memref type ") << viewType;
// The base memref and the view memref should be in the same memory space.
if (baseType.getMemorySpace() != viewType.getMemorySpace())
return op.emitError("different memory spaces specified for base memref "
"type ")
<< baseType << " and view memref type " << viewType;
// Verify that we have the correct number of sizes for the result type.
unsigned numDynamicDims = viewType.getNumDynamicDims();
if (op.sizes().size() != numDynamicDims)
return op.emitError("incorrect number of size operands for type ")
<< viewType;
return success();
}
Value ViewOp::getViewSource() { return source(); }
namespace {
struct ViewOpShapeFolder : public OpRewritePattern<ViewOp> {
using OpRewritePattern<ViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ViewOp viewOp,
PatternRewriter &rewriter) const override {
// Return if none of the operands are constants.
if (llvm::none_of(viewOp.getOperands(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
// Get result memref type.
auto memrefType = viewOp.getType();
// Get offset from old memref view type 'memRefType'.
int64_t oldOffset;
SmallVector<int64_t, 4> oldStrides;
if (failed(getStridesAndOffset(memrefType, oldStrides, oldOffset)))
return failure();
assert(oldOffset == 0 && "Expected 0 offset");
SmallVector<Value, 4> newOperands;
// Offset cannot be folded into result type.
// Fold any dynamic dim operands which are produced by a constant.
SmallVector<int64_t, 4> newShapeConstants;
newShapeConstants.reserve(memrefType.getRank());
unsigned dynamicDimPos = 0;
unsigned rank = memrefType.getRank();
for (unsigned dim = 0, e = rank; dim < e; ++dim) {
int64_t dimSize = memrefType.getDimSize(dim);
// If this is already static dimension, keep it.
if (!ShapedType::isDynamic(dimSize)) {
newShapeConstants.push_back(dimSize);
continue;
}
auto *defOp = viewOp.sizes()[dynamicDimPos].getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic shape dimension will be folded.
newShapeConstants.push_back(constantIndexOp.getValue());
} else {
// Dynamic shape dimension not folded; copy operand from old memref.
newShapeConstants.push_back(dimSize);
newOperands.push_back(viewOp.sizes()[dynamicDimPos]);
}
dynamicDimPos++;
}
// Create new memref type with constant folded dims.
MemRefType newMemRefType =
MemRefType::Builder(memrefType).setShape(newShapeConstants);
// Nothing new, don't fold.
if (newMemRefType == memrefType)
return failure();
// Create new ViewOp.
auto newViewOp = rewriter.create<ViewOp>(viewOp.getLoc(), newMemRefType,
viewOp.getOperand(0),
viewOp.byte_shift(), newOperands);
// Insert a cast so we have the same type as the old memref type.
rewriter.replaceOpWithNewOp<CastOp>(viewOp, newViewOp, viewOp.getType());
return success();
}
};
struct ViewOpMemrefCastFolder : public OpRewritePattern<ViewOp> {
using OpRewritePattern<ViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ViewOp viewOp,
PatternRewriter &rewriter) const override {
Value memrefOperand = viewOp.getOperand(0);
CastOp memrefCastOp = memrefOperand.getDefiningOp<CastOp>();
if (!memrefCastOp)
return failure();
Value allocOperand = memrefCastOp.getOperand();
AllocOp allocOp = allocOperand.getDefiningOp<AllocOp>();
if (!allocOp)
return failure();
rewriter.replaceOpWithNewOp<ViewOp>(viewOp, viewOp.getType(), allocOperand,
viewOp.byte_shift(), viewOp.sizes());
return success();
}
};
} // end anonymous namespace
void ViewOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context);
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/MemRef/IR/MemRefOps.cpp.inc"