* Add `DimOfIterArgFolder`. * Move existing cross-dialect canonicalization patterns to `LoopCanonicalization.cpp`. * Rename `SCFAffineOpCanonicalization` pass to `SCFForLoopCanonicalization`. * Expand documentaton of scf.for: The type of loop-carried variables may not change with iterations. (Not even the dynamic type.) Differential Revision: https://reviews.llvm.org/D108806
565 lines
24 KiB
C++
565 lines
24 KiB
C++
//===- LoopSpecialization.cpp - scf.parallel/SCR.for specialization -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Specializes parallel loops and for loops for easier unrolling and
|
|
// vectorization.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/SCF/Passes.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/SCF/Transforms.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
|
|
using namespace mlir;
|
|
using scf::ForOp;
|
|
using scf::ParallelOp;
|
|
|
|
/// Rewrite a parallel loop with bounds defined by an affine.min with a constant
|
|
/// into 2 loops after checking if the bounds are equal to that constant. This
|
|
/// is beneficial if the loop will almost always have the constant bound and
|
|
/// that version can be fully unrolled and vectorized.
|
|
static void specializeParallelLoopForUnrolling(ParallelOp op) {
|
|
SmallVector<int64_t, 2> constantIndices;
|
|
constantIndices.reserve(op.upperBound().size());
|
|
for (auto bound : op.upperBound()) {
|
|
auto minOp = bound.getDefiningOp<AffineMinOp>();
|
|
if (!minOp)
|
|
return;
|
|
int64_t minConstant = std::numeric_limits<int64_t>::max();
|
|
for (AffineExpr expr : minOp.map().getResults()) {
|
|
if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
|
|
minConstant = std::min(minConstant, constantIndex.getValue());
|
|
}
|
|
if (minConstant == std::numeric_limits<int64_t>::max())
|
|
return;
|
|
constantIndices.push_back(minConstant);
|
|
}
|
|
|
|
OpBuilder b(op);
|
|
BlockAndValueMapping map;
|
|
Value cond;
|
|
for (auto bound : llvm::zip(op.upperBound(), constantIndices)) {
|
|
Value constant = b.create<ConstantIndexOp>(op.getLoc(), std::get<1>(bound));
|
|
Value cmp = b.create<CmpIOp>(op.getLoc(), CmpIPredicate::eq,
|
|
std::get<0>(bound), constant);
|
|
cond = cond ? b.create<AndOp>(op.getLoc(), cond, cmp) : cmp;
|
|
map.map(std::get<0>(bound), constant);
|
|
}
|
|
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
|
|
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
|
|
ifOp.getElseBodyBuilder().clone(*op.getOperation());
|
|
op.erase();
|
|
}
|
|
|
|
/// Rewrite a for loop with bounds defined by an affine.min with a constant into
|
|
/// 2 loops after checking if the bounds are equal to that constant. This is
|
|
/// beneficial if the loop will almost always have the constant bound and that
|
|
/// version can be fully unrolled and vectorized.
|
|
static void specializeForLoopForUnrolling(ForOp op) {
|
|
auto bound = op.upperBound();
|
|
auto minOp = bound.getDefiningOp<AffineMinOp>();
|
|
if (!minOp)
|
|
return;
|
|
int64_t minConstant = std::numeric_limits<int64_t>::max();
|
|
for (AffineExpr expr : minOp.map().getResults()) {
|
|
if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
|
|
minConstant = std::min(minConstant, constantIndex.getValue());
|
|
}
|
|
if (minConstant == std::numeric_limits<int64_t>::max())
|
|
return;
|
|
|
|
OpBuilder b(op);
|
|
BlockAndValueMapping map;
|
|
Value constant = b.create<ConstantIndexOp>(op.getLoc(), minConstant);
|
|
Value cond =
|
|
b.create<CmpIOp>(op.getLoc(), CmpIPredicate::eq, bound, constant);
|
|
map.map(bound, constant);
|
|
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
|
|
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
|
|
ifOp.getElseBodyBuilder().clone(*op.getOperation());
|
|
op.erase();
|
|
}
|
|
|
|
/// Rewrite a for loop with bounds/step that potentially do not divide evenly
|
|
/// into a for loop where the step divides the iteration space evenly, followed
|
|
/// by an scf.if for the last (partial) iteration (if any).
|
|
///
|
|
/// This function rewrites the given scf.for loop in-place and creates a new
|
|
/// scf.if operation for the last iteration. It replaces all uses of the
|
|
/// unpeeled loop with the results of the newly generated scf.if.
|
|
///
|
|
/// The newly generated scf.if operation is returned via `ifOp`. The boundary
|
|
/// at which the loop is split (new upper bound) is returned via `splitBound`.
|
|
/// The return value indicates whether the loop was rewritten or not.
|
|
static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp, scf::IfOp &ifOp,
|
|
Value &splitBound) {
|
|
RewriterBase::InsertionGuard guard(b);
|
|
auto lbInt = getConstantIntValue(forOp.lowerBound());
|
|
auto ubInt = getConstantIntValue(forOp.upperBound());
|
|
auto stepInt = getConstantIntValue(forOp.step());
|
|
|
|
// No specialization necessary if step already divides upper bound evenly.
|
|
if (lbInt && ubInt && stepInt && (*ubInt - *lbInt) % *stepInt == 0)
|
|
return failure();
|
|
// No specialization necessary if step size is 1.
|
|
if (stepInt == static_cast<int64_t>(1))
|
|
return failure();
|
|
|
|
auto loc = forOp.getLoc();
|
|
AffineExpr sym0, sym1, sym2;
|
|
bindSymbols(b.getContext(), sym0, sym1, sym2);
|
|
// New upper bound: %ub - (%ub - %lb) mod %step
|
|
auto modMap = AffineMap::get(0, 3, {sym1 - ((sym1 - sym0) % sym2)});
|
|
b.setInsertionPoint(forOp);
|
|
splitBound = b.createOrFold<AffineApplyOp>(
|
|
loc, modMap,
|
|
ValueRange{forOp.lowerBound(), forOp.upperBound(), forOp.step()});
|
|
|
|
// Set new upper loop bound.
|
|
Value previousUb = forOp.upperBound();
|
|
b.updateRootInPlace(forOp,
|
|
[&]() { forOp.upperBoundMutable().assign(splitBound); });
|
|
b.setInsertionPointAfter(forOp);
|
|
|
|
// Do we need one more iteration?
|
|
Value hasMoreIter =
|
|
b.create<CmpIOp>(loc, CmpIPredicate::slt, splitBound, previousUb);
|
|
|
|
// Create IfOp for last iteration.
|
|
auto resultTypes = forOp.getResultTypes();
|
|
ifOp = b.create<scf::IfOp>(loc, resultTypes, hasMoreIter,
|
|
/*withElseRegion=*/!resultTypes.empty());
|
|
forOp.replaceAllUsesWith(ifOp->getResults());
|
|
|
|
// Build then case.
|
|
BlockAndValueMapping bvm;
|
|
bvm.map(forOp.region().getArgument(0), splitBound);
|
|
for (auto it : llvm::zip(forOp.getRegionIterArgs(), forOp->getResults())) {
|
|
bvm.map(std::get<0>(it), std::get<1>(it));
|
|
}
|
|
b.cloneRegionBefore(forOp.region(), ifOp.thenRegion(),
|
|
ifOp.thenRegion().begin(), bvm);
|
|
// Build else case.
|
|
if (!resultTypes.empty())
|
|
ifOp.getElseBodyBuilder(b.getListener())
|
|
.create<scf::YieldOp>(loc, forOp->getResults());
|
|
|
|
return success();
|
|
}
|
|
|
|
static void unpackOptionalValues(ArrayRef<Optional<Value>> source,
|
|
SmallVector<Value> &target) {
|
|
target = llvm::to_vector<4>(llvm::map_range(source, [](Optional<Value> val) {
|
|
return val.hasValue() ? *val : Value();
|
|
}));
|
|
}
|
|
|
|
/// Bound an identifier `pos` in a given FlatAffineValueConstraints with
|
|
/// constraints drawn from an affine map. Before adding the constraint, the
|
|
/// dimensions/symbols of the affine map are aligned with `constraints`.
|
|
/// `operands` are the SSA Value operands used with the affine map.
|
|
/// Note: This function adds a new symbol column to the `constraints` for each
|
|
/// dimension/symbol that exists in the affine map but not in `constraints`.
|
|
static LogicalResult alignAndAddBound(FlatAffineValueConstraints &constraints,
|
|
FlatAffineConstraints::BoundType type,
|
|
unsigned pos, AffineMap map,
|
|
ValueRange operands) {
|
|
SmallVector<Value> dims, syms, newSyms;
|
|
unpackOptionalValues(constraints.getMaybeDimValues(), dims);
|
|
unpackOptionalValues(constraints.getMaybeSymbolValues(), syms);
|
|
|
|
AffineMap alignedMap =
|
|
alignAffineMapWithValues(map, operands, dims, syms, &newSyms);
|
|
for (unsigned i = syms.size(); i < newSyms.size(); ++i)
|
|
constraints.appendSymbolId(newSyms[i]);
|
|
return constraints.addBound(type, pos, alignedMap);
|
|
}
|
|
|
|
/// This function tries to canonicalize min/max operations by proving that their
|
|
/// value is bounded by the same lower and upper bound. In that case, the
|
|
/// operation can be folded away.
|
|
///
|
|
/// Bounds are computed by FlatAffineValueConstraints. Invariants required for
|
|
/// finding/proving bounds should be supplied via `constraints`.
|
|
///
|
|
/// 1. Add dimensions for `op` and `opBound` (lower or upper bound of `op`).
|
|
/// 2. Compute an upper bound of `op` (in case of `isMin`) or a lower bound (in
|
|
/// case of `!isMin`) and bind it to `opBound`. SSA values that are used in
|
|
/// `op` but are not part of `constraints`, are added as extra symbols.
|
|
/// 3. For each result of `op`: Add result as a dimension `r_i`. Prove that:
|
|
/// * If `isMin`: r_i >= opBound
|
|
/// * If `isMax`: r_i <= opBound
|
|
/// If this is the case, ub(op) == lb(op).
|
|
/// 4. Replace `op` with `opBound`.
|
|
///
|
|
/// In summary, the following constraints are added throughout this function.
|
|
/// Note: `invar` are dimensions added by the caller to express the invariants.
|
|
/// (Showing only the case where `isMin`.)
|
|
///
|
|
/// invar | op | opBound | r_i | extra syms... | const | eq/ineq
|
|
/// ------+-------+---------+-----+---------------+-------+-------------------
|
|
/// (various eq./ineq. constraining `invar`, added by the caller)
|
|
/// ... | 0 | 0 | 0 | 0 | ... | ...
|
|
/// ------+-------+---------+-----+---------------+-------+-------------------
|
|
/// (various ineq. constraining `op` in terms of `op` operands (`invar` and
|
|
/// extra `op` operands "extra syms" that are not in `invar`)).
|
|
/// ... | -1 | 0 | 0 | ... | ... | >= 0
|
|
/// ------+-------+---------+-----+---------------+-------+-------------------
|
|
/// (set `opBound` to `op` upper bound in terms of `invar` and "extra syms")
|
|
/// ... | 0 | -1 | 0 | ... | ... | = 0
|
|
/// ------+-------+---------+-----+---------------+-------+-------------------
|
|
/// (for each `op` map result r_i: set r_i to corresponding map result,
|
|
/// prove that r_i >= minOpUb via contradiction)
|
|
/// ... | 0 | 0 | -1 | ... | ... | = 0
|
|
/// 0 | 0 | 1 | -1 | 0 | -1 | >= 0
|
|
///
|
|
static LogicalResult
|
|
canonicalizeMinMaxOp(RewriterBase &rewriter, Operation *op, AffineMap map,
|
|
ValueRange operands, bool isMin,
|
|
FlatAffineValueConstraints constraints) {
|
|
RewriterBase::InsertionGuard guard(rewriter);
|
|
unsigned numResults = map.getNumResults();
|
|
|
|
// Add a few extra dimensions.
|
|
unsigned dimOp = constraints.appendDimId(); // `op`
|
|
unsigned dimOpBound = constraints.appendDimId(); // `op` lower/upper bound
|
|
unsigned resultDimStart = constraints.appendDimId(/*num=*/numResults);
|
|
|
|
// Add an inequality for each result expr_i of map:
|
|
// isMin: op <= expr_i, !isMin: op >= expr_i
|
|
auto boundType =
|
|
isMin ? FlatAffineConstraints::UB : FlatAffineConstraints::LB;
|
|
if (failed(alignAndAddBound(constraints, boundType, dimOp, map, operands)))
|
|
return failure();
|
|
|
|
// Try to compute a lower/upper bound for op, expressed in terms of the other
|
|
// `dims` and extra symbols.
|
|
SmallVector<AffineMap> opLb(1), opUb(1);
|
|
constraints.getSliceBounds(dimOp, 1, rewriter.getContext(), &opLb, &opUb);
|
|
AffineMap boundMap = isMin ? opUb[0] : opLb[0];
|
|
// TODO: `getSliceBounds` may return multiple bounds at the moment. This is
|
|
// a TODO of `getSliceBounds` and not handled here.
|
|
if (!boundMap || boundMap.getNumResults() != 1)
|
|
return failure(); // No or multiple bounds found.
|
|
|
|
// Add an equality: Set dimOpBound to computed bound.
|
|
// Add back dimension for op. (Was removed by `getSliceBounds`.)
|
|
AffineMap alignedBoundMap = boundMap.shiftDims(/*shift=*/1, /*offset=*/dimOp);
|
|
if (failed(constraints.addBound(FlatAffineConstraints::EQ, dimOpBound,
|
|
alignedBoundMap)))
|
|
return failure();
|
|
|
|
// If the constraint system is empty, there is an inconsistency. (E.g., this
|
|
// can happen if loop lb > ub.)
|
|
if (constraints.isEmpty())
|
|
return failure();
|
|
|
|
// In the case of `isMin` (`!isMin` is inversed):
|
|
// Prove that each result of `map` has a lower bound that is equal to (or
|
|
// greater than) the upper bound of `op` (`dimOpBound`). In that case, `op`
|
|
// can be replaced with the bound. I.e., prove that for each result
|
|
// expr_i (represented by dimension r_i):
|
|
//
|
|
// r_i >= opBound
|
|
//
|
|
// To prove this inequality, add its negation to the constraint set and prove
|
|
// that the constraint set is empty.
|
|
for (unsigned i = resultDimStart; i < resultDimStart + numResults; ++i) {
|
|
FlatAffineValueConstraints newConstr(constraints);
|
|
|
|
// Add an equality: r_i = expr_i
|
|
// Note: These equalities could have been added earlier and used to express
|
|
// minOp <= expr_i. However, then we run the risk that `getSliceBounds`
|
|
// computes minOpUb in terms of r_i dims, which is not desired.
|
|
if (failed(alignAndAddBound(newConstr, FlatAffineConstraints::EQ, i,
|
|
map.getSubMap({i - resultDimStart}), operands)))
|
|
return failure();
|
|
|
|
// If `isMin`: Add inequality: r_i < opBound
|
|
// equiv.: opBound - r_i - 1 >= 0
|
|
// If `!isMin`: Add inequality: r_i > opBound
|
|
// equiv.: -opBound + r_i - 1 >= 0
|
|
SmallVector<int64_t> ineq(newConstr.getNumCols(), 0);
|
|
ineq[dimOpBound] = isMin ? 1 : -1;
|
|
ineq[i] = isMin ? -1 : 1;
|
|
ineq[newConstr.getNumCols() - 1] = -1;
|
|
newConstr.addInequality(ineq);
|
|
if (!newConstr.isEmpty())
|
|
return failure();
|
|
}
|
|
|
|
// Lower and upper bound of `op` are equal. Replace `minOp` with its bound.
|
|
AffineMap newMap = alignedBoundMap;
|
|
SmallVector<Value> newOperands;
|
|
unpackOptionalValues(constraints.getMaybeDimAndSymbolValues(), newOperands);
|
|
mlir::canonicalizeMapAndOperands(&newMap, &newOperands);
|
|
rewriter.setInsertionPoint(op);
|
|
rewriter.replaceOpWithNewOp<AffineApplyOp>(op, newMap, newOperands);
|
|
return success();
|
|
}
|
|
|
|
/// Try to simplify a min/max operation `op` after loop peeling. This function
|
|
/// can simplify min/max operations such as (ub is the previous upper bound of
|
|
/// the unpeeled loop):
|
|
/// ```
|
|
/// #map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
|
|
/// %r = affine.min #affine.min #map(%iv)[%step, %ub]
|
|
/// ```
|
|
/// and rewrites them into (in the case the peeled loop):
|
|
/// ```
|
|
/// %r = %step
|
|
/// ```
|
|
/// min/max operations inside the generated scf.if operation are rewritten in
|
|
/// a similar way.
|
|
///
|
|
/// This function builds up a set of constraints, capable of proving that:
|
|
/// * Inside the peeled loop: min(step, ub - iv) == step
|
|
/// * Inside the scf.if operation: min(step, ub - iv) == ub - iv
|
|
///
|
|
/// Returns `success` if the given operation was replaced by a new operation;
|
|
/// `failure` otherwise.
|
|
///
|
|
/// Note: `ub` is the previous upper bound of the loop (before peeling).
|
|
/// `insideLoop` must be true for min/max ops inside the loop and false for
|
|
/// affine.min ops inside the scf.for op. For an explanation of the other
|
|
/// parameters, see comment of `canonicalizeMinMaxOpInLoop`.
|
|
static LogicalResult rewritePeeledMinMaxOp(RewriterBase &rewriter,
|
|
Operation *op, AffineMap map,
|
|
ValueRange operands, bool isMin,
|
|
Value iv, Value ub, Value step,
|
|
bool insideLoop) {
|
|
FlatAffineValueConstraints constraints;
|
|
constraints.appendDimId({iv, ub, step});
|
|
if (auto constUb = getConstantIntValue(ub))
|
|
constraints.addBound(FlatAffineConstraints::EQ, 1, *constUb);
|
|
if (auto constStep = getConstantIntValue(step))
|
|
constraints.addBound(FlatAffineConstraints::EQ, 2, *constStep);
|
|
|
|
// Add loop peeling invariant. This is the main piece of knowledge that
|
|
// enables AffineMinOp simplification.
|
|
if (insideLoop) {
|
|
// ub - iv >= step (equiv.: -iv + ub - step + 0 >= 0)
|
|
// Intuitively: Inside the peeled loop, every iteration is a "full"
|
|
// iteration, i.e., step divides the iteration space `ub - lb` evenly.
|
|
constraints.addInequality({-1, 1, -1, 0});
|
|
} else {
|
|
// ub - iv < step (equiv.: iv + -ub + step - 1 >= 0)
|
|
// Intuitively: `iv` is the split bound here, i.e., the iteration variable
|
|
// value of the very last iteration (in the unpeeled loop). At that point,
|
|
// there are less than `step` elements remaining. (Otherwise, the peeled
|
|
// loop would run for at least one more iteration.)
|
|
constraints.addInequality({1, -1, 1, -1});
|
|
}
|
|
|
|
return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints);
|
|
}
|
|
|
|
template <typename OpTy, bool IsMin>
|
|
static void
|
|
rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp, scf::IfOp ifOp,
|
|
Value iv, Value splitBound, Value ub, Value step) {
|
|
forOp.walk([&](OpTy affineOp) {
|
|
(void)rewritePeeledMinMaxOp(rewriter, affineOp, affineOp.getAffineMap(),
|
|
affineOp.operands(), IsMin, iv, ub, step,
|
|
/*insideLoop=*/true);
|
|
});
|
|
ifOp.walk([&](OpTy affineOp) {
|
|
(void)rewritePeeledMinMaxOp(rewriter, affineOp, affineOp.getAffineMap(),
|
|
affineOp.operands(), IsMin, splitBound, ub,
|
|
step, /*insideLoop=*/false);
|
|
});
|
|
}
|
|
|
|
LogicalResult mlir::scf::peelAndCanonicalizeForLoop(RewriterBase &rewriter,
|
|
ForOp forOp,
|
|
scf::IfOp &ifOp) {
|
|
Value ub = forOp.upperBound();
|
|
Value splitBound;
|
|
if (failed(peelForLoop(rewriter, forOp, ifOp, splitBound)))
|
|
return failure();
|
|
|
|
// Rewrite affine.min and affine.max ops.
|
|
Value iv = forOp.getInductionVar(), step = forOp.step();
|
|
rewriteAffineOpAfterPeeling<AffineMinOp, /*IsMin=*/true>(
|
|
rewriter, forOp, ifOp, iv, splitBound, ub, step);
|
|
rewriteAffineOpAfterPeeling<AffineMaxOp, /*IsMin=*/false>(
|
|
rewriter, forOp, ifOp, iv, splitBound, ub, step);
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Canonicalize min/max operations in the context of for loops with a known
|
|
/// range. Call `canonicalizeMinMaxOp` and add the following constraints to
|
|
/// the constraint system (along with the missing dimensions):
|
|
///
|
|
/// * iv >= lb
|
|
/// * iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
|
|
///
|
|
/// Note: Due to limitations of FlatAffineConstraints, only constant step sizes
|
|
/// are currently supported.
|
|
LogicalResult
|
|
mlir::scf::canonicalizeMinMaxOpInLoop(RewriterBase &rewriter, Operation *op,
|
|
AffineMap map, ValueRange operands,
|
|
bool isMin, LoopMatcherFn loopMatcher) {
|
|
FlatAffineValueConstraints constraints;
|
|
DenseSet<Value> allIvs;
|
|
|
|
// Find all iteration variables among `minOp`'s operands add constrain them.
|
|
for (Value operand : operands) {
|
|
// Skip duplicate ivs.
|
|
if (llvm::find(allIvs, operand) != allIvs.end())
|
|
continue;
|
|
|
|
// If `operand` is an iteration variable: Find corresponding loop
|
|
// bounds and step.
|
|
Value iv = operand;
|
|
Value lb, ub, step;
|
|
if (failed(loopMatcher(operand, lb, ub, step)))
|
|
continue;
|
|
allIvs.insert(iv);
|
|
|
|
// FlatAffineConstraints does not support semi-affine expressions.
|
|
// Therefore, only constant step values are supported.
|
|
auto stepInt = getConstantIntValue(step);
|
|
if (!stepInt)
|
|
continue;
|
|
|
|
unsigned dimIv = constraints.appendDimId(iv);
|
|
unsigned dimLb = constraints.appendDimId(lb);
|
|
unsigned dimUb = constraints.appendDimId(ub);
|
|
|
|
// If loop lower/upper bounds are constant: Add EQ constraint.
|
|
Optional<int64_t> lbInt = getConstantIntValue(lb);
|
|
Optional<int64_t> ubInt = getConstantIntValue(ub);
|
|
if (lbInt)
|
|
constraints.addBound(FlatAffineConstraints::EQ, dimLb, *lbInt);
|
|
if (ubInt)
|
|
constraints.addBound(FlatAffineConstraints::EQ, dimUb, *ubInt);
|
|
|
|
// iv >= lb (equiv.: iv - lb >= 0)
|
|
SmallVector<int64_t> ineqLb(constraints.getNumCols(), 0);
|
|
ineqLb[dimIv] = 1;
|
|
ineqLb[dimLb] = -1;
|
|
constraints.addInequality(ineqLb);
|
|
|
|
// iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
|
|
AffineExpr exprLb = lbInt ? rewriter.getAffineConstantExpr(*lbInt)
|
|
: rewriter.getAffineDimExpr(dimLb);
|
|
AffineExpr exprUb = ubInt ? rewriter.getAffineConstantExpr(*ubInt)
|
|
: rewriter.getAffineDimExpr(dimUb);
|
|
AffineExpr ivUb =
|
|
exprLb + 1 + (*stepInt * ((exprUb - exprLb - 1).floorDiv(*stepInt)));
|
|
auto map = AffineMap::get(
|
|
/*dimCount=*/constraints.getNumDimIds(),
|
|
/*symbolCount=*/constraints.getNumSymbolIds(), /*result=*/ivUb);
|
|
|
|
if (failed(constraints.addBound(FlatAffineConstraints::UB, dimIv, map)))
|
|
return failure();
|
|
}
|
|
|
|
return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints);
|
|
}
|
|
|
|
static constexpr char kPeeledLoopLabel[] = "__peeled_loop__";
|
|
static constexpr char kPartialIterationLabel[] = "__partial_iteration__";
|
|
|
|
namespace {
|
|
struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> {
|
|
ForLoopPeelingPattern(MLIRContext *ctx, bool skipPartial)
|
|
: OpRewritePattern<ForOp>(ctx), skipPartial(skipPartial) {}
|
|
|
|
LogicalResult matchAndRewrite(ForOp forOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Do not peel already peeled loops.
|
|
if (forOp->hasAttr(kPeeledLoopLabel))
|
|
return failure();
|
|
if (skipPartial) {
|
|
// No peeling of loops inside the partial iteration (scf.if) of another
|
|
// peeled loop.
|
|
Operation *op = forOp.getOperation();
|
|
while ((op = op->getParentOfType<scf::IfOp>())) {
|
|
if (op->hasAttr(kPartialIterationLabel))
|
|
return failure();
|
|
}
|
|
}
|
|
// Apply loop peeling.
|
|
scf::IfOp ifOp;
|
|
if (failed(peelAndCanonicalizeForLoop(rewriter, forOp, ifOp)))
|
|
return failure();
|
|
// Apply label, so that the same loop is not rewritten a second time.
|
|
rewriter.updateRootInPlace(forOp, [&]() {
|
|
forOp->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
|
|
});
|
|
ifOp->setAttr(kPartialIterationLabel, rewriter.getUnitAttr());
|
|
return success();
|
|
}
|
|
|
|
/// If set to true, loops inside partial iterations of another peeled loop
|
|
/// are not peeled. This reduces the size of the generated code. Partial
|
|
/// iterations are not usually performance critical.
|
|
/// Note: Takes into account the entire chain of parent operations, not just
|
|
/// the direct parent.
|
|
bool skipPartial;
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
struct ParallelLoopSpecialization
|
|
: public SCFParallelLoopSpecializationBase<ParallelLoopSpecialization> {
|
|
void runOnFunction() override {
|
|
getFunction().walk(
|
|
[](ParallelOp op) { specializeParallelLoopForUnrolling(op); });
|
|
}
|
|
};
|
|
|
|
struct ForLoopSpecialization
|
|
: public SCFForLoopSpecializationBase<ForLoopSpecialization> {
|
|
void runOnFunction() override {
|
|
getFunction().walk([](ForOp op) { specializeForLoopForUnrolling(op); });
|
|
}
|
|
};
|
|
|
|
struct ForLoopPeeling : public SCFForLoopPeelingBase<ForLoopPeeling> {
|
|
void runOnFunction() override {
|
|
FuncOp funcOp = getFunction();
|
|
MLIRContext *ctx = funcOp.getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
patterns.add<ForLoopPeelingPattern>(ctx, skipPartial);
|
|
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
|
|
|
|
// Drop the markers.
|
|
funcOp.walk([](Operation *op) {
|
|
op->removeAttr(kPeeledLoopLabel);
|
|
op->removeAttr(kPartialIterationLabel);
|
|
});
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() {
|
|
return std::make_unique<ParallelLoopSpecialization>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createForLoopSpecializationPass() {
|
|
return std::make_unique<ForLoopSpecialization>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createForLoopPeelingPass() {
|
|
return std::make_unique<ForLoopPeeling>();
|
|
}
|