Files
clang-p2996/mlir/lib/Dialect/Shape/Transforms/Bufferize.cpp
Matthias Springer 66f878cee9 [mlir][NFC] Remove Standard dialect dependency on MemRef dialect
* Remove dependency: Standard --> MemRef
* Add dependencies: GPUToNVVMTransforms --> MemRef, Linalg --> MemRef, MemRef --> Tensor
* Note: The `subtensor_insert_propagate_dest_cast` test case in MemRef/canonicalize.mlir will be moved to Tensor/canonicalize.mlir in a subsequent commit, which moves over the remaining Tensor ops from the Standard dialect to the Tensor dialect.

Differential Revision: https://reviews.llvm.org/D104506
2021-06-21 17:55:23 +09:00

40 lines
1.3 KiB
C++

//====----- Bufferize.cpp - Bufferization of shape ops ---------*- C++-*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/Bufferize.h"
#include "PassDetail.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Shape/Transforms/Passes.h"
#include "mlir/Pass/Pass.h"
using namespace mlir;
namespace {
struct ShapeBufferizePass : public ShapeBufferizeBase<ShapeBufferizePass> {
void runOnFunction() override {
MLIRContext &ctx = getContext();
RewritePatternSet patterns(&ctx);
BufferizeTypeConverter typeConverter;
ConversionTarget target(ctx);
populateBufferizeMaterializationLegality(target);
populateShapeStructuralTypeConversionsAndLegality(typeConverter, patterns,
target);
if (failed(
applyPartialConversion(getFunction(), target, std::move(patterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<FunctionPass> mlir::createShapeBufferizePass() {
return std::make_unique<ShapeBufferizePass>();
}