Files
clang-p2996/mlir/lib/Dialect/Vector/VectorTransferOpTransforms.cpp
thomasraoux 3fc0fbefc8 [mlir][vector] Move transferOp on tensor opt to folder/canonicalization
Move the existing optimization for transfer op on tensor to folder and
canonicalization. This handles the write after write case and read after write
and also add write after read case.

Differential Revision: https://reviews.llvm.org/D100597
2021-04-16 08:13:10 -07:00

229 lines
9.0 KiB
C++

//===- VectorTransferOpTransforms.cpp - transfer op transforms ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with optimizing transfer_read and
// transfer_write ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/Dialect/Vector/VectorTransforms.h"
#include "mlir/Dialect/Vector/VectorUtils.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dominance.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "vector-transfer-opt"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
using namespace mlir;
/// Return the ancestor op in the region or nullptr if the region is not
/// an ancestor of the op.
static Operation *findAncestorOpInRegion(Region *region, Operation *op) {
for (; op != nullptr && op->getParentRegion() != region;
op = op->getParentOp())
;
return op;
}
namespace {
class TransferOptimization {
public:
TransferOptimization(FuncOp func) : dominators(func), postDominators(func) {}
void deadStoreOp(vector::TransferWriteOp);
void storeToLoadForwarding(vector::TransferReadOp);
void removeDeadOp() {
for (Operation *op : opToErase)
op->erase();
opToErase.clear();
}
private:
bool isReachable(Operation *start, Operation *dest);
DominanceInfo dominators;
PostDominanceInfo postDominators;
std::vector<Operation *> opToErase;
};
/// Return true if there is a path from start operation to dest operation,
/// otherwise return false. The operations have to be in the same region.
bool TransferOptimization::isReachable(Operation *start, Operation *dest) {
assert(start->getParentRegion() == dest->getParentRegion() &&
"This function only works for ops i the same region");
// Simple case where the start op dominate the destination.
if (dominators.dominates(start, dest))
return true;
Block *startBlock = start->getBlock();
Block *destBlock = dest->getBlock();
SmallVector<Block *, 32> worklist(startBlock->succ_begin(),
startBlock->succ_end());
SmallPtrSet<Block *, 32> visited;
while (!worklist.empty()) {
Block *bb = worklist.pop_back_val();
if (!visited.insert(bb).second)
continue;
if (dominators.dominates(bb, destBlock))
return true;
worklist.append(bb->succ_begin(), bb->succ_end());
}
return false;
}
/// For transfer_write to overwrite fully another transfer_write must:
/// 1. Access the same memref with the same indices and vector type.
/// 2. Post-dominate the other transfer_write operation.
/// If several candidates are available, one must be post-dominated by all the
/// others since they are all post-dominating the same transfer_write. We only
/// consider the transfer_write post-dominated by all the other candidates as
/// this will be the first transfer_write executed after the potentially dead
/// transfer_write.
/// If we found such an overwriting transfer_write we know that the original
/// transfer_write is dead if all reads that can be reached from the potentially
/// dead transfer_write are dominated by the overwriting transfer_write.
void TransferOptimization::deadStoreOp(vector::TransferWriteOp write) {
LLVM_DEBUG(DBGS() << "Candidate for dead store: " << *write.getOperation()
<< "\n");
llvm::SmallVector<Operation *, 8> reads;
Operation *firstOverwriteCandidate = nullptr;
for (auto *user : write.source().getUsers()) {
if (user == write.getOperation())
continue;
if (auto nextWrite = dyn_cast<vector::TransferWriteOp>(user)) {
// Check candidate that can override the store.
if (checkSameValueWAW(nextWrite, write) &&
postDominators.postDominates(nextWrite, write)) {
if (firstOverwriteCandidate == nullptr ||
postDominators.postDominates(firstOverwriteCandidate, nextWrite))
firstOverwriteCandidate = nextWrite;
else
assert(
postDominators.postDominates(nextWrite, firstOverwriteCandidate));
}
} else {
if (auto read = dyn_cast<vector::TransferReadOp>(user)) {
// Don't need to consider disjoint reads.
if (isDisjointTransferSet(
cast<VectorTransferOpInterface>(write.getOperation()),
cast<VectorTransferOpInterface>(read.getOperation())))
continue;
}
reads.push_back(user);
}
}
if (firstOverwriteCandidate == nullptr)
return;
Region *topRegion = firstOverwriteCandidate->getParentRegion();
Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
assert(writeAncestor &&
"write op should be recursively part of the top region");
for (Operation *read : reads) {
Operation *readAncestor = findAncestorOpInRegion(topRegion, read);
// TODO: if the read and write have the same ancestor we could recurse in
// the region to know if the read is reachable with more precision.
if (readAncestor == nullptr || !isReachable(writeAncestor, readAncestor))
continue;
if (!dominators.dominates(firstOverwriteCandidate, read)) {
LLVM_DEBUG(DBGS() << "Store may not be dead due to op: " << *read
<< "\n");
return;
}
}
LLVM_DEBUG(DBGS() << "Found dead store: " << *write.getOperation()
<< " overwritten by: " << *firstOverwriteCandidate << "\n");
opToErase.push_back(write.getOperation());
}
/// A transfer_write candidate to storeToLoad forwarding must:
/// 1. Access the same memref with the same indices and vector type as the
/// transfer_read.
/// 2. Dominate the transfer_read operation.
/// If several candidates are available, one must be dominated by all the others
/// since they are all dominating the same transfer_read. We only consider the
/// transfer_write dominated by all the other candidates as this will be the
/// last transfer_write executed before the transfer_read.
/// If we found such a candidate we can do the forwarding if all the other
/// potentially aliasing ops that may reach the transfer_read are post-dominated
/// by the transfer_write.
void TransferOptimization::storeToLoadForwarding(vector::TransferReadOp read) {
if (read.hasOutOfBoundsDim())
return;
LLVM_DEBUG(DBGS() << "Candidate for Forwarding: " << *read.getOperation()
<< "\n");
SmallVector<Operation *, 8> blockingWrites;
vector::TransferWriteOp lastwrite = nullptr;
for (Operation *user : read.source().getUsers()) {
if (isa<vector::TransferReadOp>(user))
continue;
if (auto write = dyn_cast<vector::TransferWriteOp>(user)) {
// If there is a write, but we can prove that it is disjoint we can ignore
// the write.
if (isDisjointTransferSet(
cast<VectorTransferOpInterface>(write.getOperation()),
cast<VectorTransferOpInterface>(read.getOperation())))
continue;
if (dominators.dominates(write, read) && checkSameValueRAW(write, read)) {
if (lastwrite == nullptr || dominators.dominates(lastwrite, write))
lastwrite = write;
else
assert(dominators.dominates(write, lastwrite));
continue;
}
}
blockingWrites.push_back(user);
}
if (lastwrite == nullptr)
return;
Region *topRegion = lastwrite->getParentRegion();
Operation *readAncestor = findAncestorOpInRegion(topRegion, read);
assert(readAncestor &&
"read op should be recursively part of the top region");
for (Operation *write : blockingWrites) {
Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
// TODO: if the store and read have the same ancestor we could recurse in
// the region to know if the read is reachable with more precision.
if (writeAncestor == nullptr || !isReachable(writeAncestor, readAncestor))
continue;
if (!postDominators.postDominates(lastwrite, write)) {
LLVM_DEBUG(DBGS() << "Fail to do write to read forwarding due to op: "
<< *write << "\n");
return;
}
}
LLVM_DEBUG(DBGS() << "Forward value from " << *lastwrite.getOperation()
<< " to: " << *read.getOperation() << "\n");
read.replaceAllUsesWith(lastwrite.vector());
opToErase.push_back(read.getOperation());
}
} // namespace
void mlir::vector::transferOpflowOpt(FuncOp func) {
TransferOptimization opt(func);
// Run store to load forwarding first since it can expose more dead store
// opportunity.
func.walk([&](vector::TransferReadOp read) {
if (read.getShapedType().isa<MemRefType>())
opt.storeToLoadForwarding(read);
});
opt.removeDeadOp();
func.walk([&](vector::TransferWriteOp write) {
if (write.getShapedType().isa<MemRefType>())
opt.deadStoreOp(write);
});
opt.removeDeadOp();
}