The patch changes the pretty printed FillOp operand order from output, value to value, output. The change is a follow up to https://reviews.llvm.org/D104121 that passes the fill value using a scalar input instead of the former capture semantics. Differential Revision: https://reviews.llvm.org/D104356
392 lines
22 KiB
MLIR
392 lines
22 KiB
MLIR
// RUN: mlir-opt %s -test-vector-transfer-full-partial-split -split-input-file | FileCheck %s
|
|
// RUN: mlir-opt %s -test-vector-transfer-full-partial-split=use-linalg-copy -split-input-file | FileCheck %s --check-prefix=LINALG
|
|
|
|
// CHECK-DAG: #[[$map_p4:.*]] = affine_map<()[s0] -> (s0 + 4)>
|
|
// CHECK-DAG: #[[$map_p8:.*]] = affine_map<()[s0] -> (s0 + 8)>
|
|
// CHECK-DAG: #[[$map_2d_stride_1:.*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)>
|
|
|
|
// LINALG-DAG: #[[$map_p4:.*]] = affine_map<()[s0] -> (s0 + 4)>
|
|
// LINALG-DAG: #[[$map_p8:.*]] = affine_map<()[s0] -> (s0 + 8)>
|
|
// LINALG-DAG: #[[$map_2d_stride_1:.*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)>
|
|
// LINALG-DAG: #[[$map_2d_stride_8x1:.*]] = affine_map<(d0, d1)[s0] -> (d0 * 8 + s0 + d1)>
|
|
// LINALG-DAG: #[[$bounds_map_4:.*]] = affine_map<(d0, d1, d2) -> (d0 - d1, 4)>
|
|
// LINALG-DAG: #[[$bounds_map_8:.*]] = affine_map<(d0, d1, d2) -> (d0 - d1, 8)>
|
|
|
|
// CHECK-LABEL: split_vector_transfer_read_2d(
|
|
// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref
|
|
// CHECK-SAME: %[[i:[a-zA-Z0-9]*]]: index
|
|
// CHECK-SAME: %[[j:[a-zA-Z0-9]*]]: index
|
|
|
|
// LINALG-LABEL: split_vector_transfer_read_2d(
|
|
// LINALG-SAME: %[[A:[a-zA-Z0-9]*]]: memref
|
|
// LINALG-SAME: %[[i:[a-zA-Z0-9]*]]: index
|
|
// LINALG-SAME: %[[j:[a-zA-Z0-9]*]]: index
|
|
func @split_vector_transfer_read_2d(%A: memref<?x8xf32>, %i: index, %j: index) -> vector<4x8xf32> {
|
|
%c0 = constant 0 : index
|
|
%f0 = constant 0.0 : f32
|
|
|
|
// CHECK-DAG: %[[c8:.*]] = constant 8 : index
|
|
// CHECK-DAG: %[[c0:.*]] = constant 0 : index
|
|
// alloca for boundary full tile
|
|
// CHECK: %[[alloc:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// %i + 4 <= dim(%A, 0)
|
|
// CHECK: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]]
|
|
// CHECK: %[[d0:.*]] = memref.dim %[[A]], %[[c0]] : memref<?x8xf32>
|
|
// CHECK: %[[cmp0:.*]] = cmpi sle, %[[idx0]], %[[d0]] : index
|
|
// %j + 8 <= dim(%A, 1)
|
|
// CHECK: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]]
|
|
// CHECK: %[[cmp1:.*]] = cmpi sle, %[[idx1]], %[[c8]] : index
|
|
// are both conds true
|
|
// CHECK: %[[cond:.*]] = and %[[cmp0]], %[[cmp1]] : i1
|
|
// CHECK: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref<?x8xf32>, index, index) {
|
|
// inBounds, just yield %A
|
|
// CHECK: scf.yield %[[A]], %[[i]], %[[j]] : memref<?x8xf32>, index, index
|
|
// CHECK: } else {
|
|
// slow path, fill tmp alloc and yield a memref_casted version of it
|
|
// CHECK: %[[slow:.*]] = vector.transfer_read %[[A]][%[[i]], %[[j]]], %cst :
|
|
// CHECK-SAME: memref<?x8xf32>, vector<4x8xf32>
|
|
// CHECK: %[[cast_alloc:.*]] = vector.type_cast %[[alloc]] :
|
|
// CHECK-SAME: memref<4x8xf32> to memref<vector<4x8xf32>>
|
|
// CHECK: store %[[slow]], %[[cast_alloc]][] : memref<vector<4x8xf32>>
|
|
// CHECK: %[[yielded:.*]] = memref.cast %[[alloc]] :
|
|
// CHECK-SAME: memref<4x8xf32> to memref<?x8xf32>
|
|
// CHECK: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
|
|
// CHECK-SAME: memref<?x8xf32>, index, index
|
|
// CHECK: }
|
|
// CHECK: %[[res:.*]] = vector.transfer_read %[[ifres]]#0[%[[ifres]]#1, %[[ifres]]#2], %cst
|
|
// CHECK_SAME: {in_bounds = [true, true]} : memref<?x8xf32>, vector<4x8xf32>
|
|
|
|
// LINALG-DAG: %[[c0:.*]] = constant 0 : index
|
|
// LINALG-DAG: %[[c4:.*]] = constant 4 : index
|
|
// LINALG-DAG: %[[c8:.*]] = constant 8 : index
|
|
// alloca for boundary full tile
|
|
// LINALG: %[[alloc:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// %i + 4 <= dim(%A, 0)
|
|
// LINALG: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]]
|
|
// LINALG: %[[d0:.*]] = memref.dim %[[A]], %[[c0]] : memref<?x8xf32>
|
|
// LINALG: %[[cmp0:.*]] = cmpi sle, %[[idx0]], %[[d0]] : index
|
|
// %j + 8 <= dim(%A, 1)
|
|
// LINALG: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]]
|
|
// LINALG: %[[cmp1:.*]] = cmpi sle, %[[idx1]], %[[c8]] : index
|
|
// are both conds true
|
|
// LINALG: %[[cond:.*]] = and %[[cmp0]], %[[cmp1]] : i1
|
|
// LINALG: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref<?x8xf32>, index, index) {
|
|
// inBounds, just yield %A
|
|
// LINALG: scf.yield %[[A]], %[[i]], %[[j]] : memref<?x8xf32>, index, index
|
|
// LINALG: } else {
|
|
// slow path, fill tmp alloc and yield a memref_casted version of it
|
|
// LINALG: linalg.fill(%cst, %[[alloc]]) : f32, memref<4x8xf32>
|
|
// LINALG: %[[d0:.*]] = memref.dim %[[A]], %[[c0]] : memref<?x8xf32>
|
|
// LINALG: %[[sv0:.*]] = affine.min #[[$bounds_map_4]](%[[d0]], %[[i]], %[[c4]])
|
|
// LINALG: %[[sv1:.*]] = affine.min #[[$bounds_map_8]](%[[c8]], %[[j]], %[[c8]])
|
|
// LINALG: %[[sv:.*]] = memref.subview %[[A]][%[[i]], %[[j]]] [%[[sv0]], %[[sv1]]] [1, 1]
|
|
// LINALG-SAME: memref<?x8xf32> to memref<?x?xf32, #[[$map_2d_stride_8x1]]>
|
|
// LINALG: linalg.copy(%[[sv]], %[[alloc]]) : memref<?x?xf32, #[[$map_2d_stride_8x1]]>, memref<4x8xf32>
|
|
// LINALG: %[[yielded:.*]] = memref.cast %[[alloc]] :
|
|
// LINALG-SAME: memref<4x8xf32> to memref<?x8xf32>
|
|
// LINALG: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
|
|
// LINALG-SAME: memref<?x8xf32>, index, index
|
|
// LINALG: }
|
|
// LINALG: %[[res:.*]] = vector.transfer_read %[[ifres]]#0[%[[ifres]]#1, %[[ifres]]#2], %cst
|
|
// LINALG_SAME: {in_bounds = [true, true]} : memref<?x8xf32>, vector<4x8xf32>
|
|
%1 = vector.transfer_read %A[%i, %j], %f0 : memref<?x8xf32>, vector<4x8xf32>
|
|
|
|
// LINALG: return %[[res]] : vector<4x8xf32>
|
|
return %1: vector<4x8xf32>
|
|
}
|
|
|
|
// CHECK-LABEL: split_vector_transfer_read_strided_2d(
|
|
// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref
|
|
// CHECK-SAME: %[[i:[a-zA-Z0-9]*]]: index
|
|
// CHECK-SAME: %[[j:[a-zA-Z0-9]*]]: index
|
|
|
|
// LINALG-LABEL: split_vector_transfer_read_strided_2d(
|
|
// LINALG-SAME: %[[A:[a-zA-Z0-9]*]]: memref
|
|
// LINALG-SAME: %[[i:[a-zA-Z0-9]*]]: index
|
|
// LINALG-SAME: %[[j:[a-zA-Z0-9]*]]: index
|
|
func @split_vector_transfer_read_strided_2d(
|
|
%A: memref<7x8xf32, offset:?, strides:[?, 1]>,
|
|
%i: index, %j: index) -> vector<4x8xf32> {
|
|
%c0 = constant 0 : index
|
|
%f0 = constant 0.0 : f32
|
|
|
|
// CHECK-DAG: %[[c7:.*]] = constant 7 : index
|
|
// CHECK-DAG: %[[c8:.*]] = constant 8 : index
|
|
// CHECK-DAG: %[[c0:.*]] = constant 0 : index
|
|
// alloca for boundary full tile
|
|
// CHECK: %[[alloc:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// %i + 4 <= dim(%A, 0)
|
|
// CHECK: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]]
|
|
// CHECK: %[[cmp0:.*]] = cmpi sle, %[[idx0]], %[[c7]] : index
|
|
// %j + 8 <= dim(%A, 1)
|
|
// CHECK: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]]
|
|
// CHECK: %[[cmp1:.*]] = cmpi sle, %[[idx1]], %[[c8]] : index
|
|
// are both conds true
|
|
// CHECK: %[[cond:.*]] = and %[[cmp0]], %[[cmp1]] : i1
|
|
// CHECK: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index) {
|
|
// inBounds but not cast-compatible: yield a memref_casted form of %A
|
|
// CHECK: %[[casted:.*]] = memref.cast %arg0 :
|
|
// CHECK-SAME: memref<7x8xf32, #[[$map_2d_stride_1]]> to memref<?x8xf32, #[[$map_2d_stride_1]]>
|
|
// CHECK: scf.yield %[[casted]], %[[i]], %[[j]] :
|
|
// CHECK-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index
|
|
// CHECK: } else {
|
|
// slow path, fill tmp alloc and yield a memref_casted version of it
|
|
// CHECK: %[[slow:.*]] = vector.transfer_read %[[A]][%[[i]], %[[j]]], %cst :
|
|
// CHECK-SAME: memref<7x8xf32, #[[$map_2d_stride_1]]>, vector<4x8xf32>
|
|
// CHECK: %[[cast_alloc:.*]] = vector.type_cast %[[alloc]] :
|
|
// CHECK-SAME: memref<4x8xf32> to memref<vector<4x8xf32>>
|
|
// CHECK: store %[[slow]], %[[cast_alloc]][] :
|
|
// CHECK-SAME: memref<vector<4x8xf32>>
|
|
// CHECK: %[[yielded:.*]] = memref.cast %[[alloc]] :
|
|
// CHECK-SAME: memref<4x8xf32> to memref<?x8xf32, #[[$map_2d_stride_1]]>
|
|
// CHECK: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
|
|
// CHECK-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index
|
|
// CHECK: }
|
|
// CHECK: %[[res:.*]] = vector.transfer_read {{.*}} {in_bounds = [true, true]} :
|
|
// CHECK-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, vector<4x8xf32>
|
|
|
|
// LINALG-DAG: %[[c0:.*]] = constant 0 : index
|
|
// LINALG-DAG: %[[c4:.*]] = constant 4 : index
|
|
// LINALG-DAG: %[[c7:.*]] = constant 7 : index
|
|
// LINALG-DAG: %[[c8:.*]] = constant 8 : index
|
|
// alloca for boundary full tile
|
|
// LINALG: %[[alloc:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// %i + 4 <= dim(%A, 0)
|
|
// LINALG: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]]
|
|
// LINALG: %[[cmp0:.*]] = cmpi sle, %[[idx0]], %[[c7]] : index
|
|
// %j + 8 <= dim(%A, 1)
|
|
// LINALG: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]]
|
|
// LINALG: %[[cmp1:.*]] = cmpi sle, %[[idx1]], %[[c8]] : index
|
|
// are both conds true
|
|
// LINALG: %[[cond:.*]] = and %[[cmp0]], %[[cmp1]] : i1
|
|
// LINALG: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index) {
|
|
// inBounds but not cast-compatible: yield a memref_casted form of %A
|
|
// LINALG: %[[casted:.*]] = memref.cast %arg0 :
|
|
// LINALG-SAME: memref<7x8xf32, #[[$map_2d_stride_1]]> to memref<?x8xf32, #[[$map_2d_stride_1]]>
|
|
// LINALG: scf.yield %[[casted]], %[[i]], %[[j]] :
|
|
// LINALG-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index
|
|
// LINALG: } else {
|
|
// slow path, fill tmp alloc and yield a memref_casted version of it
|
|
// LINALG: linalg.fill(%cst, %[[alloc]]) : f32, memref<4x8xf32>
|
|
// LINALG: %[[sv0:.*]] = affine.min #[[$bounds_map_4]](%[[c7]], %[[i]], %[[c4]])
|
|
// LINALG: %[[sv1:.*]] = affine.min #[[$bounds_map_8]](%[[c8]], %[[j]], %[[c8]])
|
|
// LINALG: %[[sv:.*]] = memref.subview %[[A]][%[[i]], %[[j]]] [%[[sv0]], %[[sv1]]] [1, 1]
|
|
// LINALG-SAME: memref<7x8xf32, #[[$map_2d_stride_1]]> to memref<?x?xf32, #[[$map_2d_stride_1]]>
|
|
// LINALG: linalg.copy(%[[sv]], %[[alloc]]) : memref<?x?xf32, #[[$map_2d_stride_1]]>, memref<4x8xf32>
|
|
// LINALG: %[[yielded:.*]] = memref.cast %[[alloc]] :
|
|
// LINALG-SAME: memref<4x8xf32> to memref<?x8xf32, #[[$map_2d_stride_1]]>
|
|
// LINALG: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
|
|
// LINALG-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index
|
|
// LINALG: }
|
|
// LINALG: %[[res:.*]] = vector.transfer_read {{.*}} {in_bounds = [true, true]} :
|
|
// LINALG-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, vector<4x8xf32>
|
|
%1 = vector.transfer_read %A[%i, %j], %f0 :
|
|
memref<7x8xf32, offset:?, strides:[?, 1]>, vector<4x8xf32>
|
|
|
|
// CHECK: return %[[res]] : vector<4x8xf32>
|
|
return %1 : vector<4x8xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
func @split_vector_transfer_write_2d(%V: vector<4x8xf32>, %A: memref<?x8xf32>, %i: index, %j: index) {
|
|
vector.transfer_write %V, %A[%i, %j] :
|
|
vector<4x8xf32>, memref<?x8xf32>
|
|
return
|
|
}
|
|
|
|
// CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 + 4)>
|
|
// CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 8)>
|
|
// CHECK: func @split_vector_transfer_write_2d(
|
|
// CHECK-SAME: %[[VEC:.*]]: vector<4x8xf32>,
|
|
// CHECK-SAME: %[[DEST:.*]]: memref<?x8xf32>,
|
|
// CHECK-SAME: %[[I:.*]]: index,
|
|
// CHECK-SAME: %[[J:.*]]: index) {
|
|
// CHECK-DAG: %[[C8:.*]] = constant 8 : index
|
|
// CHECK-DAG: %[[C0:.*]] = constant 0 : index
|
|
// CHECK-DAG: %[[CT:.*]] = constant true
|
|
// CHECK: %[[TEMP:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// CHECK: %[[VAL_8:.*]] = affine.apply #[[MAP0]]()[%[[I]]]
|
|
// CHECK: %[[DIM0:.*]] = memref.dim %[[DEST]], %[[C0]] : memref<?x8xf32>
|
|
// CHECK: %[[DIM0_IN:.*]] = cmpi sle, %[[VAL_8]], %[[DIM0]] : index
|
|
// CHECK: %[[DIM1:.*]] = affine.apply #[[MAP1]]()[%[[J]]]
|
|
// CHECK: %[[DIM1_IN:.*]] = cmpi sle, %[[DIM1]], %[[C8]] : index
|
|
// CHECK: %[[IN_BOUNDS:.*]] = and %[[DIM0_IN]], %[[DIM1_IN]] : i1
|
|
// CHECK: %[[IN_BOUND_DEST:.*]]:3 = scf.if %[[IN_BOUNDS]] ->
|
|
// CHECK-SAME: (memref<?x8xf32>, index, index) {
|
|
// CHECK: scf.yield %[[DEST]], %[[I]], %[[J]] : memref<?x8xf32>, index, index
|
|
// CHECK: } else {
|
|
// CHECK: %[[VAL_15:.*]] = memref.cast %[[TEMP]]
|
|
// CHECK-SAME: : memref<4x8xf32> to memref<?x8xf32>
|
|
// CHECK: scf.yield %[[VAL_15]], %[[C0]], %[[C0]]
|
|
// CHECK-SAME: : memref<?x8xf32>, index, index
|
|
// CHECK: }
|
|
// CHECK: vector.transfer_write %[[VEC]],
|
|
// CHECK-SAME: %[[IN_BOUND_DEST:.*]]#0[%[[IN_BOUND_DEST]]#1, %[[IN_BOUND_DEST]]#2]
|
|
// CHECK-SAME: {in_bounds = [true, true]} : vector<4x8xf32>, memref<?x8xf32>
|
|
// CHECK: %[[OUT_BOUNDS:.*]] = xor %[[IN_BOUNDS]], %[[CT]] : i1
|
|
// CHECK: scf.if %[[OUT_BOUNDS]] {
|
|
// CHECK: %[[CASTED:.*]] = vector.type_cast %[[TEMP]]
|
|
// CHECK-SAME: : memref<4x8xf32> to memref<vector<4x8xf32>>
|
|
// CHECK: %[[RESULT_COPY:.*]] = memref.load %[[CASTED]][]
|
|
// CHECK-SAME: : memref<vector<4x8xf32>>
|
|
// CHECK: vector.transfer_write %[[RESULT_COPY]],
|
|
// CHECK-SAME: %[[DEST]][%[[I]], %[[J]]]
|
|
// CHECK-SAME: : vector<4x8xf32>, memref<?x8xf32>
|
|
// CHECK: }
|
|
// CHECK: return
|
|
// CHECK: }
|
|
|
|
// LINALG-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 + 4)>
|
|
// LINALG-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 8)>
|
|
// LINALG-DAG: #[[MAP2:.*]] = affine_map<(d0, d1, d2) -> (d0 - d1, 4)>
|
|
// LINALG-DAG: #[[MAP3:.*]] = affine_map<(d0, d1, d2) -> (d0 - d1, 8)>
|
|
// LINALG-DAG: #[[MAP4:.*]] = affine_map<(d0, d1)[s0] -> (d0 * 8 + s0 + d1)>
|
|
// LINALG: func @split_vector_transfer_write_2d(
|
|
// LINALG-SAME: %[[VEC:.*]]: vector<4x8xf32>,
|
|
// LINALG-SAME: %[[DEST:.*]]: memref<?x8xf32>,
|
|
// LINALG-SAME: %[[I:.*]]: index,
|
|
// LINALG-SAME: %[[J:.*]]: index) {
|
|
// LINALG-DAG: %[[CT:.*]] = constant true
|
|
// LINALG-DAG: %[[C0:.*]] = constant 0 : index
|
|
// LINALG-DAG: %[[C4:.*]] = constant 4 : index
|
|
// LINALG-DAG: %[[C8:.*]] = constant 8 : index
|
|
// LINALG: %[[TEMP:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// LINALG: %[[IDX0:.*]] = affine.apply #[[MAP0]]()[%[[I]]]
|
|
// LINALG: %[[DIM0:.*]] = memref.dim %[[DEST]], %[[C0]] : memref<?x8xf32>
|
|
// LINALG: %[[DIM0_IN:.*]] = cmpi sle, %[[IDX0]], %[[DIM0]] : index
|
|
// LINALG: %[[DIM1:.*]] = affine.apply #[[MAP1]]()[%[[J]]]
|
|
// LINALG: %[[DIM1_IN:.*]] = cmpi sle, %[[DIM1]], %[[C8]] : index
|
|
// LINALG: %[[IN_BOUNDS:.*]] = and %[[DIM0_IN]], %[[DIM1_IN]] : i1
|
|
// LINALG: %[[IN_BOUND_DEST:.*]]:3 = scf.if %[[IN_BOUNDS]]
|
|
// LINALG-SAME: -> (memref<?x8xf32>, index, index) {
|
|
// LINALG: scf.yield %[[DEST]], %[[I]], %[[J]] : memref<?x8xf32>, index, index
|
|
// LINALG: } else {
|
|
// LINALG: %[[VAL_16:.*]] = memref.cast %[[TEMP]] : memref<4x8xf32> to memref<?x8xf32>
|
|
// LINALG: scf.yield %[[VAL_16]], %[[C0]], %[[C0]] : memref<?x8xf32>, index, index
|
|
// LINALG: }
|
|
// LINALG: vector.transfer_write %[[VEC]],
|
|
// LINALG-SAME: %[[IN_BOUND_DEST:.*]]#0[%[[IN_BOUND_DEST]]#1, %[[IN_BOUND_DEST]]#2]
|
|
// LINALG-SAME: {in_bounds = [true, true]} : vector<4x8xf32>, memref<?x8xf32>
|
|
// LINALG: %[[OUT_BOUNDS:.*]] = xor %[[IN_BOUNDS]], %[[CT]] : i1
|
|
// LINALG: scf.if %[[OUT_BOUNDS]] {
|
|
// LINALG: %[[VAL_19:.*]] = memref.dim %[[DEST]], %[[C0]] : memref<?x8xf32>
|
|
// LINALG-DAG: %[[VAL_20:.*]] = affine.min #[[MAP2]](%[[VAL_19]], %[[I]], %[[C4]])
|
|
// LINALG-DAG: %[[VAL_21:.*]] = affine.min #[[MAP3]](%[[C8]], %[[J]], %[[C8]])
|
|
// LINALG: %[[VAL_22:.*]] = memref.subview %[[TEMP]]
|
|
// LINALG-SAME: [%[[I]], %[[J]]] [%[[VAL_20]], %[[VAL_21]]]
|
|
// LINALG-SAME: [1, 1] : memref<4x8xf32> to memref<?x?xf32, #[[MAP4]]>
|
|
// LINALG: linalg.copy(%[[VAL_22]], %[[DEST]])
|
|
// LINALG-SAME: : memref<?x?xf32, #[[MAP4]]>, memref<?x8xf32>
|
|
// LINALG: }
|
|
// LINALG: return
|
|
// LINALG: }
|
|
|
|
// -----
|
|
|
|
func @split_vector_transfer_write_strided_2d(
|
|
%V: vector<4x8xf32>, %A: memref<7x8xf32, offset:?, strides:[?, 1]>,
|
|
%i: index, %j: index) {
|
|
vector.transfer_write %V, %A[%i, %j] :
|
|
vector<4x8xf32>, memref<7x8xf32, offset:?, strides:[?, 1]>
|
|
return
|
|
}
|
|
|
|
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)>
|
|
// CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 4)>
|
|
// CHECK-DAG: #[[MAP2:.*]] = affine_map<()[s0] -> (s0 + 8)>
|
|
// CHECK: func @split_vector_transfer_write_strided_2d(
|
|
// CHECK-SAME: %[[VEC:.*]]: vector<4x8xf32>,
|
|
// CHECK-SAME: %[[DEST:.*]]: memref<7x8xf32, #[[MAP0]]>,
|
|
// CHECK-SAME: %[[I:.*]]: index,
|
|
// CHECK-SAME: %[[J:.*]]: index) {
|
|
// CHECK-DAG: %[[C7:.*]] = constant 7 : index
|
|
// CHECK-DAG: %[[C8:.*]] = constant 8 : index
|
|
// CHECK-DAG: %[[C0:.*]] = constant 0 : index
|
|
// CHECK-DAG: %[[CT:.*]] = constant true
|
|
// CHECK: %[[TEMP:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// CHECK: %[[DIM0:.*]] = affine.apply #[[MAP1]]()[%[[I]]]
|
|
// CHECK: %[[DIM0_IN:.*]] = cmpi sle, %[[DIM0]], %[[C7]] : index
|
|
// CHECK: %[[DIM1:.*]] = affine.apply #[[MAP2]]()[%[[J]]]
|
|
// CHECK: %[[DIM1_IN:.*]] = cmpi sle, %[[DIM1]], %[[C8]] : index
|
|
// CHECK: %[[IN_BOUNDS:.*]] = and %[[DIM0_IN]], %[[DIM1_IN]] : i1
|
|
// CHECK: %[[IN_BOUND_DEST:.*]]:3 = scf.if %[[IN_BOUNDS]]
|
|
// CHECK-SAME: -> (memref<?x8xf32, #[[MAP0]]>, index, index) {
|
|
// CHECK: %[[VAL_15:.*]] = memref.cast %[[DEST]]
|
|
// CHECK-SAME: : memref<7x8xf32, #[[MAP0]]> to memref<?x8xf32, #[[MAP0]]>
|
|
// CHECK: scf.yield %[[VAL_15]], %[[I]], %[[J]]
|
|
// CHECK-SAME: : memref<?x8xf32, #[[MAP0]]>, index, index
|
|
// CHECK: } else {
|
|
// CHECK: %[[VAL_16:.*]] = memref.cast %[[TEMP]]
|
|
// CHECK-SAME: : memref<4x8xf32> to memref<?x8xf32, #[[MAP0]]>
|
|
// CHECK: scf.yield %[[VAL_16]], %[[C0]], %[[C0]]
|
|
// CHECK-SAME: : memref<?x8xf32, #[[MAP0]]>, index, index
|
|
// CHECK: }
|
|
// CHECK: vector.transfer_write %[[VEC]],
|
|
// CHECK-SAME: %[[IN_BOUND_DEST:.*]]#0
|
|
// CHECK-SAME: [%[[IN_BOUND_DEST]]#1, %[[IN_BOUND_DEST]]#2]
|
|
// CHECK-SAME: {in_bounds = [true, true]} : vector<4x8xf32>, memref<?x8xf32, #[[MAP0]]>
|
|
// CHECK: %[[OUT_BOUNDS:.*]] = xor %[[IN_BOUNDS]], %[[CT]] : i1
|
|
// CHECK: scf.if %[[OUT_BOUNDS]] {
|
|
// CHECK: %[[VAL_19:.*]] = vector.type_cast %[[TEMP]]
|
|
// CHECK-SAME: : memref<4x8xf32> to memref<vector<4x8xf32>>
|
|
// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_19]][]
|
|
// CHECK-SAME: : memref<vector<4x8xf32>>
|
|
// CHECK: vector.transfer_write %[[VAL_20]], %[[DEST]][%[[I]], %[[J]]]
|
|
// CHECK-SAME: : vector<4x8xf32>, memref<7x8xf32, #[[MAP0]]>
|
|
// CHECK: }
|
|
// CHECK: return
|
|
// CHECK: }
|
|
|
|
// LINALG-DAG: #[[MAP0:.*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)>
|
|
// LINALG-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 4)>
|
|
// LINALG-DAG: #[[MAP2:.*]] = affine_map<()[s0] -> (s0 + 8)>
|
|
// LINALG-DAG: #[[MAP3:.*]] = affine_map<(d0, d1, d2) -> (d0 - d1, 4)>
|
|
// LINALG-DAG: #[[MAP4:.*]] = affine_map<(d0, d1, d2) -> (d0 - d1, 8)>
|
|
// LINALG-DAG: #[[MAP5:.*]] = affine_map<(d0, d1)[s0] -> (d0 * 8 + s0 + d1)>
|
|
// LINALG: func @split_vector_transfer_write_strided_2d(
|
|
// LINALG-SAME: %[[VEC:.*]]: vector<4x8xf32>,
|
|
// LINALG-SAME: %[[DEST:.*]]: memref<7x8xf32, #[[MAP0]]>,
|
|
// LINALG-SAME: %[[I:.*]]: index,
|
|
// LINALG-SAME: %[[J:.*]]: index) {
|
|
// LINALG-DAG: %[[C0:.*]] = constant 0 : index
|
|
// LINALG-DAG: %[[CT:.*]] = constant true
|
|
// LINALG-DAG: %[[C7:.*]] = constant 7 : index
|
|
// LINALG-DAG: %[[C4:.*]] = constant 4 : index
|
|
// LINALG-DAG: %[[C8:.*]] = constant 8 : index
|
|
// LINALG: %[[TEMP:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// LINALG: %[[DIM0:.*]] = affine.apply #[[MAP1]]()[%[[I]]]
|
|
// LINALG: %[[DIM0_IN:.*]] = cmpi sle, %[[DIM0]], %[[C7]] : index
|
|
// LINALG: %[[DIM1:.*]] = affine.apply #[[MAP2]]()[%[[J]]]
|
|
// LINALG: %[[DIM1_IN:.*]] = cmpi sle, %[[DIM1]], %[[C8]] : index
|
|
// LINALG: %[[IN_BOUNDS:.*]] = and %[[DIM0_IN]], %[[DIM1_IN]] : i1
|
|
// LINALG: %[[IN_BOUND_DEST:.*]]:3 = scf.if %[[IN_BOUNDS]]
|
|
// LINALG-SAME: -> (memref<?x8xf32, #[[MAP0]]>, index, index) {
|
|
// LINALG: %[[VAL_16:.*]] = memref.cast %[[DEST]]
|
|
// LINALG-SAME: : memref<7x8xf32, #[[MAP0]]> to memref<?x8xf32, #[[MAP0]]>
|
|
// LINALG: scf.yield %[[VAL_16]], %[[I]], %[[J]]
|
|
// LINALG-SAME: : memref<?x8xf32, #[[MAP0]]>, index, index
|
|
// LINALG: } else {
|
|
// LINALG: %[[VAL_17:.*]] = memref.cast %[[TEMP]]
|
|
// LINALG-SAME: : memref<4x8xf32> to memref<?x8xf32, #[[MAP0]]>
|
|
// LINALG: scf.yield %[[VAL_17]], %[[C0]], %[[C0]]
|
|
// LINALG-SAME: : memref<?x8xf32, #[[MAP0]]>, index, index
|
|
// LINALG: }
|
|
// LINALG: vector.transfer_write %[[VEC]],
|
|
// LINALG-SAME: %[[IN_BOUND_DEST:.*]]#0
|
|
// LINALG-SAME: [%[[IN_BOUND_DEST]]#1, %[[IN_BOUND_DEST]]#2]
|
|
// LINALG-SAME: {in_bounds = [true, true]}
|
|
// LINALG-SAME: : vector<4x8xf32>, memref<?x8xf32, #[[MAP0]]>
|
|
// LINALG: %[[OUT_BOUNDS:.*]] = xor %[[IN_BOUNDS]], %[[CT]] : i1
|
|
// LINALG: scf.if %[[OUT_BOUNDS]] {
|
|
// LINALG-DAG: %[[VAL_20:.*]] = affine.min #[[MAP3]](%[[C7]], %[[I]], %[[C4]])
|
|
// LINALG-DAG: %[[VAL_21:.*]] = affine.min #[[MAP4]](%[[C8]], %[[J]], %[[C8]])
|
|
// LINALG: %[[VAL_22:.*]] = memref.subview %[[TEMP]]
|
|
// LINALG-SAME: [%[[I]], %[[J]]] [%[[VAL_20]], %[[VAL_21]]]
|
|
// LINALG-SAME: [1, 1] : memref<4x8xf32> to memref<?x?xf32, #[[MAP5]]>
|
|
// LINALG: linalg.copy(%[[VAL_22]], %[[DEST]])
|
|
// LINALG-SAME: : memref<?x?xf32, #[[MAP5]]>, memref<7x8xf32, #[[MAP0]]>
|
|
// LINALG: }
|
|
// LINALG: return
|
|
// LINALG: }
|