Files
clang-p2996/mlir/test/Integration/Dialect/Linalg/CPU/test-padtensor.mlir
Alex Zinenko 75e5f0aac9 [mlir] factor memref-to-llvm lowering out of std-to-llvm
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.

Reviewed By: herhut, silvas

Differential Revision: https://reviews.llvm.org/D105625
2021-07-09 14:49:52 +02:00

34 lines
1.5 KiB
MLIR

// RUN: mlir-opt %s -linalg-bufferize -std-bufferize \
// RUN: -tensor-constant-bufferize -tensor-bufferize -func-bufferize \
// RUN: -finalizing-bufferize \
// RUN: -convert-linalg-to-loops -convert-scf-to-std -convert-linalg-to-llvm -convert-memref-to-llvm -convert-std-to-llvm | \
// RUN: mlir-cpu-runner -e main -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_runner_utils%shlibext \
// RUN: | FileCheck %s
func @main() {
%const = constant dense<[[[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]]]> : tensor<1x2x3xf32>
%dynamic = tensor.cast %const: tensor<1x2x3xf32> to tensor<1x?x3xf32>
%offset = constant 2 : index
%cst = constant 2.3 : f32
%c0 = constant 0 : index
%out = linalg.pad_tensor %dynamic low[%c0, %offset, %c0] high[%c0, %c0, %offset] {
^bb0(%gen_arg1: index, %gen_arg2: index, %gen_arg3: index): // no predecessors
linalg.yield %cst : f32
} : tensor<1x?x3xf32> to tensor<1x?x?xf32>
%unranked = tensor.cast %out: tensor<1x?x?xf32> to tensor<*xf32>
call @print_memref_f32(%unranked) : (tensor<*xf32>) -> ()
// CHECK: Unranked Memref base@ = {{0x[-9a-f]*}}
// CHECK-SAME: rank = 3 offset = 0 sizes = [1, 4, 5] strides = [20, 5, 1] data =
// CHECK-NEXT{LITERAL}: [[[2.3, 2.3, 2.3, 2.3, 2.3],
// CHECK-NEXT: [2.3, 2.3, 2.3, 2.3, 2.3],
// CHECK-NEXT: [1, 2, 3, 2.3, 2.3],
// CHECK-NEXT: [2, 3, 4, 2.3, 2.3]]]
return
}
func private @print_memref_f32(%ptr : tensor<*xf32>)