Files
clang-p2996/mlir/test/Target/Cpp/stdops.mlir
Marius Brehler 2f0750dd2e [mlir] Add Cpp emitter
This upstreams the Cpp emitter, initially presented with [1], from [2]
to MLIR core. Together with the previously upstreamed EmitC dialect [3],
the target allows to translate MLIR to C/C++.

[1] https://reviews.llvm.org/D76571
[2] https://github.com/iml130/mlir-emitc
[3] https://reviews.llvm.org/D103969

Co-authored-by: Jacques Pienaar <jpienaar@google.com>
Co-authored-by: Simon Camphausen <simon.camphausen@iml.fraunhofer.de>
Co-authored-by: Oliver Scherf <oliver.scherf@iml.fraunhofer.de>

Reviewed By: jpienaar

Differential Revision: https://reviews.llvm.org/D104632
2021-09-02 13:51:05 +00:00

117 lines
4.1 KiB
MLIR

// RUN: mlir-translate -mlir-to-cpp %s | FileCheck %s -check-prefix=CPP-DEFAULT
// RUN: mlir-translate -mlir-to-cpp -declare-variables-at-top %s | FileCheck %s -check-prefix=CPP-DECLTOP
func @std_constant() {
%c0 = constant 0 : i32
%c1 = constant 2 : index
%c2 = constant 2.0 : f32
%c3 = constant dense<0> : tensor<i32>
%c4 = constant dense<[0, 1]> : tensor<2xindex>
%c5 = constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
return
}
// CPP-DEFAULT: void std_constant() {
// CPP-DEFAULT-NEXT: int32_t [[V0:[^ ]*]] = 0;
// CPP-DEFAULT-NEXT: size_t [[V1:[^ ]*]] = 2;
// CPP-DEFAULT-NEXT: float [[V2:[^ ]*]] = (float)2.000000000e+00;
// CPP-DEFAULT-NEXT: Tensor<int32_t> [[V3:[^ ]*]] = {0};
// CPP-DEFAULT-NEXT: Tensor<size_t, 2> [[V4:[^ ]*]] = {0, 1};
// CPP-DEFAULT-NEXT: Tensor<float, 2, 2> [[V5:[^ ]*]] = {(float)0.0e+00, (float)1.000000000e+00, (float)2.000000000e+00, (float)3.000000000e+00};
// CPP-DECLTOP: void std_constant() {
// CPP-DECLTOP-NEXT: int32_t [[V0:[^ ]*]];
// CPP-DECLTOP-NEXT: size_t [[V1:[^ ]*]];
// CPP-DECLTOP-NEXT: float [[V2:[^ ]*]];
// CPP-DECLTOP-NEXT: Tensor<int32_t> [[V3:[^ ]*]];
// CPP-DECLTOP-NEXT: Tensor<size_t, 2> [[V4:[^ ]*]];
// CPP-DECLTOP-NEXT: Tensor<float, 2, 2> [[V5:[^ ]*]];
// CPP-DECLTOP-NEXT: [[V0]] = 0;
// CPP-DECLTOP-NEXT: [[V1]] = 2;
// CPP-DECLTOP-NEXT: [[V2]] = (float)2.000000000e+00;
// CPP-DECLTOP-NEXT: [[V3]] = {0};
// CPP-DECLTOP-NEXT: [[V4]] = {0, 1};
// CPP-DECLTOP-NEXT: [[V5]] = {(float)0.0e+00, (float)1.000000000e+00, (float)2.000000000e+00, (float)3.000000000e+00};
func @std_call() {
%0 = call @one_result () : () -> i32
%1 = call @one_result () : () -> i32
return
}
// CPP-DEFAULT: void std_call() {
// CPP-DEFAULT-NEXT: int32_t [[V0:[^ ]*]] = one_result();
// CPP-DEFAULT-NEXT: int32_t [[V1:[^ ]*]] = one_result();
// CPP-DECLTOP: void std_call() {
// CPP-DECLTOP-NEXT: int32_t [[V0:[^ ]*]];
// CPP-DECLTOP-NEXT: int32_t [[V1:[^ ]*]];
// CPP-DECLTOP-NEXT: [[V0]] = one_result();
// CPP-DECLTOP-NEXT: [[V1]] = one_result();
func @std_call_two_results() {
%c = constant 0 : i8
%0:2 = call @two_results () : () -> (i32, f32)
%1:2 = call @two_results () : () -> (i32, f32)
return
}
// CPP-DEFAULT: void std_call_two_results() {
// CPP-DEFAULT-NEXT: int8_t [[V0:[^ ]*]] = 0;
// CPP-DEFAULT-NEXT: int32_t [[V1:[^ ]*]];
// CPP-DEFAULT-NEXT: float [[V2:[^ ]*]];
// CPP-DEFAULT-NEXT: std::tie([[V1]], [[V2]]) = two_results();
// CPP-DEFAULT-NEXT: int32_t [[V3:[^ ]*]];
// CPP-DEFAULT-NEXT: float [[V4:[^ ]*]];
// CPP-DEFAULT-NEXT: std::tie([[V3]], [[V4]]) = two_results();
// CPP-DECLTOP: void std_call_two_results() {
// CPP-DECLTOP-NEXT: int8_t [[V0:[^ ]*]];
// CPP-DECLTOP-NEXT: int32_t [[V1:[^ ]*]];
// CPP-DECLTOP-NEXT: float [[V2:[^ ]*]];
// CPP-DECLTOP-NEXT: int32_t [[V3:[^ ]*]];
// CPP-DECLTOP-NEXT: float [[V4:[^ ]*]];
// CPP-DECLTOP-NEXT: [[V0]] = 0;
// CPP-DECLTOP-NEXT: std::tie([[V1]], [[V2]]) = two_results();
// CPP-DECLTOP-NEXT: std::tie([[V3]], [[V4]]) = two_results();
func @one_result() -> i32 {
%0 = constant 0 : i32
return %0 : i32
}
// CPP-DEFAULT: int32_t one_result() {
// CPP-DEFAULT-NEXT: int32_t [[V0:[^ ]*]] = 0;
// CPP-DEFAULT-NEXT: return [[V0]];
// CPP-DECLTOP: int32_t one_result() {
// CPP-DECLTOP-NEXT: int32_t [[V0:[^ ]*]];
// CPP-DECLTOP-NEXT: [[V0]] = 0;
// CPP-DECLTOP-NEXT: return [[V0]];
func @two_results() -> (i32, f32) {
%0 = constant 0 : i32
%1 = constant 1.0 : f32
return %0, %1 : i32, f32
}
// CPP-DEFAULT: std::tuple<int32_t, float> two_results() {
// CPP-DEFAULT: int32_t [[V0:[^ ]*]] = 0;
// CPP-DEFAULT: float [[V1:[^ ]*]] = (float)1.000000000e+00;
// CPP-DEFAULT: return std::make_tuple([[V0]], [[V1]]);
// CPP-DECLTOP: std::tuple<int32_t, float> two_results() {
// CPP-DECLTOP: int32_t [[V0:[^ ]*]];
// CPP-DECLTOP: float [[V1:[^ ]*]];
// CPP-DECLTOP: [[V0]] = 0;
// CPP-DECLTOP: [[V1]] = (float)1.000000000e+00;
// CPP-DECLTOP: return std::make_tuple([[V0]], [[V1]]);
func @single_return_statement(%arg0 : i32) -> i32 {
return %arg0 : i32
}
// CPP-DEFAULT: int32_t single_return_statement(int32_t [[V0:[^ ]*]]) {
// CPP-DEFAULT-NEXT: return [[V0]];
// CPP-DECLTOP: int32_t single_return_statement(int32_t [[V0:[^ ]*]]) {
// CPP-DECLTOP-NEXT: return [[V0]];