Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though) Differential Revision: https://reviews.llvm.org/D105149
152 lines
4.1 KiB
MLIR
152 lines
4.1 KiB
MLIR
// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline="builtin.func(sccp)" -split-input-file | FileCheck %s
|
|
|
|
/// Check that a constant is properly propagated when only one edge is taken.
|
|
|
|
// CHECK-LABEL: func @simple(
|
|
func @simple(%arg0 : i32) -> i32 {
|
|
// CHECK: %[[CST:.*]] = constant 1 : i32
|
|
// CHECK-NOT: scf.if
|
|
// CHECK: return %[[CST]] : i32
|
|
|
|
%cond = constant true
|
|
%res = scf.if %cond -> (i32) {
|
|
%1 = constant 1 : i32
|
|
scf.yield %1 : i32
|
|
} else {
|
|
scf.yield %arg0 : i32
|
|
}
|
|
return %res : i32
|
|
}
|
|
|
|
/// Check that a constant is properly propagated when both edges produce the
|
|
/// same value.
|
|
|
|
// CHECK-LABEL: func @simple_both_same(
|
|
func @simple_both_same(%cond : i1) -> i32 {
|
|
// CHECK: %[[CST:.*]] = constant 1 : i32
|
|
// CHECK-NOT: scf.if
|
|
// CHECK: return %[[CST]] : i32
|
|
|
|
%res = scf.if %cond -> (i32) {
|
|
%1 = constant 1 : i32
|
|
scf.yield %1 : i32
|
|
} else {
|
|
%2 = constant 1 : i32
|
|
scf.yield %2 : i32
|
|
}
|
|
return %res : i32
|
|
}
|
|
|
|
/// Check that the arguments go to overdefined if the branch cannot detect when
|
|
/// a specific successor is taken.
|
|
|
|
// CHECK-LABEL: func @overdefined_unknown_condition(
|
|
func @overdefined_unknown_condition(%cond : i1, %arg0 : i32) -> i32 {
|
|
// CHECK: %[[RES:.*]] = scf.if
|
|
// CHECK: return %[[RES]] : i32
|
|
|
|
%res = scf.if %cond -> (i32) {
|
|
%1 = constant 1 : i32
|
|
scf.yield %1 : i32
|
|
} else {
|
|
scf.yield %arg0 : i32
|
|
}
|
|
return %res : i32
|
|
}
|
|
|
|
/// Check that the arguments go to overdefined if there are conflicting
|
|
/// constants.
|
|
|
|
// CHECK-LABEL: func @overdefined_different_constants(
|
|
func @overdefined_different_constants(%cond : i1) -> i32 {
|
|
// CHECK: %[[RES:.*]] = scf.if
|
|
// CHECK: return %[[RES]] : i32
|
|
|
|
%res = scf.if %cond -> (i32) {
|
|
%1 = constant 1 : i32
|
|
scf.yield %1 : i32
|
|
} else {
|
|
%2 = constant 2 : i32
|
|
scf.yield %2 : i32
|
|
}
|
|
return %res : i32
|
|
}
|
|
|
|
/// Check that arguments are properly merged across loop-like control flow.
|
|
|
|
// CHECK-LABEL: func @simple_loop(
|
|
func @simple_loop(%arg0 : index, %arg1 : index, %arg2 : index) -> i32 {
|
|
// CHECK: %[[CST:.*]] = constant 0 : i32
|
|
// CHECK-NOT: scf.for
|
|
// CHECK: return %[[CST]] : i32
|
|
|
|
%s0 = constant 0 : i32
|
|
%result = scf.for %i0 = %arg0 to %arg1 step %arg2 iter_args(%si = %s0) -> (i32) {
|
|
%sn = addi %si, %si : i32
|
|
scf.yield %sn : i32
|
|
}
|
|
return %result : i32
|
|
}
|
|
|
|
/// Check that arguments go to overdefined when loop backedges produce a
|
|
/// conflicting value.
|
|
|
|
// CHECK-LABEL: func @loop_overdefined(
|
|
func @loop_overdefined(%arg0 : index, %arg1 : index, %arg2 : index) -> i32 {
|
|
// CHECK: %[[RES:.*]] = scf.for
|
|
// CHECK: return %[[RES]] : i32
|
|
|
|
%s0 = constant 1 : i32
|
|
%result = scf.for %i0 = %arg0 to %arg1 step %arg2 iter_args(%si = %s0) -> (i32) {
|
|
%sn = addi %si, %si : i32
|
|
scf.yield %sn : i32
|
|
}
|
|
return %result : i32
|
|
}
|
|
|
|
/// Test that we can properly propagate within inner control, and in situations
|
|
/// where the executable edges within the CFG are sensitive to the current state
|
|
/// of the analysis.
|
|
|
|
// CHECK-LABEL: func @loop_inner_control_flow(
|
|
func @loop_inner_control_flow(%arg0 : index, %arg1 : index, %arg2 : index) -> i32 {
|
|
// CHECK: %[[CST:.*]] = constant 1 : i32
|
|
// CHECK-NOT: scf.for
|
|
// CHECK-NOT: scf.if
|
|
// CHECK: return %[[CST]] : i32
|
|
|
|
%cst_1 = constant 1 : i32
|
|
%result = scf.for %i0 = %arg0 to %arg1 step %arg2 iter_args(%si = %cst_1) -> (i32) {
|
|
%cst_20 = constant 20 : i32
|
|
%cond = cmpi ult, %si, %cst_20 : i32
|
|
%inner_res = scf.if %cond -> (i32) {
|
|
%1 = constant 1 : i32
|
|
scf.yield %1 : i32
|
|
} else {
|
|
%si_inc = addi %si, %cst_1 : i32
|
|
scf.yield %si_inc : i32
|
|
}
|
|
scf.yield %inner_res : i32
|
|
}
|
|
return %result : i32
|
|
}
|
|
|
|
/// Test that we can properly visit region successors when the terminator
|
|
/// implements the RegionBranchTerminatorOpInterface.
|
|
|
|
// CHECK-LABEL: func @loop_region_branch_terminator_op(
|
|
func @loop_region_branch_terminator_op(%arg1 : i32) {
|
|
// CHECK: %c2_i32 = constant 2 : i32
|
|
// CHECK-NEXT: return
|
|
|
|
%c2_i32 = constant 2 : i32
|
|
%0 = scf.while (%arg2 = %c2_i32) : (i32) -> (i32) {
|
|
%1 = cmpi slt, %arg2, %arg1 : i32
|
|
scf.condition(%1) %arg2 : i32
|
|
} do {
|
|
^bb0(%arg2: i32):
|
|
scf.yield %arg2 : i32
|
|
}
|
|
return
|
|
}
|