Files
clang-p2996/mlir/test/lib/Dialect/Test/TestOps.td
Mehdi Amini 387f95541b Add a new interface allowing to set a default dialect to be used for printing/parsing regions
Currently the builtin dialect is the default namespace used for parsing
and printing. As such module and func don't need to be prefixed.
In the case of some dialects that defines new regions for their own
purpose (like SpirV modules for example), it can be beneficial to
change the default dialect in order to improve readability.

Differential Revision: https://reviews.llvm.org/D107236
2021-08-31 17:52:40 +00:00

2191 lines
74 KiB
TableGen

//===-- TestOps.td - Test dialect operation definitions ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef TEST_OPS
#define TEST_OPS
include "mlir/Dialect/DLTI/DLTIBase.td"
include "mlir/IR/OpBase.td"
include "mlir/IR/OpAsmInterface.td"
include "mlir/IR/RegionKindInterface.td"
include "mlir/IR/SymbolInterfaces.td"
include "mlir/Interfaces/CallInterfaces.td"
include "mlir/Interfaces/ControlFlowInterfaces.td"
include "mlir/Interfaces/CopyOpInterface.td"
include "mlir/Interfaces/DataLayoutInterfaces.td"
include "mlir/Interfaces/InferTypeOpInterface.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
include "TestInterfaces.td"
def Test_Dialect : Dialect {
let name = "test";
let cppNamespace = "::test";
let hasCanonicalizer = 1;
let hasConstantMaterializer = 1;
let hasOperationAttrVerify = 1;
let hasRegionArgAttrVerify = 1;
let hasRegionResultAttrVerify = 1;
let hasOperationInterfaceFallback = 1;
let hasNonDefaultDestructor = 1;
let dependentDialects = ["::mlir::DLTIDialect"];
let extraClassDeclaration = [{
void registerAttributes();
void registerTypes();
::mlir::Attribute parseAttribute(::mlir::DialectAsmParser &parser,
::mlir::Type type) const override;
void printAttribute(::mlir::Attribute attr,
::mlir::DialectAsmPrinter &printer) const override;
// Provides a custom printing/parsing for some operations.
::llvm::Optional<ParseOpHook>
getParseOperationHook(::llvm::StringRef opName) const override;
::llvm::unique_function<void(::mlir::Operation *,
::mlir::OpAsmPrinter &printer)>
getOperationPrinter(::mlir::Operation *op) const override;
private:
// Storage for a custom fallback interface.
void *fallbackEffectOpInterfaces;
}];
}
class TEST_Op<string mnemonic, list<OpTrait> traits = []> :
Op<Test_Dialect, mnemonic, traits>;
//===----------------------------------------------------------------------===//
// Test Types
//===----------------------------------------------------------------------===//
def IntTypesOp : TEST_Op<"int_types"> {
let results = (outs
AnyI16:$any_i16,
SI32:$si32,
UI64:$ui64,
AnyInteger:$any_int
);
}
def ComplexF64 : Complex<F64>;
def ComplexOp : TEST_Op<"complex_f64"> {
let results = (outs ComplexF64);
}
def ComplexTensorOp : TEST_Op<"complex_f64_tensor"> {
let results = (outs TensorOf<[ComplexF64]>);
}
def TupleOp : TEST_Op<"tuple_32_bit"> {
let results = (outs TupleOf<[I32, F32]>);
}
def NestedTupleOp : TEST_Op<"nested_tuple_32_bit"> {
let results = (outs NestedTupleOf<[I32, F32]>);
}
def TakesStaticMemRefOp : TEST_Op<"takes_static_memref"> {
let arguments = (ins AnyStaticShapeMemRef:$x);
}
def RankLessThan2I8F32MemRefOp : TEST_Op<"rank_less_than_2_I8_F32_memref"> {
let results = (outs MemRefRankOf<[I8, F32], [0, 1]>);
}
def NDTensorOfOp : TEST_Op<"nd_tensor_of"> {
let arguments = (ins
0DTensorOf<[F32]>:$arg0,
1DTensorOf<[F32]>:$arg1,
2DTensorOf<[I16]>:$arg2,
3DTensorOf<[I16]>:$arg3,
4DTensorOf<[I16]>:$arg4
);
}
def RankedTensorOp : TEST_Op<"ranked_tensor_op"> {
let arguments = (ins AnyRankedTensor:$input);
}
def MultiTensorRankOf : TEST_Op<"multi_tensor_rank_of"> {
let arguments = (ins
TensorRankOf<[I8, I32, F32], [0, 1]>:$arg0
);
}
def TEST_TestType : DialectType<Test_Dialect,
CPred<"$_self.isa<::test::TestType>()">, "test">,
BuildableType<"$_builder.getType<::test::TestType>()">;
//===----------------------------------------------------------------------===//
// Test Symbols
//===----------------------------------------------------------------------===//
def SymbolOp : TEST_Op<"symbol", [Symbol]> {
let summary = "operation which defines a new symbol";
let arguments = (ins StrAttr:$sym_name,
OptionalAttr<StrAttr>:$sym_visibility);
}
def SymbolScopeOp : TEST_Op<"symbol_scope",
[SymbolTable, SingleBlockImplicitTerminator<"TerminatorOp">]> {
let summary = "operation which defines a new symbol table";
let regions = (region SizedRegion<1>:$region);
}
def SymbolTableRegionOp : TEST_Op<"symbol_table_region", [SymbolTable]> {
let summary = "operation which defines a new symbol table without a "
"restriction on a terminator";
let regions = (region SizedRegion<1>:$region);
}
//===----------------------------------------------------------------------===//
// Test Operands
//===----------------------------------------------------------------------===//
def MixedNormalVariadicOperandOp : TEST_Op<
"mixed_normal_variadic_operand", [SameVariadicOperandSize]> {
let arguments = (ins
Variadic<AnyTensor>:$input1,
AnyTensor:$input2,
Variadic<AnyTensor>:$input3
);
}
def VariadicWithSameOperandsResult :
TEST_Op<"variadic_with_same_operand_results",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnySignlessInteger>:$operands);
let results = (outs AnySignlessInteger:$result);
}
def SameOperandsResultType : TEST_Op<
"same_operand_result_type", [SameOperandsAndResultType]> {
let arguments = (ins AnyTensor:$operand);
let results = (outs AnyTensor:$result);
}
//===----------------------------------------------------------------------===//
// Test Results
//===----------------------------------------------------------------------===//
def MixedNormalVariadicResults : TEST_Op<
"mixed_normal_variadic_result", [SameVariadicResultSize]> {
let results = (outs
Variadic<AnyTensor>:$output1,
AnyTensor:$output2,
Variadic<AnyTensor>:$output3
);
}
//===----------------------------------------------------------------------===//
// Test Attributes
//===----------------------------------------------------------------------===//
def NonNegIntAttrOp : TEST_Op<"non_negative_int_attr"> {
let arguments = (ins
Confined<I32Attr, [IntNonNegative]>:$i32attr,
Confined<I64Attr, [IntNonNegative]>:$i64attr
);
}
def PositiveIntAttrOp : TEST_Op<"positive_int_attr"> {
let arguments = (ins
Confined<I32Attr, [IntPositive]>:$i32attr,
Confined<I64Attr, [IntPositive]>:$i64attr
);
}
def TypeArrayAttrOp : TEST_Op<"type_array_attr"> {
let arguments = (ins TypeArrayAttr:$attr);
}
def TypeArrayAttrWithDefaultOp : TEST_Op<"type_array_attr_with_default"> {
let arguments = (ins DefaultValuedAttr<TypeArrayAttr, "{}">:$attr);
}
def TypeStringAttrWithTypeOp : TEST_Op<"string_attr_with_type"> {
let arguments = (ins TypedStrAttr<AnyType>:$attr);
let assemblyFormat = "$attr attr-dict";
}
def StrCaseA: StrEnumAttrCase<"A">;
def StrCaseB: StrEnumAttrCase<"B">;
def SomeStrEnum: StrEnumAttr<
"SomeStrEnum", "", [StrCaseA, StrCaseB]>;
def StrEnumAttrOp : TEST_Op<"str_enum_attr"> {
let arguments = (ins SomeStrEnum:$attr);
let results = (outs I32:$val);
}
def I32Case5: I32EnumAttrCase<"case5", 5>;
def I32Case10: I32EnumAttrCase<"case10", 10>;
def SomeI32Enum: I32EnumAttr<
"SomeI32Enum", "", [I32Case5, I32Case10]>;
def I32EnumAttrOp : TEST_Op<"i32_enum_attr"> {
let arguments = (ins SomeI32Enum:$attr);
let results = (outs I32:$val);
}
def I64Case5: I64EnumAttrCase<"case5", 5>;
def I64Case10: I64EnumAttrCase<"case10", 10>;
def SomeI64Enum: I64EnumAttr<
"SomeI64Enum", "", [I64Case5, I64Case10]>;
def I64EnumAttrOp : TEST_Op<"i64_enum_attr"> {
let arguments = (ins SomeI64Enum:$attr);
let results = (outs I32:$val);
}
def SomeStructAttr : StructAttr<"SomeStructAttr", Test_Dialect, [
StructFieldAttr<"some_field", I64Attr>,
StructFieldAttr<"some_other_field", I64Attr>
]> {}
def StructAttrOp : TEST_Op<"struct_attr"> {
let arguments = (ins SomeStructAttr:$the_struct_attr);
let results = (outs);
}
def IntAttrOp : TEST_Op<"int_attrs"> {
let arguments = (ins
AnyI32Attr:$any_i32_attr,
IndexAttr:$index_attr,
UI32Attr:$ui32_attr,
SI32Attr:$si32_attr
);
}
def FloatElementsAttrOp : TEST_Op<"float_elements_attr"> {
let arguments = (ins
RankedF32ElementsAttr<[2]>:$scalar_f32_attr,
RankedF64ElementsAttr<[4, 8]>:$tensor_f64_attr
);
}
// A pattern that updates dense<[3.0, 4.0]> to dense<[5.0, 6.0]>.
// This tests both matching and generating float elements attributes.
def UpdateFloatElementsAttr : Pat<
(FloatElementsAttrOp
ConstantAttr<RankedF32ElementsAttr<[2]>, "{3.0f, 4.0f}">:$f32attr,
$f64attr),
(FloatElementsAttrOp
ConstantAttr<RankedF32ElementsAttr<[2]>, "{5.0f, 6.0f}">:$f32attr,
$f64attr)>;
def IntElementsAttrOp : TEST_Op<"int_elements_attr"> {
let arguments = (ins
AnyI32ElementsAttr:$any_i32_attr,
I32ElementsAttr:$i32_attr
);
}
def RankedIntElementsAttrOp : TEST_Op<"ranked_int_elements_attr"> {
let arguments = (ins
RankedI32ElementsAttr<[2]>:$vector_i32_attr,
RankedI64ElementsAttr<[4, 8]>:$matrix_i64_attr
);
}
def DerivedTypeAttrOp : TEST_Op<"derived_type_attr", []> {
let results = (outs AnyTensor:$output);
DerivedTypeAttr element_dtype =
DerivedTypeAttr<"return getElementTypeOrSelf(output().getType());">;
DerivedAttr size = DerivedAttr<"int",
"return output().getType().cast<ShapedType>().getSizeInBits();",
"$_builder.getI32IntegerAttr($_self)">;
}
def StringElementsAttrOp : TEST_Op<"string_elements_attr"> {
let arguments = (ins
StringElementsAttr:$scalar_string_attr
);
}
//===----------------------------------------------------------------------===//
// Test Attribute Constraints
//===----------------------------------------------------------------------===//
def SymbolRefOp : TEST_Op<"symbol_ref_attr"> {
let arguments = (ins
Confined<FlatSymbolRefAttr, [ReferToOp<"FuncOp">]>:$symbol
);
}
//===----------------------------------------------------------------------===//
// Test Regions
//===----------------------------------------------------------------------===//
def OneRegionOp : TEST_Op<"one_region_op", []> {
let regions = (region AnyRegion);
}
def TwoRegionOp : TEST_Op<"two_region_op", []> {
let regions = (region AnyRegion, AnyRegion);
}
def SizedRegionOp : TEST_Op<"sized_region_op", []> {
let regions = (region SizedRegion<2>:$my_region, SizedRegion<1>);
}
//===----------------------------------------------------------------------===//
// NoTerminator Operation
//===----------------------------------------------------------------------===//
def SingleNoTerminatorOp : TEST_Op<"single_no_terminator_op",
GraphRegionNoTerminator.traits> {
let regions = (region SizedRegion<1>:$my_region);
let assemblyFormat = "attr-dict `:` $my_region";
}
def SingleNoTerminatorCustomAsmOp : TEST_Op<"single_no_terminator_custom_asm_op",
[SingleBlock, NoTerminator]> {
let regions = (region SizedRegion<1>);
let parser = [{ return ::parseSingleNoTerminatorCustomAsmOp(parser, result); }];
let printer = [{ return ::print(*this, p); }];
}
def VariadicNoTerminatorOp : TEST_Op<"variadic_no_terminator_op",
GraphRegionNoTerminator.traits> {
let regions = (region VariadicRegion<SizedRegion<1>>:$my_regions);
let assemblyFormat = "attr-dict `:` $my_regions";
}
//===----------------------------------------------------------------------===//
// Test Call Interfaces
//===----------------------------------------------------------------------===//
def ConversionCallOp : TEST_Op<"conversion_call_op",
[CallOpInterface]> {
let arguments = (ins Variadic<AnyType>:$inputs, SymbolRefAttr:$callee);
let results = (outs Variadic<AnyType>);
let extraClassDeclaration = [{
/// Get the argument operands to the called function.
operand_range getArgOperands() { return inputs(); }
/// Return the callee of this operation.
::mlir::CallInterfaceCallable getCallableForCallee() {
return (*this)->getAttrOfType<::mlir::SymbolRefAttr>("callee");
}
}];
}
def FunctionalRegionOp : TEST_Op<"functional_region_op",
[CallableOpInterface]> {
let regions = (region AnyRegion:$body);
let results = (outs FunctionType);
let extraClassDeclaration = [{
::mlir::Region *getCallableRegion() { return &body(); }
::llvm::ArrayRef<::mlir::Type> getCallableResults() {
return getType().cast<::mlir::FunctionType>().getResults();
}
}];
}
def FoldToCallOp : TEST_Op<"fold_to_call_op"> {
let arguments = (ins FlatSymbolRefAttr:$callee);
let hasCanonicalizer = 1;
}
//===----------------------------------------------------------------------===//
// Test Traits
//===----------------------------------------------------------------------===//
def SameOperandElementTypeOp : TEST_Op<"same_operand_element_type",
[SameOperandsElementType]> {
let arguments = (ins AnyType, AnyType);
let results = (outs AnyType);
}
def SameOperandAndResultElementTypeOp :
TEST_Op<"same_operand_and_result_element_type",
[SameOperandsAndResultElementType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def SameOperandShapeOp : TEST_Op<"same_operand_shape", [SameOperandsShape]> {
let arguments = (ins Variadic<AnyShaped>);
}
def SameOperandAndResultShapeOp : TEST_Op<"same_operand_and_result_shape",
[SameOperandsAndResultShape]> {
let arguments = (ins Variadic<AnyShaped>);
let results = (outs Variadic<AnyShaped>);
}
def SameOperandAndResultTypeOp : TEST_Op<"same_operand_and_result_type",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def ElementwiseMappableOp : TEST_Op<"elementwise_mappable",
ElementwiseMappable.traits> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def ArgAndResHaveFixedElementTypesOp :
TEST_Op<"arg_and_res_have_fixed_element_types",
[PredOpTrait<"fixed type combination",
And<[ElementTypeIsPred<"x", I32>,
ElementTypeIsPred<"y", F32>]>>,
ElementTypeIs<"res", I16>]> {
let arguments = (ins
AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandsHaveSameElementType : TEST_Op<"operands_have_same_element_type", [
AllElementTypesMatch<["x", "y"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def OperandZeroAndResultHaveSameElementType : TEST_Op<
"operand0_and_result_have_same_element_type",
[AllElementTypesMatch<["x", "res"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
let results = (outs AnyType:$res);
}
def OperandsHaveSameType :
TEST_Op<"operands_have_same_type", [AllTypesMatch<["x", "y"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def ResultHasSameTypeAsAttr :
TEST_Op<"result_has_same_type_as_attr",
[AllTypesMatch<["attr", "result"]>]> {
let arguments = (ins AnyAttr:$attr);
let results = (outs AnyType:$result);
let assemblyFormat = "$attr `->` type($result) attr-dict";
}
def OperandZeroAndResultHaveSameType :
TEST_Op<"operand0_and_result_have_same_type",
[AllTypesMatch<["x", "res"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
let results = (outs AnyType:$res);
}
def OperandsHaveSameRank :
TEST_Op<"operands_have_same_rank", [AllRanksMatch<["x", "y"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
}
def OperandZeroAndResultHaveSameRank :
TEST_Op<"operand0_and_result_have_same_rank",
[AllRanksMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandZeroAndResultHaveSameShape :
TEST_Op<"operand0_and_result_have_same_shape",
[AllShapesMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandZeroAndResultHaveSameElementCount :
TEST_Op<"operand0_and_result_have_same_element_count",
[AllElementCountsMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def FourEqualsFive :
TEST_Op<"four_equals_five", [AllMatch<["5", "4"], "4 equals 5">]>;
def OperandRankEqualsResultSize :
TEST_Op<"operand_rank_equals_result_size",
[AllMatch<[Rank<"operand">.result, ElementCount<"result">.result],
"operand rank equals result size">]> {
let arguments = (ins AnyShaped:$operand);
let results = (outs AnyShaped:$result);
}
def IfFirstOperandIsNoneThenSoIsSecond :
TEST_Op<"if_first_operand_is_none_then_so_is_second", [PredOpTrait<
"has either both none type operands or first is not none",
Or<[
And<[TypeIsPred<"x", NoneType>, TypeIsPred<"y", NoneType>]>,
Neg<TypeIsPred<"x", NoneType>>]>>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def BroadcastableOp : TEST_Op<"broadcastable", [ResultsBroadcastableShape]> {
let arguments = (ins Variadic<AnyTensor>);
let results = (outs AnyTensor);
}
// HasParent trait
def ParentOp : TEST_Op<"parent"> {
let regions = (region AnyRegion);
}
def ChildOp : TEST_Op<"child", [HasParent<"ParentOp">]>;
// ParentOneOf trait
def ParentOp1 : TEST_Op<"parent1"> {
let regions = (region AnyRegion);
}
def ChildWithParentOneOf : TEST_Op<"child_with_parent_one_of",
[ParentOneOf<["ParentOp", "ParentOp1"]>]>;
def TerminatorOp : TEST_Op<"finish", [Terminator]>;
def SingleBlockImplicitTerminatorOp : TEST_Op<"SingleBlockImplicitTerminator",
[SingleBlockImplicitTerminator<"TerminatorOp">]> {
let regions = (region SizedRegion<1>:$region);
}
def I32ElementsAttrOp : TEST_Op<"i32ElementsAttr"> {
let arguments = (ins I32ElementsAttr:$attr);
}
def IndexElementsAttrOp : TEST_Op<"indexElementsAttr"> {
let arguments = (ins IndexElementsAttr:$attr);
}
def OpWithInferTypeInterfaceOp : TEST_Op<"op_with_infer_type_if", [
DeclareOpInterfaceMethods<InferTypeOpInterface,
["inferReturnTypeComponents"]>]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
}
def OpWithShapedTypeInferTypeInterfaceOp : TEST_Op<"op_with_shaped_type_infer_type_if",
[InferTensorTypeWithReify]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
}
def OpWithResultShapeInterfaceOp : TEST_Op<"op_with_result_shape_interface",
[DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
["reifyReturnTypeShapes"]>]> {
let arguments = (ins AnyRankedTensor:$operand1, AnyRankedTensor:$operand2);
let results = (outs AnyRankedTensor:$result1, AnyRankedTensor:$result2);
}
def OpWithResultShapePerDimInterfaceOp :
TEST_Op<"op_with_result_shape_per_dim_interface",
[DeclareOpInterfaceMethods<ReifyRankedShapedTypeOpInterface>]> {
let arguments = (ins AnyRankedTensor:$operand1, AnyRankedTensor:$operand2);
let results = (outs AnyRankedTensor:$result1, AnyRankedTensor:$result2);
}
def IsNotScalar : Constraint<CPred<"$0.getType().getRank() != 0">>;
def UpdateAttr : Pat<(I32ElementsAttrOp $attr),
(I32ElementsAttrOp ConstantAttr<I32ElementsAttr, "0">),
[(IsNotScalar $attr)]>;
def TestBranchOp : TEST_Op<"br",
[DeclareOpInterfaceMethods<BranchOpInterface>, Terminator]> {
let arguments = (ins Variadic<AnyType>:$targetOperands);
let successors = (successor AnySuccessor:$target);
}
def AttrSizedOperandOp : TEST_Op<"attr_sized_operands",
[AttrSizedOperandSegments]> {
let arguments = (ins
Variadic<I32>:$a,
Variadic<I32>:$b,
I32:$c,
Variadic<I32>:$d,
I32ElementsAttr:$operand_segment_sizes
);
}
def AttrSizedResultOp : TEST_Op<"attr_sized_results",
[AttrSizedResultSegments]> {
let arguments = (ins
I32ElementsAttr:$result_segment_sizes
);
let results = (outs
Variadic<I32>:$a,
Variadic<I32>:$b,
I32:$c,
Variadic<I32>:$d
);
}
// This is used to test encoding of a string attribute into an SSA name of a
// pretty printed value name.
def StringAttrPrettyNameOp
: TEST_Op<"string_attr_pretty_name",
[DeclareOpInterfaceMethods<OpAsmOpInterface, ["getAsmResultNames"]>]> {
let arguments = (ins StrArrayAttr:$names);
let results = (outs Variadic<I32>:$r);
let printer = [{ return ::print(p, *this); }];
let parser = [{ return ::parse$cppClass(parser, result); }];
}
// This is used to test the OpAsmOpInterface::getDefaultDialect() feature:
// operations nested in a region under this op will drop the "test." dialect
// prefix.
def DefaultDialectOp : TEST_Op<"default_dialect", [OpAsmOpInterface]> {
let regions = (region AnyRegion:$body);
let extraClassDeclaration = [{
static ::llvm::StringRef getDefaultDialect() {
return "test";
}
void getAsmResultNames(::llvm::function_ref<void(::mlir::Value, ::llvm::StringRef)> setNameFn) {}
}];
let assemblyFormat = "regions attr-dict-with-keyword";
}
//===----------------------------------------------------------------------===//
// Test Locations
//===----------------------------------------------------------------------===//
def TestLocationSrcOp : TEST_Op<"loc_src"> {
let arguments = (ins I32:$input);
let results = (outs I32:$output);
}
def TestLocationDstOp : TEST_Op<"loc_dst", [SameOperandsAndResultType]> {
let arguments = (ins I32:$input);
let results = (outs I32:$output);
}
//===----------------------------------------------------------------------===//
// Test Patterns
//===----------------------------------------------------------------------===//
def OpA : TEST_Op<"op_a"> {
let arguments = (ins I32, I32Attr:$attr);
let results = (outs I32);
}
def OpB : TEST_Op<"op_b"> {
let arguments = (ins I32, I32Attr:$attr);
let results = (outs I32);
}
// Test named pattern.
def TestNamedPatternRule : Pat<(OpA $input, $attr), (OpB $input, $attr)>;
// Test with fused location.
def : Pat<(OpA (OpA $input, $attr), $bttr), (OpB $input, $bttr)>;
// Test added benefit.
def OpD : TEST_Op<"op_d">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpE : TEST_Op<"op_e">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpF : TEST_Op<"op_f">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpG : TEST_Op<"op_g">, Arguments<(ins I32)>, Results<(outs I32)>;
// Verify that bumping benefit results in selecting different op.
def : Pat<(OpD $input), (OpE $input)>;
def : Pat<(OpD $input), (OpF $input), [], (addBenefit 10)>;
// Verify that patterns with more source nodes are selected before those with fewer.
def : Pat<(OpG $input), (OpB $input, ConstantAttr<I32Attr, "20">:$attr)>;
def : Pat<(OpG (OpG $input)), (OpB $input, ConstantAttr<I32Attr, "34">:$attr)>;
// Test patterns for zero-result op.
def OpH : TEST_Op<"op_h">, Arguments<(ins I32)>, Results<(outs)>;
def OpI : TEST_Op<"op_i">, Arguments<(ins I32)>, Results<(outs)>;
def : Pat<(OpH $input), (OpI $input)>;
// Test patterns for zero-input op.
def OpJ : TEST_Op<"op_j">, Arguments<(ins)>, Results<(outs I32)>;
def OpK : TEST_Op<"op_k">, Arguments<(ins)>, Results<(outs I32)>;
def : Pat<(OpJ), (OpK)>;
// Test that natives calls are only called once during rewrites.
def OpM : TEST_Op<"op_m"> {
let arguments = (ins I32, OptionalAttr<I32Attr>:$optional_attr);
let results = (outs I32);
}
def OpN : TEST_Op<"op_n"> {
let arguments = (ins I32, I32);
let results = (outs I32);
}
def OpO : TEST_Op<"op_o"> {
let arguments = (ins I32);
let results = (outs I32);
}
def OpP : TEST_Op<"op_p"> {
let arguments = (ins I32, I32, I32, I32, I32, I32);
let results = (outs I32);
}
// Test same operand name enforces equality condition check.
def TestEqualArgsPattern : Pat<(OpN $a, $a), (OpO $a)>;
// Test when equality is enforced at different depth.
def TestNestedOpEqualArgsPattern :
Pat<(OpN $b, (OpP $a, $b, $c, $d, $e, $f)), (replaceWithValue $b)>;
// Test when equality is enforced on same op and same operand but at different
// depth. We only bound one of the $x to the second operand of outer OpN and
// left another be the default value (which is the value of first operand of
// outer OpN). As a result, it ended up comparing wrong values in some cases.
def TestNestedSameOpAndSameArgEqualityPattern :
Pat<(OpN (OpN $_, $x), $x), (replaceWithValue $x)>;
// Test multiple equal arguments check enforced.
def TestMultipleEqualArgsPattern :
Pat<(OpP $a, $b, $a, $a, $b, $c), (OpN $c, $b)>;
// Test for memrefs normalization of an op with normalizable memrefs.
def OpNorm : TEST_Op<"op_norm", [MemRefsNormalizable]> {
let arguments = (ins AnyMemRef:$X, AnyMemRef:$Y);
}
// Test for memrefs normalization of an op without normalizable memrefs.
def OpNonNorm : TEST_Op<"op_nonnorm"> {
let arguments = (ins AnyMemRef:$X, AnyMemRef:$Y);
}
// Test for memrefs normalization of an op that has normalizable memref results.
def OpNormRet : TEST_Op<"op_norm_ret", [MemRefsNormalizable]> {
let arguments = (ins AnyMemRef:$X);
let results = (outs AnyMemRef:$Y, AnyMemRef:$Z);
}
// Test for memrefs normalization of an op with a reference to a function
// symbol.
def OpFuncRef : TEST_Op<"op_funcref"> {
let summary = "Test op with a reference to a function symbol";
let description = [{
The "test.op_funcref" is a test op with a reference to a function symbol.
}];
let builders = [OpBuilder<(ins "::mlir::FuncOp":$function)>];
}
// Pattern add the argument plus a increasing static number hidden in
// OpMTest function. That value is set into the optional argument.
// That way, we will know if operations is called once or twice.
def OpMGetNullAttr : NativeCodeCall<"Attribute()">;
def OpMAttributeIsNull : Constraint<CPred<"! ($_self)">, "Attribute is null">;
def OpMVal : NativeCodeCall<"OpMTest($_builder, $0)">;
def : Pat<(OpM $attr, $optAttr), (OpM $attr, (OpMVal $attr) ),
[(OpMAttributeIsNull:$optAttr)]>;
// Test `$_` for ignoring op argument match.
def TestIgnoreArgMatchSrcOp : TEST_Op<"ignore_arg_match_src"> {
let arguments = (ins
AnyType:$a, AnyType:$b, AnyType:$c,
AnyAttr:$d, AnyAttr:$e, AnyAttr:$f);
}
def TestIgnoreArgMatchDstOp : TEST_Op<"ignore_arg_match_dst"> {
let arguments = (ins AnyType:$b, AnyAttr:$f);
}
def : Pat<(TestIgnoreArgMatchSrcOp $_, $b, I32, I64Attr:$_, $_, $f),
(TestIgnoreArgMatchDstOp $b, $f)>;
def OpInterleavedOperandAttribute1 : TEST_Op<"interleaved_operand_attr1"> {
let arguments = (ins
I32:$input1,
I64Attr:$attr1,
I32:$input2,
I64Attr:$attr2
);
}
def OpInterleavedOperandAttribute2 : TEST_Op<"interleaved_operand_attr2"> {
let arguments = (ins
I32:$input1,
I64Attr:$attr1,
I32:$input2,
I64Attr:$attr2
);
}
def ManyArgsOp : TEST_Op<"many_arguments"> {
let arguments = (ins
I32:$input1, I32:$input2, I32:$input3, I32:$input4, I32:$input5,
I32:$input6, I32:$input7, I32:$input8, I32:$input9,
I64Attr:$attr1, I64Attr:$attr2, I64Attr:$attr3, I64Attr:$attr4,
I64Attr:$attr5, I64Attr:$attr6, I64Attr:$attr7, I64Attr:$attr8,
I64Attr:$attr9
);
}
// Test that DRR does not blow up when seeing lots of arguments.
def : Pat<(ManyArgsOp
$input1, $input2, $input3, $input4, $input5,
$input6, $input7, $input8, $input9,
ConstantAttr<I64Attr, "42">,
$attr2, $attr3, $attr4, $attr5, $attr6,
$attr7, $attr8, $attr9),
(ManyArgsOp
$input1, $input2, $input3, $input4, $input5,
$input6, $input7, $input8, $input9,
ConstantAttr<I64Attr, "24">,
$attr2, $attr3, $attr4, $attr5, $attr6,
$attr7, $attr8, $attr9)>;
// Test that we can capture and reference interleaved operands and attributes.
def : Pat<(OpInterleavedOperandAttribute1 $input1, $attr1, $input2, $attr2),
(OpInterleavedOperandAttribute2 $input1, $attr1, $input2, $attr2)>;
// Test NativeCodeCall.
def OpNativeCodeCall1 : TEST_Op<"native_code_call1"> {
let arguments = (ins
I32:$input1, I32:$input2,
BoolAttr:$choice,
I64Attr:$attr1, I64Attr:$attr2
);
let results = (outs I32);
}
def OpNativeCodeCall2 : TEST_Op<"native_code_call2"> {
let arguments = (ins I32:$input, I64ArrayAttr:$attr);
let results = (outs I32);
}
// Native code call to invoke a C++ function
def CreateOperand: NativeCodeCall<"chooseOperand($0, $1, $2)">;
// Native code call to invoke a C++ expression
def CreateArrayAttr: NativeCodeCall<"$_builder.getArrayAttr({$0, $1})">;
// Test that we can use NativeCodeCall to create operand and attribute.
// This pattern chooses between $input1 and $input2 according to $choice and
// it combines $attr1 and $attr2 into an array attribute.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrTrue:$choice, $attr1, $attr2),
(OpNativeCodeCall2 (CreateOperand $input1, $input2, $choice),
(CreateArrayAttr $attr1, $attr2))>;
// Note: the following is just for testing purpose.
// Should use the replaceWithValue directive instead.
def UseOpResult: NativeCodeCall<"$0">;
// Test that we can use NativeCodeCall to create result.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrFalse, $attr1, $attr2),
(UseOpResult $input2)>;
def OpNativeCodeCall3 : TEST_Op<"native_code_call3"> {
let arguments = (ins I32:$input);
let results = (outs I32);
}
// Test that NativeCodeCall is not ignored if it is not used to directly
// replace the matched root op.
def : Pattern<(OpNativeCodeCall3 $input),
[(NativeCodeCallVoid<"createOpI($_builder, $_loc, $0)"> $input),
(OpK)]>;
def OpNativeCodeCall4 : TEST_Op<"native_code_call4"> {
let arguments = (ins AnyType:$input1);
let results = (outs I32:$output1, I32:$output2);
}
def OpNativeCodeCall5 : TEST_Op<"native_code_call5"> {
let arguments = (ins I32:$input1, I32:$input2);
let results = (outs I32:$output1, I32:$output2);
}
def GetFirstI32Result : NativeCodeCall<"success(getFirstI32Result($_self, $0))">;
def BindNativeCodeCallResult : NativeCodeCall<"bindNativeCodeCallResult($0)">;
def : Pat<(OpNativeCodeCall4 (GetFirstI32Result $ret)),
(OpNativeCodeCall5 (BindNativeCodeCallResult:$native $ret), $native)>;
def OpNativeCodeCall6 : TEST_Op<"native_code_call6"> {
let arguments = (ins I32:$input1, I32:$input2);
let results = (outs I32:$output1, I32:$output2);
}
def OpNativeCodeCall7 : TEST_Op<"native_code_call7"> {
let arguments = (ins I32:$input);
let results = (outs I32);
}
def BindMultipleNativeCodeCallResult : NativeCodeCall<"bindMultipleNativeCodeCallResult($0, $1)", 2>;
def : Pattern<(OpNativeCodeCall6 $arg1, $arg2),
[(OpNativeCodeCall7 (BindMultipleNativeCodeCallResult:$native__0 $arg1, $arg2)),
(OpNativeCodeCall7 $native__1)]>;
// Test AllAttrConstraintsOf.
def OpAllAttrConstraint1 : TEST_Op<"all_attr_constraint_of1"> {
let arguments = (ins I64ArrayAttr:$attr);
let results = (outs I32);
}
def OpAllAttrConstraint2 : TEST_Op<"all_attr_constraint_of2"> {
let arguments = (ins I64ArrayAttr:$attr);
let results = (outs I32);
}
def Constraint0 : AttrConstraint<
CPred<"$_self.cast<ArrayAttr>()[0]."
"cast<::mlir::IntegerAttr>().getInt() == 0">,
"[0] == 0">;
def Constraint1 : AttrConstraint<
CPred<"$_self.cast<ArrayAttr>()[1].cast<::mlir::IntegerAttr>().getInt() == 1">,
"[1] == 1">;
def : Pat<(OpAllAttrConstraint1
AllAttrConstraintsOf<[Constraint0, Constraint1]>:$attr),
(OpAllAttrConstraint2 $attr)>;
// Op for testing RewritePattern removing op with inner ops.
def TestOpWithRegionPattern : TEST_Op<"op_with_region_pattern"> {
let regions = (region SizedRegion<1>:$region);
let hasCanonicalizer = 1;
}
def TestOpConstant : TEST_Op<"constant", [ConstantLike, NoSideEffect]> {
let arguments = (ins AnyAttr:$value);
let results = (outs AnyType);
let extraClassDeclaration = [{
::mlir::Attribute getValue() { return (*this)->getAttr("value"); }
}];
let hasFolder = 1;
}
def OpR : TEST_Op<"op_r">, Arguments<(ins AnyInteger, AnyInteger)>, Results<(outs AnyInteger)>;
def OpS : TEST_Op<"op_s">, Arguments<(ins AnyInteger, AnyAttr:$value)>, Results<(outs AnyInteger)>;
def : Pat<(OpR $input1, (ConstantLikeMatcher I32Attr:$input2)),
(OpS:$unused $input1, $input2)>;
// Op for testing trivial removal via folding of op with inner ops and no uses.
def TestOpWithRegionFoldNoSideEffect : TEST_Op<
"op_with_region_fold_no_side_effect", [NoSideEffect]> {
let regions = (region SizedRegion<1>:$region);
}
// Op for testing folding of outer op with inner ops.
def TestOpWithRegionFold : TEST_Op<"op_with_region_fold"> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let regions = (region SizedRegion<1>:$region);
let hasFolder = 1;
}
def TestOpWithVariadicResultsAndFolder: TEST_Op<"op_with_variadic_results_and_folder"> {
let arguments = (ins Variadic<I32>:$operands);
let results = (outs Variadic<I32>);
let hasFolder = 1;
}
def TestCommutativeOp : TEST_Op<"op_commutative", [Commutative]> {
let arguments = (ins I32:$op1, I32:$op2, I32:$op3, I32:$op4);
let results = (outs I32);
}
def TestIdempotentTraitOp
: TEST_Op<"op_idempotent_trait",
[SameOperandsAndResultType, NoSideEffect, Idempotent]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
}
def TestInvolutionTraitNoOperationFolderOp
: TEST_Op<"op_involution_trait_no_operation_fold",
[SameOperandsAndResultType, NoSideEffect, Involution]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
}
def TestInvolutionTraitFailingOperationFolderOp
: TEST_Op<"op_involution_trait_failing_operation_fold",
[SameOperandsAndResultType, NoSideEffect, Involution]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
let hasFolder = 1;
}
def TestInvolutionTraitSuccesfulOperationFolderOp
: TEST_Op<"op_involution_trait_succesful_operation_fold",
[SameOperandsAndResultType, NoSideEffect, Involution]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
let hasFolder = 1;
}
def TestOpInPlaceFoldAnchor : TEST_Op<"op_in_place_fold_anchor"> {
let arguments = (ins I32);
let results = (outs I32);
}
def TestOpInPlaceFold : TEST_Op<"op_in_place_fold"> {
let arguments = (ins I32:$op, I32Attr:$attr);
let results = (outs I32);
let hasFolder = 1;
}
// An op that always fold itself.
def TestPassthroughFold : TEST_Op<"passthrough_fold"> {
let arguments = (ins AnyType:$op);
let results = (outs AnyType);
let hasFolder = 1;
}
def TestDialectCanonicalizerOp : TEST_Op<"dialect_canonicalizable"> {
let arguments = (ins);
let results = (outs I32);
}
//===----------------------------------------------------------------------===//
// Test Patterns (Symbol Binding)
// Test symbol binding.
def OpSymbolBindingA : TEST_Op<"symbol_binding_a", []> {
let arguments = (ins I32:$operand, I64Attr:$attr);
let results = (outs I32);
}
def OpSymbolBindingB : TEST_Op<"symbol_binding_b", []> {
let arguments = (ins I32:$operand);
let results = (outs I32);
}
def OpSymbolBindingC : TEST_Op<"symbol_binding_c", []> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let builders = OpSymbolBindingB.builders;
}
def OpSymbolBindingD : TEST_Op<"symbol_binding_d", []> {
let arguments = (ins I32:$input1, I32:$input2, I64Attr:$attr);
let results = (outs I32);
}
def HasOneUse: Constraint<CPred<"$0.hasOneUse()">, "has one use">;
def : Pattern<
// Bind to source pattern op operand/attribute/result
(OpSymbolBindingA:$res_a $operand, $attr), [
// Bind to auxiliary op result
(OpSymbolBindingC:$res_c (OpSymbolBindingB:$res_b $operand)),
// Use bound symbols in resultant ops
(OpSymbolBindingD $res_b, $res_c, $attr)],
// Use bound symbols in additional constraints
[(HasOneUse $res_a)]>;
def OpSymbolBindingNoResult : TEST_Op<"symbol_binding_no_result", []> {
let arguments = (ins I32:$operand);
}
// Test that we can bind to an op without results and reference it later.
def : Pat<(OpSymbolBindingNoResult:$op $operand),
(NativeCodeCallVoid<"handleNoResultOp($_builder, $0)"> $op)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Attributes)
// Test matching against op attributes.
def OpAttrMatch1 : TEST_Op<"match_op_attribute1"> {
let arguments = (ins
I32Attr:$required_attr,
OptionalAttr<I32Attr>:$optional_attr,
DefaultValuedAttr<I32Attr, "42">:$default_valued_attr,
I32Attr:$more_attr
);
let results = (outs I32);
}
def OpAttrMatch2 : TEST_Op<"match_op_attribute2"> {
let arguments = OpAttrMatch1.arguments;
let results = (outs I32);
}
def MoreConstraint : AttrConstraint<
CPred<"$_self.cast<IntegerAttr>().getInt() == 4">, "more constraint">;
def : Pat<(OpAttrMatch1 $required, $optional, $default_valued,
MoreConstraint:$more),
(OpAttrMatch2 $required, $optional, $default_valued, $more)>;
// Test unit attrs.
def OpAttrMatch3 : TEST_Op<"match_op_attribute3"> {
let arguments = (ins UnitAttr:$attr);
let results = (outs I32);
}
def OpAttrMatch4 : TEST_Op<"match_op_attribute4"> {
let arguments = (ins UnitAttr:$attr1, UnitAttr:$attr2);
let results = (outs I32);
}
def : Pat<(OpAttrMatch3 $attr), (OpAttrMatch4 ConstUnitAttr, $attr)>;
// Test with constant attr.
def OpC : TEST_Op<"op_c">, Arguments<(ins I32)>, Results<(outs I32)>;
def : Pat<(OpC $input), (OpB $input, ConstantAttr<I32Attr, "17">:$attr)>;
// Test string enum attribute in rewrites.
def : Pat<(StrEnumAttrOp StrCaseA), (StrEnumAttrOp StrCaseB)>;
// Test integer enum attribute in rewrites.
def : Pat<(I32EnumAttrOp I32Case5), (I32EnumAttrOp I32Case10)>;
def : Pat<(I64EnumAttrOp I64Case5), (I64EnumAttrOp I64Case10)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Multi-result Ops)
def MultiResultOpKind1: I64EnumAttrCase<"kind1", 1>;
def MultiResultOpKind2: I64EnumAttrCase<"kind2", 2>;
def MultiResultOpKind3: I64EnumAttrCase<"kind3", 3>;
def MultiResultOpKind4: I64EnumAttrCase<"kind4", 4>;
def MultiResultOpKind5: I64EnumAttrCase<"kind5", 5>;
def MultiResultOpKind6: I64EnumAttrCase<"kind6", 6>;
def MultiResultOpEnum: I64EnumAttr<
"MultiResultOpEnum", "Multi-result op kinds", [
MultiResultOpKind1, MultiResultOpKind2, MultiResultOpKind3,
MultiResultOpKind4, MultiResultOpKind5, MultiResultOpKind6
]>;
def ThreeResultOp : TEST_Op<"three_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2, F32:$result3);
}
def AnotherThreeResultOp : TEST_Op<"another_three_result", [DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2, F32:$result3);
}
def TwoResultOp : TEST_Op<"two_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2);
}
def AnotherTwoResultOp : TEST_Op<"another_two_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs F32:$result1, F32:$result2);
}
def OneResultOp1 : TEST_Op<"one_result1"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs F32:$result1);
}
def OneResultOp2 : TEST_Op<"one_result2"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1);
}
def OneResultOp3 : TEST_Op<"one_result3"> {
let arguments = (ins F32);
let results = (outs I32:$result1);
}
// Test using multi-result op as a whole
def : Pat<(ThreeResultOp MultiResultOpKind1:$kind),
(AnotherThreeResultOp $kind)>;
// Test using multi-result op as a whole for partial replacement
def : Pattern<(ThreeResultOp MultiResultOpKind2:$kind),
[(TwoResultOp $kind),
(OneResultOp1 $kind)]>;
def : Pattern<(ThreeResultOp MultiResultOpKind3:$kind),
[(OneResultOp2 $kind),
(AnotherTwoResultOp $kind)]>;
// Test using results separately in a multi-result op
def : Pattern<(ThreeResultOp MultiResultOpKind4:$kind),
[(TwoResultOp:$res1__0 $kind),
(OneResultOp1 $kind),
(TwoResultOp:$res2__1 $kind)]>;
// Test referencing a single value in the value pack
// This rule only matches TwoResultOp if its second result has no use.
def : Pattern<(TwoResultOp:$res MultiResultOpKind5:$kind),
[(OneResultOp2 $kind),
(OneResultOp1 $kind)],
[(HasNoUseOf:$res__1)]>;
// Test using auxiliary ops for replacing multi-result op
def : Pattern<
(ThreeResultOp MultiResultOpKind6:$kind), [
// Auxiliary op generated to help building the final result but not
// directly used to replace the source op's results.
(TwoResultOp:$interm $kind),
(OneResultOp3 $interm__1),
(AnotherTwoResultOp $kind)
]>;
//===----------------------------------------------------------------------===//
// Test Patterns (Variadic Ops)
def OneVResOneVOperandOp1 : TEST_Op<"one_variadic_out_one_variadic_in1"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
}
def OneVResOneVOperandOp2 : TEST_Op<"one_variadic_out_one_variadic_in2"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
}
// Rewrite an op with one variadic operand and one variadic result to
// another similar op.
def : Pat<(OneVResOneVOperandOp1 $inputs), (OneVResOneVOperandOp2 $inputs)>;
def MixedVOperandOp1 : TEST_Op<"mixed_variadic_in1",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
F32:$input2,
Variadic<I32>:$input3
);
}
def MixedVOperandOp2 : TEST_Op<"mixed_variadic_in2",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
F32:$input2,
Variadic<I32>:$input3
);
}
// Rewrite an op with both variadic operands and normal operands.
def : Pat<(MixedVOperandOp1 $input1, $input2, $input3),
(MixedVOperandOp2 $input1, $input2, $input3)>;
def MixedVResultOp1 : TEST_Op<"mixed_variadic_out1", [SameVariadicResultSize]> {
let results = (outs
Variadic<I32>:$output1,
F32:$output2,
Variadic<I32>:$output3
);
}
def MixedVResultOp2 : TEST_Op<"mixed_variadic_out2", [SameVariadicResultSize]> {
let results = (outs
Variadic<I32>:$output1,
F32:$output2,
Variadic<I32>:$output3
);
}
// Rewrite an op with both variadic results and normal results.
// Note that because we are generating the op with a top-level result pattern,
// we are able to deduce the correct result types for the generated op using
// the information from the matched root op.
def : Pat<(MixedVResultOp1), (MixedVResultOp2)>;
def OneI32ResultOp : TEST_Op<"one_i32_out"> {
let results = (outs I32);
}
def MixedVOperandOp3 : TEST_Op<"mixed_variadic_in3",
[SameVariadicOperandSize]> {
let arguments = (ins
I32:$input1,
Variadic<I32>:$input2,
Variadic<I32>:$input3,
I32Attr:$count
);
let results = (outs I32);
}
def MixedVResultOp3 : TEST_Op<"mixed_variadic_out3",
[SameVariadicResultSize]> {
let arguments = (ins I32Attr:$count);
let results = (outs
I32:$output1,
Variadic<I32>:$output2,
Variadic<I32>:$output3
);
// We will use this op in a nested result pattern, where we cannot deduce the
// result type. So need to provide a builder not requiring result types.
let builders = [
OpBuilder<(ins "::mlir::IntegerAttr":$count),
[{
auto i32Type = $_builder.getIntegerType(32);
$_state.addTypes(i32Type); // $output1
SmallVector<Type, 4> types(count.getInt(), i32Type);
$_state.addTypes(types); // $output2
$_state.addTypes(types); // $output3
$_state.addAttribute("count", count);
}]>
];
}
// Generates an op with variadic results using nested pattern.
def : Pat<(OneI32ResultOp),
(MixedVOperandOp3
(MixedVResultOp3:$results__0 ConstantAttr<I32Attr, "2">),
(replaceWithValue $results__1),
(replaceWithValue $results__2),
ConstantAttr<I32Attr, "2">)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Location)
// Test that we can specify locations for generated ops.
def : Pat<(TestLocationSrcOp:$res1
(TestLocationSrcOp:$res2
(TestLocationSrcOp:$res3 $input))),
(TestLocationDstOp
(TestLocationDstOp
(TestLocationDstOp $input, (location $res1)),
(location "named")),
(location "fused", $res2, $res3))>;
//===----------------------------------------------------------------------===//
// Test Legalization
//===----------------------------------------------------------------------===//
def Test_LegalizerEnum_Success : StrEnumAttrCase<"Success">;
def Test_LegalizerEnum_Failure : StrEnumAttrCase<"Failure">;
def Test_LegalizerEnum : StrEnumAttr<"Success", "Failure",
[Test_LegalizerEnum_Success, Test_LegalizerEnum_Failure]>;
def ILLegalOpA : TEST_Op<"illegal_op_a">, Results<(outs I32)>;
def ILLegalOpB : TEST_Op<"illegal_op_b">, Results<(outs I32)>;
def ILLegalOpC : TEST_Op<"illegal_op_c">, Results<(outs I32)>;
def ILLegalOpD : TEST_Op<"illegal_op_d">, Results<(outs I32)>;
def ILLegalOpE : TEST_Op<"illegal_op_e">, Results<(outs I32)>;
def ILLegalOpF : TEST_Op<"illegal_op_f">, Results<(outs I32)>;
def LegalOpA : TEST_Op<"legal_op_a">,
Arguments<(ins Test_LegalizerEnum:$status)>, Results<(outs I32)>;
def LegalOpB : TEST_Op<"legal_op_b">, Results<(outs I32)>;
// Check that the conversion infrastructure can properly undo the creation of
// operations where an operation was created before its parent, in this case,
// in the parent's builder.
def IllegalOpTerminator : TEST_Op<"illegal_op_terminator", [Terminator]>;
def IllegalOpWithRegion : TEST_Op<"illegal_op_with_region"> {
let skipDefaultBuilders = 1;
let builders = [OpBuilder<(ins),
[{
Region *bodyRegion = $_state.addRegion();
OpBuilder::InsertionGuard g($_builder);
Block *body = $_builder.createBlock(bodyRegion);
$_builder.setInsertionPointToEnd(body);
$_builder.create<IllegalOpTerminator>($_state.location);
}]>];
}
def IllegalOpWithRegionAnchor : TEST_Op<"illegal_op_with_region_anchor">;
// Check that smaller pattern depths are chosen, i.e. prioritize more direct
// mappings.
def : Pat<(ILLegalOpA), (LegalOpA Test_LegalizerEnum_Success)>;
def : Pat<(ILLegalOpA), (ILLegalOpB)>;
def : Pat<(ILLegalOpB), (LegalOpA Test_LegalizerEnum_Failure)>;
// Check that the higher benefit pattern is taken for multiple legalizations
// with the same depth.
def : Pat<(ILLegalOpC), (ILLegalOpD)>;
def : Pat<(ILLegalOpD), (LegalOpA Test_LegalizerEnum_Failure)>;
def : Pat<(ILLegalOpC), (ILLegalOpE), [], (addBenefit 10)>;
def : Pat<(ILLegalOpE), (LegalOpA Test_LegalizerEnum_Success)>;
// Check that patterns use the most up-to-date value when being replaced.
def TestRewriteOp : TEST_Op<"rewrite">,
Arguments<(ins AnyType)>, Results<(outs AnyType)>;
def : Pat<(TestRewriteOp $input), (replaceWithValue $input)>;
// Check that patterns can specify bounded recursion when rewriting.
def TestRecursiveRewriteOp : TEST_Op<"recursive_rewrite"> {
let arguments = (ins I64Attr:$depth);
let assemblyFormat = "$depth attr-dict";
}
// Test legalization pattern: this op will be erase and will also erase the
// producer of its operand.
def BlackHoleOp : TEST_Op<"blackhole">,
Arguments<(ins AnyType)>;
//===----------------------------------------------------------------------===//
// Test Type Legalization
//===----------------------------------------------------------------------===//
def TestRegionBuilderOp : TEST_Op<"region_builder">;
def TestReturnOp : TEST_Op<"return", [ReturnLike, Terminator]> {
let arguments = (ins Variadic<AnyType>);
let builders = [OpBuilder<(ins),
[{ build($_builder, $_state, {}); }]>
];
}
def TestCastOp : TEST_Op<"cast">,
Arguments<(ins Variadic<AnyType>)>, Results<(outs AnyType)>;
def TestInvalidOp : TEST_Op<"invalid", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
def TestTypeProducerOp : TEST_Op<"type_producer">,
Results<(outs AnyType)>;
def TestAnotherTypeProducerOp : TEST_Op<"another_type_producer">,
Results<(outs AnyType)>;
def TestTypeConsumerOp : TEST_Op<"type_consumer">,
Arguments<(ins AnyType)>;
def TestValidOp : TEST_Op<"valid", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
def TestMergeBlocksOp : TEST_Op<"merge_blocks"> {
let summary = "merge_blocks operation";
let description = [{
Test op with multiple blocks that are merged with Dialect Conversion"
}];
let regions = (region AnyRegion:$body);
let results = (outs Variadic<AnyType>:$result);
}
def TestSignatureConversionUndoOp : TEST_Op<"signature_conversion_undo"> {
let regions = (region AnyRegion);
}
//===----------------------------------------------------------------------===//
// Test parser.
//===----------------------------------------------------------------------===//
def ParseIntegerLiteralOp : TEST_Op<"parse_integer_literal"> {
let results = (outs Variadic<Index>:$results);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def ParseWrappedKeywordOp : TEST_Op<"parse_wrapped_keyword"> {
let arguments = (ins StrAttr:$keyword);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
//===----------------------------------------------------------------------===//
// Test region argument list parsing.
def IsolatedRegionOp : TEST_Op<"isolated_region", [IsolatedFromAbove]> {
let summary = "isolated region operation";
let description = [{
Test op with an isolated region, to test passthrough region arguments. Each
argument is of index type.
}];
let arguments = (ins Index);
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def SSACFGRegionOp : TEST_Op<"ssacfg_region", [
DeclareOpInterfaceMethods<RegionKindInterface>]> {
let summary = "operation with an SSACFG region";
let description = [{
Test op that defines an SSACFG region.
}];
let regions = (region VariadicRegion<AnyRegion>:$regions);
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def GraphRegionOp : TEST_Op<"graph_region", [
DeclareOpInterfaceMethods<RegionKindInterface>]> {
let summary = "operation with a graph region";
let description = [{
Test op that defines a graph region.
}];
let regions = (region AnyRegion:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def AffineScopeOp : TEST_Op<"affine_scope", [AffineScope]> {
let summary = "affine scope operation";
let description = [{
Test op that defines a new affine scope.
}];
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def WrappingRegionOp : TEST_Op<"wrapping_region",
[SingleBlockImplicitTerminator<"TestReturnOp">]> {
let summary = "wrapping region operation";
let description = [{
Test op wrapping another op in a region, to test calling
parseGenericOperation from the custom parser.
}];
let results = (outs Variadic<AnyType>);
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def PolyForOp : TEST_Op<"polyfor">
{
let summary = "polyfor operation";
let description = [{
Test op with multiple region arguments, each argument of index type.
}];
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
}
//===----------------------------------------------------------------------===//
// Test OpAsmInterface.
def AsmInterfaceOp : TEST_Op<"asm_interface_op"> {
let results = (outs AnyType:$first, Variadic<AnyType>:$middle_results,
AnyType);
}
def AsmDialectInterfaceOp : TEST_Op<"asm_dialect_interface_op"> {
let results = (outs AnyType);
}
//===----------------------------------------------------------------------===//
// Test Op Asm Format
//===----------------------------------------------------------------------===//
def FormatLiteralOp : TEST_Op<"format_literal_op"> {
let assemblyFormat = [{
`keyword_$.` `->` `:` `,` `=` `<` `>` `(` `)` `[` `]` `` `(` ` ` `)`
`?` `+` `*` `{` `\n` `}` attr-dict
}];
}
// Test that we elide attributes that are within the syntax.
def FormatAttrOp : TEST_Op<"format_attr_op"> {
let arguments = (ins I64Attr:$attr);
let assemblyFormat = "$attr attr-dict";
}
// Test that we elide optional attributes that are within the syntax.
def FormatOptAttrAOp : TEST_Op<"format_opt_attr_op_a"> {
let arguments = (ins OptionalAttr<I64Attr>:$opt_attr);
let assemblyFormat = "(`(` $opt_attr^ `)` )? attr-dict";
}
def FormatOptAttrBOp : TEST_Op<"format_opt_attr_op_b"> {
let arguments = (ins OptionalAttr<I64Attr>:$opt_attr);
let assemblyFormat = "($opt_attr^)? attr-dict";
}
// Test that we format symbol name attributes properly.
def FormatSymbolNameAttrOp : TEST_Op<"format_symbol_name_attr_op"> {
let arguments = (ins SymbolNameAttr:$attr);
let assemblyFormat = "$attr attr-dict";
}
// Test that we format optional symbol name attributes properly.
def FormatOptSymbolNameAttrOp : TEST_Op<"format_opt_symbol_name_attr_op"> {
let arguments = (ins OptionalAttr<SymbolNameAttr>:$opt_attr);
let assemblyFormat = "($opt_attr^)? attr-dict";
}
// Test that we elide attributes that are within the syntax.
def FormatAttrDictWithKeywordOp : TEST_Op<"format_attr_dict_w_keyword"> {
let arguments = (ins I64Attr:$attr, OptionalAttr<I64Attr>:$opt_attr);
let assemblyFormat = "attr-dict-with-keyword";
}
// Test that we don't need to provide types in the format if they are buildable.
def FormatBuildableTypeOp : TEST_Op<"format_buildable_type_op"> {
let arguments = (ins I64:$buildable);
let results = (outs I64:$buildable_res);
let assemblyFormat = "$buildable attr-dict";
}
// Test various mixings of region formatting.
class FormatRegionBase<string suffix, string fmt>
: TEST_Op<"format_region_" # suffix # "_op"> {
let regions = (region AnyRegion:$region);
let assemblyFormat = fmt;
}
def FormatRegionAOp : FormatRegionBase<"a", [{
regions attr-dict
}]>;
def FormatRegionBOp : FormatRegionBase<"b", [{
$region attr-dict
}]>;
def FormatRegionCOp : FormatRegionBase<"c", [{
(`region` $region^)? attr-dict
}]>;
class FormatVariadicRegionBase<string suffix, string fmt>
: TEST_Op<"format_variadic_region_" # suffix # "_op"> {
let regions = (region VariadicRegion<AnyRegion>:$regions);
let assemblyFormat = fmt;
}
def FormatVariadicRegionAOp : FormatVariadicRegionBase<"a", [{
$regions attr-dict
}]>;
def FormatVariadicRegionBOp : FormatVariadicRegionBase<"b", [{
($regions^ `found_regions`)? attr-dict
}]>;
class FormatRegionImplicitTerminatorBase<string suffix, string fmt>
: TEST_Op<"format_implicit_terminator_region_" # suffix # "_op",
[SingleBlockImplicitTerminator<"TestReturnOp">]> {
let regions = (region AnyRegion:$region);
let assemblyFormat = fmt;
}
def FormatFormatRegionImplicitTerminatorAOp
: FormatRegionImplicitTerminatorBase<"a", [{
$region attr-dict
}]>;
// Test various mixings of result type formatting.
class FormatResultBase<string suffix, string fmt>
: TEST_Op<"format_result_" # suffix # "_op"> {
let results = (outs I64:$buildable_res, AnyMemRef:$result);
let assemblyFormat = fmt;
}
def FormatResultAOp : FormatResultBase<"a", [{
type($result) attr-dict
}]>;
def FormatResultBOp : FormatResultBase<"b", [{
type(results) attr-dict
}]>;
def FormatResultCOp : FormatResultBase<"c", [{
functional-type($buildable_res, $result) attr-dict
}]>;
def FormatVariadicResult : TEST_Op<"format_variadic_result"> {
let results = (outs Variadic<I64>:$result);
let assemblyFormat = [{ `:` type($result) attr-dict}];
}
def FormatMultipleVariadicResults : TEST_Op<"format_multiple_variadic_results",
[AttrSizedResultSegments]> {
let results = (outs Variadic<I64>:$result0, Variadic<AnyType>:$result1);
let assemblyFormat = [{
`:` `(` type($result0) `)` `,` `(` type($result1) `)` attr-dict
}];
}
// Test various mixings of operand type formatting.
class FormatOperandBase<string suffix, string fmt>
: TEST_Op<"format_operand_" # suffix # "_op"> {
let arguments = (ins I64:$buildable, AnyMemRef:$operand);
let assemblyFormat = fmt;
}
def FormatOperandAOp : FormatOperandBase<"a", [{
operands `:` type(operands) attr-dict
}]>;
def FormatOperandBOp : FormatOperandBase<"b", [{
operands `:` type($operand) attr-dict
}]>;
def FormatOperandCOp : FormatOperandBase<"c", [{
$buildable `,` $operand `:` type(operands) attr-dict
}]>;
def FormatOperandDOp : FormatOperandBase<"d", [{
$buildable `,` $operand `:` type($operand) attr-dict
}]>;
def FormatOperandEOp : FormatOperandBase<"e", [{
$buildable `,` $operand `:` type($buildable) `,` type($operand) attr-dict
}]>;
def FormatSuccessorAOp : TEST_Op<"format_successor_a_op", [Terminator]> {
let successors = (successor VariadicSuccessor<AnySuccessor>:$targets);
let assemblyFormat = "$targets attr-dict";
}
def FormatVariadicOperand : TEST_Op<"format_variadic_operand"> {
let arguments = (ins Variadic<I64>:$operand);
let assemblyFormat = [{ $operand `:` type($operand) attr-dict}];
}
def FormatVariadicOfVariadicOperand
: TEST_Op<"format_variadic_of_variadic_operand"> {
let arguments = (ins
VariadicOfVariadic<I64, "operand_segments">:$operand,
I32ElementsAttr:$operand_segments
);
let assemblyFormat = [{ $operand `:` type($operand) attr-dict}];
}
def FormatMultipleVariadicOperands :
TEST_Op<"format_multiple_variadic_operands", [AttrSizedOperandSegments]> {
let arguments = (ins Variadic<I64>:$operand0, Variadic<AnyType>:$operand1);
let assemblyFormat = [{
` ` `(` $operand0 `)` `,` `(` $operand1 `:` type($operand1) `)` attr-dict
}];
}
// Test various mixings of optional operand and result type formatting.
class FormatOptionalOperandResultOpBase<string suffix, string fmt>
: TEST_Op<"format_optional_operand_result_" # suffix # "_op",
[AttrSizedOperandSegments]> {
let arguments = (ins Optional<I64>:$optional, Variadic<I64>:$variadic);
let results = (outs Optional<I64>:$optional_res);
let assemblyFormat = fmt;
}
def FormatOptionalOperandResultAOp : FormatOptionalOperandResultOpBase<"a", [{
`(` $optional `:` type($optional) `)` `:` type($optional_res)
(`[` $variadic^ `]`)? attr-dict
}]>;
def FormatOptionalOperandResultBOp : FormatOptionalOperandResultOpBase<"b", [{
(`(` $optional^ `:` type($optional) `)`)? `:` type($optional_res)
(`[` $variadic^ `]`)? attr-dict
}]>;
// Test optional result type formatting.
class FormatOptionalResultOpBase<string suffix, string fmt>
: TEST_Op<"format_optional_result_" # suffix # "_op",
[AttrSizedResultSegments]> {
let results = (outs Optional<I64>:$optional, Variadic<I64>:$variadic);
let assemblyFormat = fmt;
}
def FormatOptionalResultAOp : FormatOptionalResultOpBase<"a", [{
(`:` type($optional)^ `->` type($variadic))? attr-dict
}]>;
def FormatOptionalResultBOp : FormatOptionalResultOpBase<"b", [{
(`:` type($optional) `->` type($variadic)^)? attr-dict
}]>;
def FormatOptionalResultCOp : FormatOptionalResultOpBase<"c", [{
(`:` functional-type($optional, $variadic)^)? attr-dict
}]>;
def FormatTwoVariadicOperandsNoBuildableTypeOp
: TEST_Op<"format_two_variadic_operands_no_buildable_type_op",
[AttrSizedOperandSegments]> {
let arguments = (ins Variadic<AnyType>:$a,
Variadic<AnyType>:$b);
let assemblyFormat = [{
`(` $a `:` type($a) `)` `->` `(` $b `:` type($b) `)` attr-dict
}];
}
def FormatInferVariadicTypeFromNonVariadic
: TEST_Op<"format_infer_variadic_type_from_non_variadic",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>:$operands);
let results = (outs AnyType:$result);
let assemblyFormat = "$operands attr-dict `:` type($result)";
}
def FormatOptionalUnitAttr : TEST_Op<"format_optional_unit_attribute"> {
let arguments = (ins UnitAttr:$is_optional);
let assemblyFormat = "(`is_optional` $is_optional^)? attr-dict";
}
def FormatOptionalUnitAttrNoElide
: TEST_Op<"format_optional_unit_attribute_no_elide"> {
let arguments = (ins UnitAttr:$is_optional);
let assemblyFormat = "($is_optional^)? attr-dict";
}
def FormatOptionalEnumAttr : TEST_Op<"format_optional_enum_attr"> {
let arguments = (ins OptionalAttr<SomeI64Enum>:$attr);
let assemblyFormat = "($attr^)? attr-dict";
}
def FormatOptionalWithElse : TEST_Op<"format_optional_else"> {
let arguments = (ins UnitAttr:$isFirstBranchPresent);
let assemblyFormat = "(`then` $isFirstBranchPresent^):(`else`)? attr-dict";
}
//===----------------------------------------------------------------------===//
// Custom Directives
def FormatCustomDirectiveOperands
: TEST_Op<"format_custom_directive_operands", [AttrSizedOperandSegments]> {
let arguments = (ins I64:$operand, Optional<I64>:$optOperand,
Variadic<I64>:$varOperands);
let assemblyFormat = [{
custom<CustomDirectiveOperands>(
$operand, $optOperand, $varOperands
)
attr-dict
}];
}
def FormatCustomDirectiveOperandsAndTypes
: TEST_Op<"format_custom_directive_operands_and_types",
[AttrSizedOperandSegments]> {
let arguments = (ins AnyType:$operand, Optional<AnyType>:$optOperand,
Variadic<AnyType>:$varOperands);
let assemblyFormat = [{
custom<CustomDirectiveOperandsAndTypes>(
$operand, $optOperand, $varOperands,
type($operand), type($optOperand), type($varOperands)
)
attr-dict
}];
}
def FormatCustomDirectiveRegions : TEST_Op<"format_custom_directive_regions"> {
let regions = (region AnyRegion:$region, VariadicRegion<AnyRegion>:$regions);
let assemblyFormat = [{
custom<CustomDirectiveRegions>(
$region, $regions
)
attr-dict
}];
}
def FormatCustomDirectiveResults
: TEST_Op<"format_custom_directive_results", [AttrSizedResultSegments]> {
let results = (outs AnyType:$result, Optional<AnyType>:$optResult,
Variadic<AnyType>:$varResults);
let assemblyFormat = [{
custom<CustomDirectiveResults>(
type($result), type($optResult), type($varResults)
)
attr-dict
}];
}
def FormatCustomDirectiveResultsWithTypeRefs
: TEST_Op<"format_custom_directive_results_with_type_refs",
[AttrSizedResultSegments]> {
let results = (outs AnyType:$result, Optional<AnyType>:$optResult,
Variadic<AnyType>:$varResults);
let assemblyFormat = [{
custom<CustomDirectiveResults>(
type($result), type($optResult), type($varResults)
)
custom<CustomDirectiveWithTypeRefs>(
ref(type($result)), ref(type($optResult)), ref(type($varResults))
)
attr-dict
}];
}
def FormatCustomDirectiveWithOptionalOperandRef
: TEST_Op<"format_custom_directive_with_optional_operand_ref"> {
let arguments = (ins Optional<I64>:$optOperand);
let assemblyFormat = [{
($optOperand^)? `:`
custom<CustomDirectiveOptionalOperandRef>(ref($optOperand))
attr-dict
}];
}
def FormatCustomDirectiveSuccessors
: TEST_Op<"format_custom_directive_successors", [Terminator]> {
let successors = (successor AnySuccessor:$successor,
VariadicSuccessor<AnySuccessor>:$successors);
let assemblyFormat = [{
custom<CustomDirectiveSuccessors>(
$successor, $successors
)
attr-dict
}];
}
def FormatCustomDirectiveAttributes
: TEST_Op<"format_custom_directive_attributes"> {
let arguments = (ins I64Attr:$attr, OptionalAttr<I64Attr>:$optAttr);
let assemblyFormat = [{
custom<CustomDirectiveAttributes>(
$attr, $optAttr
)
attr-dict
}];
}
def FormatCustomDirectiveAttrDict
: TEST_Op<"format_custom_directive_attrdict"> {
let arguments = (ins I64Attr:$attr, OptionalAttr<I64Attr>:$optAttr);
let assemblyFormat = [{
custom<CustomDirectiveAttrDict>( attr-dict )
}];
}
//===----------------------------------------------------------------------===//
// AllTypesMatch type inference
def FormatAllTypesMatchVarOp : TEST_Op<"format_all_types_match_var", [
AllTypesMatch<["value1", "value2", "result"]>
]> {
let arguments = (ins AnyType:$value1, AnyType:$value2);
let results = (outs AnyType:$result);
let assemblyFormat = "attr-dict $value1 `,` $value2 `:` type($value1)";
}
def FormatAllTypesMatchAttrOp : TEST_Op<"format_all_types_match_attr", [
AllTypesMatch<["value1", "value2", "result"]>
]> {
let arguments = (ins AnyAttr:$value1, AnyType:$value2);
let results = (outs AnyType:$result);
let assemblyFormat = "attr-dict $value1 `,` $value2";
}
//===----------------------------------------------------------------------===//
// TypesMatchWith type inference
def FormatTypesMatchVarOp : TEST_Op<"format_types_match_var", [
TypesMatchWith<"result type matches operand", "value", "result", "$_self">
]> {
let arguments = (ins AnyType:$value);
let results = (outs AnyType:$result);
let assemblyFormat = "attr-dict $value `:` type($value)";
}
def FormatTypesMatchVariadicOp : TEST_Op<"format_types_match_variadic", [
RangedTypesMatchWith<"result type matches operand", "value", "result",
"llvm::make_range($_self.begin(), $_self.end())">
]> {
let arguments = (ins Variadic<AnyType>:$value);
let results = (outs Variadic<AnyType>:$result);
let assemblyFormat = "attr-dict $value `:` type($value)";
}
def FormatTypesMatchAttrOp : TEST_Op<"format_types_match_attr", [
TypesMatchWith<"result type matches constant", "value", "result", "$_self">
]> {
let arguments = (ins AnyAttr:$value);
let results = (outs AnyType:$result);
let assemblyFormat = "attr-dict $value";
}
def FormatTypesMatchContextOp : TEST_Op<"format_types_match_context", [
TypesMatchWith<"tuple result type matches operand type", "value", "result",
"::mlir::TupleType::get($_ctxt, $_self)">
]> {
let arguments = (ins AnyType:$value);
let results = (outs AnyType:$result);
let assemblyFormat = "attr-dict $value `:` type($value)";
}
//===----------------------------------------------------------------------===//
// Test SideEffects
//===----------------------------------------------------------------------===//
def SideEffectOp : TEST_Op<"side_effect_op",
[DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
DeclareOpInterfaceMethods<TestEffectOpInterface>]> {
let results = (outs AnyType:$result);
}
//===----------------------------------------------------------------------===//
// Test CopyOpInterface
//===----------------------------------------------------------------------===//
def CopyOp : TEST_Op<"copy", [CopyOpInterface]> {
let description = [{
Represents a copy operation.
}];
let arguments = (ins Res<AnyRankedOrUnrankedMemRef, "", [MemRead]>:$source,
Res<AnyRankedOrUnrankedMemRef, "", [MemWrite]>:$target);
let assemblyFormat = [{
`(` $source `,` $target `)` `:` `(` type($source) `,` type($target) `)`
attr-dict
}];
let extraClassDeclaration = [{
::mlir::Value getSource() { return source(); }
::mlir::Value getTarget() { return target(); }
}];
}
//===----------------------------------------------------------------------===//
// Test Buffer/Tensor
//===----------------------------------------------------------------------===//
def RegionYieldOp : TEST_Op<"region_yield",
[NoSideEffect, ReturnLike, Terminator]> {
let description = [{
This operation is used in a region and yields the corresponding type for
that operation.
}];
let arguments = (ins AnyType:$result);
let assemblyFormat = [{
$result `:` type($result) attr-dict
}];
let builders = [OpBuilder<(ins),
[{ build($_builder, $_state, {}); }]>
];
}
class BufferBasedOpBase<string mnemonic, list<OpTrait> traits>
: TEST_Op<mnemonic, traits> {
let description = [{
A buffer based operation, that uses memRefs as input and output.
}];
let arguments = (ins AnyRankedOrUnrankedMemRef:$input,
AnyRankedOrUnrankedMemRef:$output);
}
def BufferBasedOp : BufferBasedOpBase<"buffer_based", []>{
let assemblyFormat = [{
`in` `(` $input`:` type($input) `)` `out` `(` $output`:` type($output) `)`
attr-dict
}];
}
def RegionBufferBasedOp : BufferBasedOpBase<"region_buffer_based",
[SingleBlockImplicitTerminator<"RegionYieldOp">]> {
let regions = (region AnyRegion:$region);
let assemblyFormat = [{
`in` `(` $input`:` type($input) `)` `out` `(` $output`:` type($output) `)`
$region attr-dict
}];
}
def TensorBasedOp : TEST_Op<"tensor_based", []> {
let description = [{
A tensor based operation, that uses a tensor as an input and results in a
tensor again.
}];
let arguments = (ins AnyRankedTensor:$input);
let results = (outs AnyRankedTensor:$result);
let assemblyFormat = [{
`in` `(` $input`:` type($input) `)` `->` type($result) attr-dict
}];
}
//===----------------------------------------------------------------------===//
// Test RegionBranchOpInterface
//===----------------------------------------------------------------------===//
def RegionIfYieldOp : TEST_Op<"region_if_yield",
[NoSideEffect, ReturnLike, Terminator]> {
let arguments = (ins Variadic<AnyType>:$results);
let assemblyFormat = [{
$results `:` type($results) attr-dict
}];
}
def RegionIfOp : TEST_Op<"region_if",
[DeclareOpInterfaceMethods<RegionBranchOpInterface>,
SingleBlockImplicitTerminator<"RegionIfYieldOp">,
RecursiveSideEffects]> {
let description =[{
Represents an abstract if-then-else-join pattern. In this context, the then
and else regions jump to the join region, which finally returns to its
parent op.
}];
let printer = [{ return ::print(p, *this); }];
let parser = [{ return ::parseRegionIfOp(parser, result); }];
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>:$results);
let regions = (region SizedRegion<1>:$thenRegion,
AnyRegion:$elseRegion,
AnyRegion:$joinRegion);
let extraClassDeclaration = [{
::mlir::Block::BlockArgListType getThenArgs() {
return getBody(0)->getArguments();
}
::mlir::Block::BlockArgListType getElseArgs() {
return getBody(1)->getArguments();
}
::mlir::Block::BlockArgListType getJoinArgs() {
return getBody(2)->getArguments();
}
::mlir::OperandRange getSuccessorEntryOperands(unsigned index);
}];
}
//===----------------------------------------------------------------------===//
// Test TableGen generated build() methods
//===----------------------------------------------------------------------===//
def TableGenConstant : TEST_Op<"tblgen_constant"> {
let results = (outs AnyType);
}
// No variadic args or results.
def TableGenBuildOp0 : TEST_Op<"tblgen_build_0"> {
let arguments = (ins AnyType:$value);
let results = (outs AnyType:$result);
}
// Sigle variadic arg and single variadic results.
def TableGenBuildOp1 : TEST_Op<"tblgen_build_1"> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs Variadic<AnyType>:$results);
}
// Single variadic arg and non-variadic results.
def TableGenBuildOp2 : TEST_Op<"tblgen_build_2"> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs AnyType:$result);
}
// Single variadic arg and multiple variadic results.
def TableGenBuildOp3 : TEST_Op<"tblgen_build_3", [SameVariadicResultSize]> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs Variadic<AnyType>:$resultA, Variadic<AnyType>:$resultB);
}
// Single variadic arg, non variadic results, with SameOperandsAndResultType.
// Tests suppression of ambiguous build methods for operations with
// SameOperandsAndResultType trait.
def TableGenBuildOp4 : TEST_Op<"tblgen_build_4", [SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs AnyType:$result);
}
// Single variadic arg with SameOperandsAndResultType and InferTypeOpInterface.
// Tests suppression of ambiguous build methods for operations with
// SameOperandsAndResultType and InferTypeOpInterface.
def TableGenBuildOp5 : TEST_Op<"tblgen_build_5",
[SameOperandsAndResultType, InferTypeOpInterface]> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs AnyType:$result);
let extraClassDeclaration = [{
static ::mlir::LogicalResult inferReturnTypes(::mlir::MLIRContext *,
::llvm::Optional<::mlir::Location> location, ::mlir::ValueRange operands,
::mlir::DictionaryAttr attributes, ::mlir::RegionRange regions,
::llvm::SmallVectorImpl<::mlir::Type> &inferredReturnTypes) {
inferredReturnTypes.assign({operands[0].getType()});
return ::mlir::success();
}
}];
}
//===----------------------------------------------------------------------===//
// Test BufferPlacement
//===----------------------------------------------------------------------===//
def GetTupleElementOp: TEST_Op<"get_tuple_element"> {
let description = [{
Test op that returns a specified element of the tuple.
}];
let arguments = (ins
TupleOf<[AnyType]>,
I32Attr:$index
);
let results = (outs AnyType);
}
def MakeTupleOp: TEST_Op<"make_tuple"> {
let description = [{
Test op that creates a tuple value from a list of values.
}];
let arguments = (ins
Variadic<AnyType>:$inputs
);
let results = (outs TupleOf<[AnyType]>);
}
//===----------------------------------------------------------------------===//
// Test Target DataLayout
//===----------------------------------------------------------------------===//
def OpWithDataLayoutOp : TEST_Op<"op_with_data_layout",
[HasDefaultDLTIDataLayout, DataLayoutOpInterface]> {
let summary =
"An op that uses DataLayout implementation from the Target dialect";
let regions = (region VariadicRegion<AnyRegion>:$regions);
}
def DataLayoutQueryOp : TEST_Op<"data_layout_query"> {
let summary = "A token op recognized by data layout query test pass";
let description = [{
The data layout query pass pattern-matches this op and attaches to it an
array attribute containing the result of data layout query of the result
type of this op.
}];
let results = (outs AnyType:$res);
}
//===----------------------------------------------------------------------===//
// Test Reducer Patterns
//===----------------------------------------------------------------------===//
def OpCrashLong : TEST_Op<"op_crash_long"> {
let arguments = (ins I32, I32, I32);
let results = (outs I32);
}
def OpCrashShort : TEST_Op<"op_crash_short"> {
let results = (outs I32);
}
def : Pat<(OpCrashLong $_, $_, $_), (OpCrashShort)>;
#endif // TEST_OPS