The boilerplate was setting up some arrays for testing. To fully illustrate python - MLIR potential, however, this data should also come from numpy land. Reviewed By: bixia Differential Revision: https://reviews.llvm.org/D108336
175 lines
5.8 KiB
Python
175 lines
5.8 KiB
Python
# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
|
|
|
|
import ctypes
|
|
import numpy as np
|
|
import os
|
|
|
|
import mlir.all_passes_registration
|
|
|
|
from mlir import ir
|
|
from mlir import runtime as rt
|
|
from mlir import execution_engine
|
|
from mlir import passmanager
|
|
|
|
from mlir.dialects import sparse_tensor as st
|
|
from mlir.dialects import builtin
|
|
from mlir.dialects.linalg.opdsl import lang as dsl
|
|
|
|
|
|
def run(f):
|
|
print('\nTEST:', f.__name__)
|
|
f()
|
|
return f
|
|
|
|
|
|
@dsl.linalg_structured_op
|
|
def matmul_dsl(
|
|
A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
|
|
B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
|
|
C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)):
|
|
C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
|
|
|
|
|
|
def build_SpMM(attr: st.EncodingAttr):
|
|
"""Build SpMM kernel.
|
|
|
|
This method generates a linalg op with for matrix multiplication using
|
|
just the Python API. Effectively, a generic linalg op is constructed
|
|
that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
|
|
"""
|
|
module = ir.Module.create()
|
|
f64 = ir.F64Type.get()
|
|
a = ir.RankedTensorType.get([3, 4], f64, attr)
|
|
b = ir.RankedTensorType.get([4, 2], f64)
|
|
c = ir.RankedTensorType.get([3, 2], f64)
|
|
arguments = [a, b, c]
|
|
with ir.InsertionPoint(module.body):
|
|
|
|
@builtin.FuncOp.from_py_func(*arguments)
|
|
def spMxM(*args):
|
|
return matmul_dsl(args[0], args[1], outs=[args[2]])
|
|
|
|
return module
|
|
|
|
|
|
def boilerplate(attr: st.EncodingAttr):
|
|
"""Returns boilerplate main method.
|
|
|
|
This method sets up a boilerplate main method that takes three tensors
|
|
(a, b, c), converts the first tensor a into s sparse tensor, and then
|
|
calls the sparse kernel for matrix multiplication. For convenience,
|
|
this part is purely done as string input.
|
|
"""
|
|
return f"""
|
|
func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64>
|
|
attributes {{ llvm.emit_c_interface }} {{
|
|
%a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}>
|
|
%0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>,
|
|
tensor<4x2xf64>,
|
|
tensor<3x2xf64>) -> tensor<3x2xf64>
|
|
return %0 : tensor<3x2xf64>
|
|
}}
|
|
"""
|
|
|
|
|
|
def build_compile_and_run_SpMM(attr: st.EncodingAttr, support_lib: str,
|
|
compiler):
|
|
# Build.
|
|
module = build_SpMM(attr)
|
|
func = str(module.operation.regions[0].blocks[0].operations[0].operation)
|
|
module = ir.Module.parse(func + boilerplate(attr))
|
|
|
|
# Compile.
|
|
compiler(module)
|
|
engine = execution_engine.ExecutionEngine(
|
|
module, opt_level=0, shared_libs=[support_lib])
|
|
|
|
# Set up numpy input and buffer for output.
|
|
a = np.array(
|
|
[[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]],
|
|
np.float64)
|
|
b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64)
|
|
c = np.zeros((3, 2), np.float64)
|
|
out = np.zeros((3, 2), np.float64)
|
|
|
|
mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
|
|
mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
|
|
mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
|
|
mem_out = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(out)))
|
|
|
|
# Invoke the kernel and get numpy output.
|
|
# Built-in bufferization uses in-out buffers.
|
|
# TODO: replace with inplace comprehensive bufferization.
|
|
engine.invoke('main', mem_out, mem_a, mem_b, mem_c)
|
|
|
|
# Sanity check on computed result.
|
|
expected = np.matmul(a, b);
|
|
c = rt.ranked_memref_to_numpy(mem_out[0])
|
|
if np.allclose(c, expected):
|
|
pass
|
|
else:
|
|
quit(f'FAILURE')
|
|
|
|
|
|
class SparseCompiler:
|
|
"""Sparse compiler passes."""
|
|
|
|
def __init__(self, options: str):
|
|
pipeline = (
|
|
f'sparsification{{{options}}},'
|
|
f'sparse-tensor-conversion,'
|
|
f'builtin.func(convert-linalg-to-loops,convert-vector-to-scf),'
|
|
f'convert-scf-to-std,'
|
|
f'func-bufferize,'
|
|
f'tensor-constant-bufferize,'
|
|
f'builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),'
|
|
f'convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},'
|
|
f'convert-memref-to-llvm,'
|
|
f'convert-std-to-llvm')
|
|
self.pipeline = pipeline
|
|
|
|
def __call__(self, module: ir.Module):
|
|
passmanager.PassManager.parse(self.pipeline).run(module)
|
|
|
|
|
|
# CHECK-LABEL: TEST: testSpMM
|
|
# CHECK: Passed 72 tests
|
|
@run
|
|
def testSpMM():
|
|
# Obtain path to runtime support library.
|
|
support_lib = os.getenv('SUPPORT_LIB')
|
|
assert os.path.exists(support_lib), f'{support_lib} does not exist'
|
|
|
|
with ir.Context() as ctx, ir.Location.unknown():
|
|
count = 0
|
|
# Fixed compiler optimization strategy.
|
|
# TODO: explore state space here too
|
|
par = 0
|
|
vec = 0
|
|
vl = 1
|
|
e = False
|
|
opt = (f'parallelization-strategy={par} '
|
|
f'vectorization-strategy={vec} '
|
|
f'vl={vl} enable-simd-index32={e}')
|
|
# Exhaustive loop over various ways to annotate a kernel with
|
|
# a *single* sparse tensor. Even this subset already gives
|
|
# quite a large state space!
|
|
levels = [[st.DimLevelType.dense, st.DimLevelType.dense],
|
|
[st.DimLevelType.dense, st.DimLevelType.compressed],
|
|
[st.DimLevelType.compressed, st.DimLevelType.dense],
|
|
[st.DimLevelType.compressed, st.DimLevelType.compressed]]
|
|
orderings = [
|
|
ir.AffineMap.get_permutation([0, 1]),
|
|
ir.AffineMap.get_permutation([1, 0])
|
|
]
|
|
bitwidths = [0, 8, 32]
|
|
for level in levels:
|
|
for ordering in orderings:
|
|
for pwidth in bitwidths:
|
|
for iwidth in bitwidths:
|
|
attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth)
|
|
compiler = SparseCompiler(options=opt)
|
|
build_compile_and_run_SpMM(attr, support_lib, compiler)
|
|
count = count + 1
|
|
print('Passed ', count, 'tests')
|