Use the same debug print as the rest of libomptarget plugins with the same environment control. Also drop the max queue size debugging hook as I don't believe it is still in use, can bring it back near the rest of the env handling in rtl.cpp if someone objects. That makes most of rt.h and all of utils.cpp unused. Clean that up and simplify control flow in a couple of places. Behaviour change is that debug prints that used to use the old environment variable now use the new one and print in slightly different format, and the removal of the max queue size variable. Reviewed By: pdhaliwal Differential Revision: https://reviews.llvm.org/D108784
802 lines
30 KiB
C++
802 lines
30 KiB
C++
//===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include <libelf.h>
|
|
|
|
#include <cassert>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
#include "internal.h"
|
|
#include "rt.h"
|
|
|
|
#include "msgpack.h"
|
|
|
|
namespace hsa {
|
|
// Wrap HSA iterate API in a shim that allows passing general callables
|
|
template <typename C>
|
|
hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
|
|
auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
|
|
void *data) -> hsa_status_t {
|
|
C *unwrapped = static_cast<C *>(data);
|
|
return (*unwrapped)(executable, symbol);
|
|
};
|
|
return hsa_executable_iterate_symbols(executable, L,
|
|
static_cast<void *>(&cb));
|
|
}
|
|
} // namespace hsa
|
|
|
|
typedef unsigned char *address;
|
|
/*
|
|
* Note descriptors.
|
|
*/
|
|
// FreeBSD already declares Elf_Note (indirectly via <libelf.h>)
|
|
#if !defined(__FreeBSD__)
|
|
typedef struct {
|
|
uint32_t n_namesz; /* Length of note's name. */
|
|
uint32_t n_descsz; /* Length of note's value. */
|
|
uint32_t n_type; /* Type of note. */
|
|
// then name
|
|
// then padding, optional
|
|
// then desc, at 4 byte alignment (not 8, despite being elf64)
|
|
} Elf_Note;
|
|
#endif
|
|
|
|
// The following include file and following structs/enums
|
|
// have been replicated on a per-use basis below. For example,
|
|
// llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
|
|
// but we may care only about kernargSegmentSize_ for now, so
|
|
// we just include that field in our KernelMD implementation. We
|
|
// chose this approach to replicate in order to avoid forcing
|
|
// a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
|
|
// #include "llvm/Support/AMDGPUMetadata.h"
|
|
// typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
|
|
// typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
|
|
// typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
|
|
// using llvm::AMDGPU::HSAMD::AccessQualifier;
|
|
// using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
|
|
// using llvm::AMDGPU::HSAMD::ValueKind;
|
|
// using llvm::AMDGPU::HSAMD::ValueType;
|
|
|
|
class KernelArgMD {
|
|
public:
|
|
enum class ValueKind {
|
|
HiddenGlobalOffsetX,
|
|
HiddenGlobalOffsetY,
|
|
HiddenGlobalOffsetZ,
|
|
HiddenNone,
|
|
HiddenPrintfBuffer,
|
|
HiddenDefaultQueue,
|
|
HiddenCompletionAction,
|
|
HiddenMultiGridSyncArg,
|
|
HiddenHostcallBuffer,
|
|
Unknown
|
|
};
|
|
|
|
KernelArgMD()
|
|
: name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
|
|
align_(0), valueKind_(ValueKind::Unknown) {}
|
|
|
|
// fields
|
|
std::string name_;
|
|
std::string typeName_;
|
|
uint32_t size_;
|
|
uint32_t offset_;
|
|
uint32_t align_;
|
|
ValueKind valueKind_;
|
|
};
|
|
|
|
class KernelMD {
|
|
public:
|
|
KernelMD() : kernargSegmentSize_(0ull) {}
|
|
|
|
// fields
|
|
uint64_t kernargSegmentSize_;
|
|
};
|
|
|
|
static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
|
|
// Including only those fields that are relevant to the runtime.
|
|
// {"ByValue", KernelArgMD::ValueKind::ByValue},
|
|
// {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
|
|
// {"DynamicSharedPointer",
|
|
// KernelArgMD::ValueKind::DynamicSharedPointer},
|
|
// {"Sampler", KernelArgMD::ValueKind::Sampler},
|
|
// {"Image", KernelArgMD::ValueKind::Image},
|
|
// {"Pipe", KernelArgMD::ValueKind::Pipe},
|
|
// {"Queue", KernelArgMD::ValueKind::Queue},
|
|
{"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
|
|
{"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
|
|
{"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
|
|
{"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
|
|
{"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
|
|
{"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
|
|
{"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
|
|
{"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
|
|
{"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
|
|
// v3
|
|
// {"by_value", KernelArgMD::ValueKind::ByValue},
|
|
// {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
|
|
// {"dynamic_shared_pointer",
|
|
// KernelArgMD::ValueKind::DynamicSharedPointer},
|
|
// {"sampler", KernelArgMD::ValueKind::Sampler},
|
|
// {"image", KernelArgMD::ValueKind::Image},
|
|
// {"pipe", KernelArgMD::ValueKind::Pipe},
|
|
// {"queue", KernelArgMD::ValueKind::Queue},
|
|
{"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
|
|
{"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
|
|
{"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
|
|
{"hidden_none", KernelArgMD::ValueKind::HiddenNone},
|
|
{"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
|
|
{"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
|
|
{"hidden_completion_action",
|
|
KernelArgMD::ValueKind::HiddenCompletionAction},
|
|
{"hidden_multigrid_sync_arg",
|
|
KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
|
|
{"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
|
|
};
|
|
|
|
namespace core {
|
|
|
|
hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
|
|
if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
|
|
hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
|
|
// memory_fault.agent
|
|
// memory_fault.virtual_address
|
|
// memory_fault.fault_reason_mask
|
|
// fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
|
|
std::stringstream stream;
|
|
stream << std::hex << (uintptr_t)memory_fault.virtual_address;
|
|
std::string addr("0x" + stream.str());
|
|
|
|
std::string err_string = "[GPU Memory Error] Addr: " + addr;
|
|
err_string += " Reason: ";
|
|
if (!(memory_fault.fault_reason_mask & 0x00111111)) {
|
|
err_string += "No Idea! ";
|
|
} else {
|
|
if (memory_fault.fault_reason_mask & 0x00000001)
|
|
err_string += "Page not present or supervisor privilege. ";
|
|
if (memory_fault.fault_reason_mask & 0x00000010)
|
|
err_string += "Write access to a read-only page. ";
|
|
if (memory_fault.fault_reason_mask & 0x00000100)
|
|
err_string += "Execute access to a page marked NX. ";
|
|
if (memory_fault.fault_reason_mask & 0x00001000)
|
|
err_string += "Host access only. ";
|
|
if (memory_fault.fault_reason_mask & 0x00010000)
|
|
err_string += "ECC failure (if supported by HW). ";
|
|
if (memory_fault.fault_reason_mask & 0x00100000)
|
|
err_string += "Can't determine the exact fault address. ";
|
|
}
|
|
fprintf(stderr, "%s\n", err_string.c_str());
|
|
return HSA_STATUS_ERROR;
|
|
}
|
|
return HSA_STATUS_SUCCESS;
|
|
}
|
|
|
|
hsa_status_t atl_init_gpu_context() {
|
|
hsa_status_t err;
|
|
err = hsa_init();
|
|
if (err != HSA_STATUS_SUCCESS)
|
|
return HSA_STATUS_ERROR;
|
|
|
|
err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Registering the system for memory faults", get_error_string(err));
|
|
return HSA_STATUS_ERROR;
|
|
}
|
|
|
|
return HSA_STATUS_SUCCESS;
|
|
}
|
|
|
|
static bool isImplicit(KernelArgMD::ValueKind value_kind) {
|
|
switch (value_kind) {
|
|
case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
|
|
case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
|
|
case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
|
|
case KernelArgMD::ValueKind::HiddenNone:
|
|
case KernelArgMD::ValueKind::HiddenPrintfBuffer:
|
|
case KernelArgMD::ValueKind::HiddenDefaultQueue:
|
|
case KernelArgMD::ValueKind::HiddenCompletionAction:
|
|
case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
|
|
case KernelArgMD::ValueKind::HiddenHostcallBuffer:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static std::pair<unsigned char *, unsigned char *>
|
|
find_metadata(void *binary, size_t binSize) {
|
|
std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
|
|
|
|
Elf *e = elf_memory(static_cast<char *>(binary), binSize);
|
|
if (elf_kind(e) != ELF_K_ELF) {
|
|
return failure;
|
|
}
|
|
|
|
size_t numpHdrs;
|
|
if (elf_getphdrnum(e, &numpHdrs) != 0) {
|
|
return failure;
|
|
}
|
|
|
|
Elf64_Phdr *pHdrs = elf64_getphdr(e);
|
|
for (size_t i = 0; i < numpHdrs; ++i) {
|
|
Elf64_Phdr pHdr = pHdrs[i];
|
|
|
|
// Look for the runtime metadata note
|
|
if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
|
|
// Iterate over the notes in this segment
|
|
address ptr = (address)binary + pHdr.p_offset;
|
|
address segmentEnd = ptr + pHdr.p_filesz;
|
|
|
|
while (ptr < segmentEnd) {
|
|
Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
|
|
address name = (address)¬e[1];
|
|
|
|
if (note->n_type == 7 || note->n_type == 8) {
|
|
return failure;
|
|
} else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
|
|
note->n_namesz == sizeof "AMD" &&
|
|
!memcmp(name, "AMD", note->n_namesz)) {
|
|
// code object v2 uses yaml metadata, no longer supported
|
|
return failure;
|
|
} else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
|
|
note->n_namesz == sizeof "AMDGPU" &&
|
|
!memcmp(name, "AMDGPU", note->n_namesz)) {
|
|
|
|
// n_descsz = 485
|
|
// value is padded to 4 byte alignment, may want to move end up to
|
|
// match
|
|
size_t offset = sizeof(uint32_t) * 3 /* fields */
|
|
+ sizeof("AMDGPU") /* name */
|
|
+ 1 /* padding to 4 byte alignment */;
|
|
|
|
// Including the trailing padding means both pointers are 4 bytes
|
|
// aligned, which may be useful later.
|
|
unsigned char *metadata_start = (unsigned char *)ptr + offset;
|
|
unsigned char *metadata_end =
|
|
metadata_start + core::alignUp(note->n_descsz, 4);
|
|
return {metadata_start, metadata_end};
|
|
}
|
|
ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
|
|
core::alignUp(note->n_descsz, sizeof(int));
|
|
}
|
|
}
|
|
}
|
|
|
|
return failure;
|
|
}
|
|
|
|
namespace {
|
|
int map_lookup_array(msgpack::byte_range message, const char *needle,
|
|
msgpack::byte_range *res, uint64_t *size) {
|
|
unsigned count = 0;
|
|
struct s : msgpack::functors_defaults<s> {
|
|
s(unsigned &count, uint64_t *size) : count(count), size(size) {}
|
|
unsigned &count;
|
|
uint64_t *size;
|
|
const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
|
|
count++;
|
|
*size = N;
|
|
return bytes.end;
|
|
}
|
|
};
|
|
|
|
msgpack::foreach_map(message,
|
|
[&](msgpack::byte_range key, msgpack::byte_range value) {
|
|
if (msgpack::message_is_string(key, needle)) {
|
|
// If the message is an array, record number of
|
|
// elements in *size
|
|
msgpack::handle_msgpack<s>(value, {count, size});
|
|
// return the whole array
|
|
*res = value;
|
|
}
|
|
});
|
|
// Only claim success if exactly one key/array pair matched
|
|
return count != 1;
|
|
}
|
|
|
|
int map_lookup_string(msgpack::byte_range message, const char *needle,
|
|
std::string *res) {
|
|
unsigned count = 0;
|
|
struct s : public msgpack::functors_defaults<s> {
|
|
s(unsigned &count, std::string *res) : count(count), res(res) {}
|
|
unsigned &count;
|
|
std::string *res;
|
|
void handle_string(size_t N, const unsigned char *str) {
|
|
count++;
|
|
*res = std::string(str, str + N);
|
|
}
|
|
};
|
|
msgpack::foreach_map(message,
|
|
[&](msgpack::byte_range key, msgpack::byte_range value) {
|
|
if (msgpack::message_is_string(key, needle)) {
|
|
msgpack::handle_msgpack<s>(value, {count, res});
|
|
}
|
|
});
|
|
return count != 1;
|
|
}
|
|
|
|
int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
|
|
uint64_t *res) {
|
|
unsigned count = 0;
|
|
msgpack::foreach_map(message,
|
|
[&](msgpack::byte_range key, msgpack::byte_range value) {
|
|
if (msgpack::message_is_string(key, needle)) {
|
|
msgpack::foronly_unsigned(value, [&](uint64_t x) {
|
|
count++;
|
|
*res = x;
|
|
});
|
|
}
|
|
});
|
|
return count != 1;
|
|
}
|
|
|
|
int array_lookup_element(msgpack::byte_range message, uint64_t elt,
|
|
msgpack::byte_range *res) {
|
|
int rc = 1;
|
|
uint64_t i = 0;
|
|
msgpack::foreach_array(message, [&](msgpack::byte_range value) {
|
|
if (i == elt) {
|
|
*res = value;
|
|
rc = 0;
|
|
}
|
|
i++;
|
|
});
|
|
return rc;
|
|
}
|
|
|
|
int populate_kernelArgMD(msgpack::byte_range args_element,
|
|
KernelArgMD *kernelarg) {
|
|
using namespace msgpack;
|
|
int error = 0;
|
|
foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
|
|
if (message_is_string(key, ".name")) {
|
|
foronly_string(value, [&](size_t N, const unsigned char *str) {
|
|
kernelarg->name_ = std::string(str, str + N);
|
|
});
|
|
} else if (message_is_string(key, ".type_name")) {
|
|
foronly_string(value, [&](size_t N, const unsigned char *str) {
|
|
kernelarg->typeName_ = std::string(str, str + N);
|
|
});
|
|
} else if (message_is_string(key, ".size")) {
|
|
foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
|
|
} else if (message_is_string(key, ".offset")) {
|
|
foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
|
|
} else if (message_is_string(key, ".value_kind")) {
|
|
foronly_string(value, [&](size_t N, const unsigned char *str) {
|
|
std::string s = std::string(str, str + N);
|
|
auto itValueKind = ArgValueKind.find(s);
|
|
if (itValueKind != ArgValueKind.end()) {
|
|
kernelarg->valueKind_ = itValueKind->second;
|
|
}
|
|
});
|
|
}
|
|
});
|
|
return error;
|
|
}
|
|
} // namespace
|
|
|
|
static hsa_status_t get_code_object_custom_metadata(
|
|
void *binary, size_t binSize,
|
|
std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
|
|
// parse code object with different keys from v2
|
|
// also, the kernel name is not the same as the symbol name -- so a
|
|
// symbol->name map is needed
|
|
|
|
std::pair<unsigned char *, unsigned char *> metadata =
|
|
find_metadata(binary, binSize);
|
|
if (!metadata.first) {
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
uint64_t kernelsSize = 0;
|
|
int msgpack_errors = 0;
|
|
msgpack::byte_range kernel_array;
|
|
msgpack_errors =
|
|
map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
|
|
&kernel_array, &kernelsSize);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"kernels lookup in program metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
for (size_t i = 0; i < kernelsSize; i++) {
|
|
assert(msgpack_errors == 0);
|
|
std::string kernelName;
|
|
std::string symbolName;
|
|
|
|
msgpack::byte_range element;
|
|
msgpack_errors += array_lookup_element(kernel_array, i, &element);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"element lookup in kernel metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
msgpack_errors += map_lookup_string(element, ".name", &kernelName);
|
|
msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"strings lookup in kernel metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
// Make sure that kernelName + ".kd" == symbolName
|
|
if ((kernelName + ".kd") != symbolName) {
|
|
printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
|
|
__FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
|
|
|
|
uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
|
|
msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"sgpr count metadata lookup in kernel metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
info.sgpr_count = sgpr_count;
|
|
|
|
msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"vgpr count metadata lookup in kernel metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
info.vgpr_count = vgpr_count;
|
|
|
|
msgpack_errors +=
|
|
map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"sgpr spill count metadata lookup in kernel metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
info.sgpr_spill_count = sgpr_spill_count;
|
|
|
|
msgpack_errors +=
|
|
map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"vgpr spill count metadata lookup in kernel metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
info.vgpr_spill_count = vgpr_spill_count;
|
|
|
|
size_t kernel_explicit_args_size = 0;
|
|
uint64_t kernel_segment_size;
|
|
msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
|
|
&kernel_segment_size);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"kernarg segment size metadata lookup in kernel metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
bool hasHiddenArgs = false;
|
|
if (kernel_segment_size > 0) {
|
|
uint64_t argsSize;
|
|
size_t offset = 0;
|
|
|
|
msgpack::byte_range args_array;
|
|
msgpack_errors +=
|
|
map_lookup_array(element, ".args", &args_array, &argsSize);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"kernel args metadata lookup in kernel metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
info.num_args = argsSize;
|
|
|
|
for (size_t i = 0; i < argsSize; ++i) {
|
|
KernelArgMD lcArg;
|
|
|
|
msgpack::byte_range args_element;
|
|
msgpack_errors += array_lookup_element(args_array, i, &args_element);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"iterate args map in kernel args metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
|
|
msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
|
|
if (msgpack_errors != 0) {
|
|
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
|
|
"iterate args map in kernel args metadata");
|
|
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
|
|
}
|
|
// populate info with sizes and offsets
|
|
info.arg_sizes.push_back(lcArg.size_);
|
|
// v3 has offset field and not align field
|
|
size_t new_offset = lcArg.offset_;
|
|
size_t padding = new_offset - offset;
|
|
offset = new_offset;
|
|
info.arg_offsets.push_back(lcArg.offset_);
|
|
DP("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), lcArg.size_,
|
|
lcArg.offset_);
|
|
offset += lcArg.size_;
|
|
|
|
// check if the arg is a hidden/implicit arg
|
|
// this logic assumes that all hidden args are 8-byte aligned
|
|
if (!isImplicit(lcArg.valueKind_)) {
|
|
kernel_explicit_args_size += lcArg.size_;
|
|
} else {
|
|
hasHiddenArgs = true;
|
|
}
|
|
kernel_explicit_args_size += padding;
|
|
}
|
|
}
|
|
|
|
// add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
|
|
// do not count the compiler set implicit args, but set your own implicit
|
|
// args by discounting the compiler set implicit args
|
|
info.kernel_segment_size =
|
|
(hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
|
|
sizeof(impl_implicit_args_t);
|
|
DP("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
|
|
kernel_segment_size, info.kernel_segment_size);
|
|
|
|
// kernel received, now add it to the kernel info table
|
|
KernelInfoTable[kernelName] = info;
|
|
}
|
|
|
|
return HSA_STATUS_SUCCESS;
|
|
}
|
|
|
|
static hsa_status_t
|
|
populate_InfoTables(hsa_executable_symbol_t symbol,
|
|
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
|
|
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
|
|
hsa_symbol_kind_t type;
|
|
|
|
uint32_t name_length;
|
|
hsa_status_t err;
|
|
err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
|
|
&type);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Symbol info extraction", get_error_string(err));
|
|
return err;
|
|
}
|
|
DP("Exec Symbol type: %d\n", type);
|
|
if (type == HSA_SYMBOL_KIND_KERNEL) {
|
|
err = hsa_executable_symbol_get_info(
|
|
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Symbol info extraction", get_error_string(err));
|
|
return err;
|
|
}
|
|
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
|
|
err = hsa_executable_symbol_get_info(symbol,
|
|
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Symbol info extraction", get_error_string(err));
|
|
return err;
|
|
}
|
|
// remove the suffix .kd from symbol name.
|
|
name[name_length - 3] = 0;
|
|
|
|
atl_kernel_info_t info;
|
|
std::string kernelName(name);
|
|
// by now, the kernel info table should already have an entry
|
|
// because the non-ROCr custom code object parsing is called before
|
|
// iterating over the code object symbols using ROCr
|
|
if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
|
|
if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Finding the entry kernel info table",
|
|
get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT));
|
|
exit(1);
|
|
}
|
|
}
|
|
// found, so assign and update
|
|
info = KernelInfoTable[kernelName];
|
|
|
|
/* Extract dispatch information from the symbol */
|
|
err = hsa_executable_symbol_get_info(
|
|
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
|
|
&(info.kernel_object));
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Extracting the symbol from the executable",
|
|
get_error_string(err));
|
|
return err;
|
|
}
|
|
err = hsa_executable_symbol_get_info(
|
|
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
|
|
&(info.group_segment_size));
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Extracting the group segment size from the executable",
|
|
get_error_string(err));
|
|
return err;
|
|
}
|
|
err = hsa_executable_symbol_get_info(
|
|
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
|
|
&(info.private_segment_size));
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Extracting the private segment from the executable",
|
|
get_error_string(err));
|
|
return err;
|
|
}
|
|
|
|
DP("Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
|
|
"kernarg\n",
|
|
kernelName.c_str(), info.kernel_object, info.group_segment_size,
|
|
info.private_segment_size, info.kernel_segment_size);
|
|
|
|
// assign it back to the kernel info table
|
|
KernelInfoTable[kernelName] = info;
|
|
free(name);
|
|
} else if (type == HSA_SYMBOL_KIND_VARIABLE) {
|
|
err = hsa_executable_symbol_get_info(
|
|
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Symbol info extraction", get_error_string(err));
|
|
return err;
|
|
}
|
|
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
|
|
err = hsa_executable_symbol_get_info(symbol,
|
|
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Symbol info extraction", get_error_string(err));
|
|
return err;
|
|
}
|
|
name[name_length] = 0;
|
|
|
|
atl_symbol_info_t info;
|
|
|
|
err = hsa_executable_symbol_get_info(
|
|
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Symbol info address extraction", get_error_string(err));
|
|
return err;
|
|
}
|
|
|
|
err = hsa_executable_symbol_get_info(
|
|
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Symbol info size extraction", get_error_string(err));
|
|
return err;
|
|
}
|
|
|
|
DP("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, info.size);
|
|
SymbolInfoTable[std::string(name)] = info;
|
|
free(name);
|
|
} else {
|
|
DP("Symbol is an indirect function\n");
|
|
}
|
|
return HSA_STATUS_SUCCESS;
|
|
}
|
|
|
|
hsa_status_t RegisterModuleFromMemory(
|
|
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
|
|
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
|
|
void *module_bytes, size_t module_size, hsa_agent_t agent,
|
|
hsa_status_t (*on_deserialized_data)(void *data, size_t size,
|
|
void *cb_state),
|
|
void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
|
|
hsa_status_t err;
|
|
hsa_executable_t executable = {0};
|
|
hsa_profile_t agent_profile;
|
|
|
|
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Query the agent profile", get_error_string(err));
|
|
return HSA_STATUS_ERROR;
|
|
}
|
|
// FIXME: Assume that every profile is FULL until we understand how to build
|
|
// GCN with base profile
|
|
agent_profile = HSA_PROFILE_FULL;
|
|
/* Create the empty executable. */
|
|
err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
|
|
&executable);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Create the executable", get_error_string(err));
|
|
return HSA_STATUS_ERROR;
|
|
}
|
|
|
|
bool module_load_success = false;
|
|
do // Existing control flow used continue, preserve that for this patch
|
|
{
|
|
{
|
|
// Some metadata info is not available through ROCr API, so use custom
|
|
// code object metadata parsing to collect such metadata info
|
|
|
|
err = get_code_object_custom_metadata(module_bytes, module_size,
|
|
KernelInfoTable);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Getting custom code object metadata", get_error_string(err));
|
|
continue;
|
|
}
|
|
|
|
// Deserialize code object.
|
|
hsa_code_object_t code_object = {0};
|
|
err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
|
|
&code_object);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Code Object Deserialization", get_error_string(err));
|
|
continue;
|
|
}
|
|
assert(0 != code_object.handle);
|
|
|
|
// Mutating the device image here avoids another allocation & memcpy
|
|
void *code_object_alloc_data =
|
|
reinterpret_cast<void *>(code_object.handle);
|
|
hsa_status_t impl_err =
|
|
on_deserialized_data(code_object_alloc_data, module_size, cb_state);
|
|
if (impl_err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Error in deserialized_data callback",
|
|
get_error_string(impl_err));
|
|
return impl_err;
|
|
}
|
|
|
|
/* Load the code object. */
|
|
err =
|
|
hsa_executable_load_code_object(executable, agent, code_object, NULL);
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Loading the code object", get_error_string(err));
|
|
continue;
|
|
}
|
|
|
|
// cannot iterate over symbols until executable is frozen
|
|
}
|
|
module_load_success = true;
|
|
} while (0);
|
|
DP("Modules loaded successful? %d\n", module_load_success);
|
|
if (module_load_success) {
|
|
/* Freeze the executable; it can now be queried for symbols. */
|
|
err = hsa_executable_freeze(executable, "");
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Freeze the executable", get_error_string(err));
|
|
return HSA_STATUS_ERROR;
|
|
}
|
|
|
|
err = hsa::executable_iterate_symbols(
|
|
executable,
|
|
[&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
|
|
return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable);
|
|
});
|
|
if (err != HSA_STATUS_SUCCESS) {
|
|
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
|
|
"Iterating over symbols for execuatable", get_error_string(err));
|
|
return HSA_STATUS_ERROR;
|
|
}
|
|
|
|
// save the executable and destroy during finalize
|
|
HSAExecutables.push_back(executable);
|
|
return HSA_STATUS_SUCCESS;
|
|
} else {
|
|
return HSA_STATUS_ERROR;
|
|
}
|
|
}
|
|
|
|
} // namespace core
|