Files
clang-p2996/openmp/tools/archer/ompt-tsan.cpp
Joachim Protze 639b397931 [OpenMP][Tools] Fix Archer handling of task dependencies
The current handling of dependencies in Archer has two flaws:

- annotation of dependency synchronization is not limited to sibling tasks
- annotation of in/out dependencies is based on the assumption, that dependency
  variables will rarely be byte-sized variables.

This patch introduces a map in the generating task to manage the dependency
variables for the child tasks. The map is only accesses from the generating
task, so no locking is necessary. This also limits the dependency-based
synchronization to sibling tasks.
This patch also introduces proper handling for new dependency types such as
mutexinoutset and inoutset.

Differential Revision: https://reviews.llvm.org/D103608
2021-06-09 13:36:20 +02:00

1192 lines
38 KiB
C++

/*
* ompt-tsan.cpp -- Archer runtime library, TSan annotations for Archer
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for details.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <algorithm>
#include <atomic>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <inttypes.h>
#include <iostream>
#include <list>
#include <mutex>
#include <sstream>
#include <string>
#include <sys/resource.h>
#include <unistd.h>
#include <unordered_map>
#include <vector>
#if (defined __APPLE__ && defined __MACH__)
#include <dlfcn.h>
#endif
#include "omp-tools.h"
// Define attribute that indicates that the fall through from the previous
// case label is intentional and should not be diagnosed by a compiler
// Code from libcxx/include/__config
// Use a function like macro to imply that it must be followed by a semicolon
#if __cplusplus > 201402L && __has_cpp_attribute(fallthrough)
#define KMP_FALLTHROUGH() [[fallthrough]]
#elif __has_cpp_attribute(clang::fallthrough)
#define KMP_FALLTHROUGH() [[clang::fallthrough]]
#elif __has_attribute(fallthrough) || __GNUC__ >= 7
#define KMP_FALLTHROUGH() __attribute__((__fallthrough__))
#else
#define KMP_FALLTHROUGH() ((void)0)
#endif
static int runOnTsan;
static int hasReductionCallback;
class ArcherFlags {
public:
#if (LLVM_VERSION) >= 40
int flush_shadow{0};
#endif
int print_max_rss{0};
int verbose{0};
int enabled{1};
int report_data_leak{0};
int ignore_serial{0};
ArcherFlags(const char *env) {
if (env) {
std::vector<std::string> tokens;
std::string token;
std::string str(env);
std::istringstream iss(str);
while (std::getline(iss, token, ' '))
tokens.push_back(token);
for (std::vector<std::string>::iterator it = tokens.begin();
it != tokens.end(); ++it) {
#if (LLVM_VERSION) >= 40
if (sscanf(it->c_str(), "flush_shadow=%d", &flush_shadow))
continue;
#endif
if (sscanf(it->c_str(), "print_max_rss=%d", &print_max_rss))
continue;
if (sscanf(it->c_str(), "verbose=%d", &verbose))
continue;
if (sscanf(it->c_str(), "report_data_leak=%d", &report_data_leak))
continue;
if (sscanf(it->c_str(), "enable=%d", &enabled))
continue;
if (sscanf(it->c_str(), "ignore_serial=%d", &ignore_serial))
continue;
std::cerr << "Illegal values for ARCHER_OPTIONS variable: " << token
<< std::endl;
}
}
}
};
class TsanFlags {
public:
int ignore_noninstrumented_modules;
TsanFlags(const char *env) : ignore_noninstrumented_modules(0) {
if (env) {
std::vector<std::string> tokens;
std::string str(env);
auto end = str.end();
auto it = str.begin();
auto is_sep = [](char c) {
return c == ' ' || c == ',' || c == ':' || c == '\n' || c == '\t' ||
c == '\r';
};
while (it != end) {
auto next_it = std::find_if(it, end, is_sep);
tokens.emplace_back(it, next_it);
it = next_it;
if (it != end) {
++it;
}
}
for (const auto &token : tokens) {
// we are interested in ignore_noninstrumented_modules to print a
// warning
if (sscanf(token.c_str(), "ignore_noninstrumented_modules=%d",
&ignore_noninstrumented_modules))
continue;
}
}
}
};
#if (LLVM_VERSION) >= 40
extern "C" {
int __attribute__((weak)) __archer_get_omp_status();
void __attribute__((weak)) __tsan_flush_memory() {}
}
#endif
ArcherFlags *archer_flags;
#ifndef TsanHappensBefore
// Thread Sanitizer is a tool that finds races in code.
// See http://code.google.com/p/data-race-test/wiki/DynamicAnnotations .
// tsan detects these exact functions by name.
extern "C" {
#if (defined __APPLE__ && defined __MACH__)
static void (*AnnotateHappensAfter)(const char *, int, const volatile void *);
static void (*AnnotateHappensBefore)(const char *, int, const volatile void *);
static void (*AnnotateIgnoreWritesBegin)(const char *, int);
static void (*AnnotateIgnoreWritesEnd)(const char *, int);
static void (*AnnotateNewMemory)(const char *, int, const volatile void *,
size_t);
static void (*__tsan_func_entry)(const void *);
static void (*__tsan_func_exit)(void);
static int RunningOnValgrind() {
int (*fptr)();
fptr = (int (*)())dlsym(RTLD_DEFAULT, "RunningOnValgrind");
// If we found RunningOnValgrind other than this function, we assume
// Annotation functions present in this execution and leave runOnTsan=1
// otherwise we change to runOnTsan=0
if (!fptr || fptr == RunningOnValgrind)
runOnTsan = 0;
return 0;
}
#else
void __attribute__((weak))
AnnotateHappensAfter(const char *file, int line, const volatile void *cv) {}
void __attribute__((weak))
AnnotateHappensBefore(const char *file, int line, const volatile void *cv) {}
void __attribute__((weak))
AnnotateIgnoreWritesBegin(const char *file, int line) {}
void __attribute__((weak)) AnnotateIgnoreWritesEnd(const char *file, int line) {
}
void __attribute__((weak))
AnnotateNewMemory(const char *file, int line, const volatile void *cv,
size_t size) {}
int __attribute__((weak)) RunningOnValgrind() {
runOnTsan = 0;
return 0;
}
void __attribute__((weak)) __tsan_func_entry(const void *call_pc) {}
void __attribute__((weak)) __tsan_func_exit(void) {}
#endif
}
// This marker is used to define a happens-before arc. The race detector will
// infer an arc from the begin to the end when they share the same pointer
// argument.
#define TsanHappensBefore(cv) AnnotateHappensBefore(__FILE__, __LINE__, cv)
// This marker defines the destination of a happens-before arc.
#define TsanHappensAfter(cv) AnnotateHappensAfter(__FILE__, __LINE__, cv)
// Ignore any races on writes between here and the next TsanIgnoreWritesEnd.
#define TsanIgnoreWritesBegin() AnnotateIgnoreWritesBegin(__FILE__, __LINE__)
// Resume checking for racy writes.
#define TsanIgnoreWritesEnd() AnnotateIgnoreWritesEnd(__FILE__, __LINE__)
// We don't really delete the clock for now
#define TsanDeleteClock(cv)
// newMemory
#define TsanNewMemory(addr, size) \
AnnotateNewMemory(__FILE__, __LINE__, addr, size)
#define TsanFreeMemory(addr, size) \
AnnotateNewMemory(__FILE__, __LINE__, addr, size)
#endif
// Function entry/exit
#define TsanFuncEntry(pc) __tsan_func_entry(pc)
#define TsanFuncExit() __tsan_func_exit()
/// Required OMPT inquiry functions.
static ompt_get_parallel_info_t ompt_get_parallel_info;
static ompt_get_thread_data_t ompt_get_thread_data;
typedef char ompt_tsan_clockid;
static uint64_t my_next_id() {
static uint64_t ID = 0;
uint64_t ret = __sync_fetch_and_add(&ID, 1);
return ret;
}
static int pagesize{0};
// Data structure to provide a threadsafe pool of reusable objects.
// DataPool<Type of objects>
template <typename T> struct DataPool final {
static __thread DataPool<T> *ThreadDataPool;
std::mutex DPMutex{};
// store unused objects
std::vector<T *> DataPointer{};
std::vector<T *> RemoteDataPointer{};
// store all allocated memory to finally release
std::list<void *> memory;
// count remotely returned data (RemoteDataPointer.size())
std::atomic<int> remote{0};
// totally allocated data objects in pool
int total{0};
#ifdef DEBUG_DATA
int remoteReturn{0};
int localReturn{0};
int getRemote() { return remoteReturn + remote; }
int getLocal() { return localReturn; }
#endif
int getTotal() { return total; }
int getMissing() {
return total - DataPointer.size() - RemoteDataPointer.size();
}
// fill the pool by allocating a page of memory
void newDatas() {
if (remote > 0) {
const std::lock_guard<std::mutex> lock(DPMutex);
// DataPointer is empty, so just swap the vectors
DataPointer.swap(RemoteDataPointer);
remote = 0;
return;
}
// calculate size of an object including padding to cacheline size
size_t elemSize = sizeof(T);
size_t paddedSize = (((elemSize - 1) / 64) + 1) * 64;
// number of padded elements to allocate
int ndatas = pagesize / paddedSize;
char *datas = (char *)malloc(ndatas * paddedSize);
memory.push_back(datas);
for (int i = 0; i < ndatas; i++) {
DataPointer.push_back(new (datas + i * paddedSize) T(this));
}
total += ndatas;
}
// get data from the pool
T *getData() {
T *ret;
if (DataPointer.empty())
newDatas();
ret = DataPointer.back();
DataPointer.pop_back();
return ret;
}
// accesses to the thread-local datapool don't need locks
void returnOwnData(T *data) {
DataPointer.emplace_back(data);
#ifdef DEBUG_DATA
localReturn++;
#endif
}
// returning to a remote datapool using lock
void returnData(T *data) {
const std::lock_guard<std::mutex> lock(DPMutex);
RemoteDataPointer.emplace_back(data);
remote++;
#ifdef DEBUG_DATA
remoteReturn++;
#endif
}
~DataPool() {
// we assume all memory is returned when the thread finished / destructor is
// called
if (archer_flags->report_data_leak && getMissing() != 0) {
printf("ERROR: While freeing DataPool (%s) we are missing %i data "
"objects.\n",
__PRETTY_FUNCTION__, getMissing());
exit(-3);
}
for (auto i : DataPointer)
if (i)
i->~T();
for (auto i : RemoteDataPointer)
if (i)
i->~T();
for (auto i : memory)
if (i)
free(i);
}
};
template <typename T> struct DataPoolEntry {
DataPool<T> *owner;
static T *New() { return DataPool<T>::ThreadDataPool->getData(); }
void Delete() {
static_cast<T *>(this)->Reset();
if (owner == DataPool<T>::ThreadDataPool)
owner->returnOwnData(static_cast<T *>(this));
else
owner->returnData(static_cast<T *>(this));
}
DataPoolEntry(DataPool<T> *dp) : owner(dp) {}
};
struct DependencyData;
typedef DataPool<DependencyData> DependencyDataPool;
template <>
__thread DependencyDataPool *DependencyDataPool::ThreadDataPool = nullptr;
/// Data structure to store additional information for task dependency.
struct DependencyData final : DataPoolEntry<DependencyData> {
ompt_tsan_clockid in;
ompt_tsan_clockid out;
ompt_tsan_clockid inoutset;
void *GetInPtr() { return &in; }
void *GetOutPtr() { return &out; }
void *GetInoutsetPtr() { return &inoutset; }
void Reset() {}
static DependencyData *New() { return DataPoolEntry<DependencyData>::New(); }
DependencyData(DataPool<DependencyData> *dp)
: DataPoolEntry<DependencyData>(dp) {}
};
struct TaskDependency {
void *inPtr;
void *outPtr;
void *inoutsetPtr;
ompt_dependence_type_t type;
TaskDependency(DependencyData *depData, ompt_dependence_type_t type)
: inPtr(depData->GetInPtr()), outPtr(depData->GetOutPtr()),
inoutsetPtr(depData->GetInoutsetPtr()), type(type) {}
void AnnotateBegin() {
if (type == ompt_dependence_type_out ||
type == ompt_dependence_type_inout ||
type == ompt_dependence_type_mutexinoutset) {
TsanHappensAfter(inPtr);
TsanHappensAfter(outPtr);
TsanHappensAfter(inoutsetPtr);
} else if (type == ompt_dependence_type_in) {
TsanHappensAfter(outPtr);
TsanHappensAfter(inoutsetPtr);
} else if (type == ompt_dependence_type_inoutset) {
TsanHappensAfter(inPtr);
TsanHappensAfter(outPtr);
}
}
void AnnotateEnd() {
if (type == ompt_dependence_type_out ||
type == ompt_dependence_type_inout ||
type == ompt_dependence_type_mutexinoutset) {
TsanHappensBefore(outPtr);
} else if (type == ompt_dependence_type_in) {
TsanHappensBefore(inPtr);
} else if (type == ompt_dependence_type_inoutset) {
TsanHappensBefore(inoutsetPtr);
}
}
};
struct ParallelData;
typedef DataPool<ParallelData> ParallelDataPool;
template <>
__thread ParallelDataPool *ParallelDataPool::ThreadDataPool = nullptr;
/// Data structure to store additional information for parallel regions.
struct ParallelData final : DataPoolEntry<ParallelData> {
// Parallel fork is just another barrier, use Barrier[1]
/// Two addresses for relationships with barriers.
ompt_tsan_clockid Barrier[2];
const void *codePtr;
void *GetParallelPtr() { return &(Barrier[1]); }
void *GetBarrierPtr(unsigned Index) { return &(Barrier[Index]); }
ParallelData *Init(const void *codeptr) {
codePtr = codeptr;
return this;
}
void Reset() {}
static ParallelData *New(const void *codeptr) {
return DataPoolEntry<ParallelData>::New()->Init(codeptr);
}
ParallelData(DataPool<ParallelData> *dp) : DataPoolEntry<ParallelData>(dp) {}
};
static inline ParallelData *ToParallelData(ompt_data_t *parallel_data) {
return reinterpret_cast<ParallelData *>(parallel_data->ptr);
}
struct Taskgroup;
typedef DataPool<Taskgroup> TaskgroupPool;
template <> __thread TaskgroupPool *TaskgroupPool::ThreadDataPool = nullptr;
/// Data structure to support stacking of taskgroups and allow synchronization.
struct Taskgroup final : DataPoolEntry<Taskgroup> {
/// Its address is used for relationships of the taskgroup's task set.
ompt_tsan_clockid Ptr;
/// Reference to the parent taskgroup.
Taskgroup *Parent;
void *GetPtr() { return &Ptr; }
Taskgroup *Init(Taskgroup *parent) {
Parent = parent;
return this;
}
void Reset() {}
static Taskgroup *New(Taskgroup *Parent) {
return DataPoolEntry<Taskgroup>::New()->Init(Parent);
}
Taskgroup(DataPool<Taskgroup> *dp) : DataPoolEntry<Taskgroup>(dp) {}
};
struct TaskData;
typedef DataPool<TaskData> TaskDataPool;
template <> __thread TaskDataPool *TaskDataPool::ThreadDataPool = nullptr;
/// Data structure to store additional information for tasks.
struct TaskData final : DataPoolEntry<TaskData> {
/// Its address is used for relationships of this task.
ompt_tsan_clockid Task{0};
/// Child tasks use its address to declare a relationship to a taskwait in
/// this task.
ompt_tsan_clockid Taskwait{0};
/// Whether this task is currently executing a barrier.
bool InBarrier{false};
/// Whether this task is an included task.
int TaskType{0};
/// count execution phase
int execution{0};
/// Index of which barrier to use next.
char BarrierIndex{0};
/// Count how often this structure has been put into child tasks + 1.
std::atomic_int RefCount{1};
/// Reference to the parent that created this task.
TaskData *Parent{nullptr};
/// Reference to the implicit task in the stack above this task.
TaskData *ImplicitTask{nullptr};
/// Reference to the team of this task.
ParallelData *Team{nullptr};
/// Reference to the current taskgroup that this task either belongs to or
/// that it just created.
Taskgroup *TaskGroup{nullptr};
/// Dependency information for this task.
TaskDependency *Dependencies{nullptr};
/// Number of dependency entries.
unsigned DependencyCount{0};
// The dependency-map stores DependencyData objects representing
// the dependency variables used on the sibling tasks created from
// this task
// We expect a rare need for the dependency-map, so alloc on demand
std::unordered_map<void *, DependencyData *> *DependencyMap{nullptr};
#ifdef DEBUG
int freed{0};
#endif
bool isIncluded() { return TaskType & ompt_task_undeferred; }
bool isUntied() { return TaskType & ompt_task_untied; }
bool isFinal() { return TaskType & ompt_task_final; }
bool isMergable() { return TaskType & ompt_task_mergeable; }
bool isMerged() { return TaskType & ompt_task_merged; }
bool isExplicit() { return TaskType & ompt_task_explicit; }
bool isImplicit() { return TaskType & ompt_task_implicit; }
bool isInitial() { return TaskType & ompt_task_initial; }
bool isTarget() { return TaskType & ompt_task_target; }
void *GetTaskPtr() { return &Task; }
void *GetTaskwaitPtr() { return &Taskwait; }
TaskData *Init(TaskData *parent, int taskType) {
TaskType = taskType;
Parent = parent;
Team = Parent->Team;
if (Parent != nullptr) {
Parent->RefCount++;
// Copy over pointer to taskgroup. This task may set up its own stack
// but for now belongs to its parent's taskgroup.
TaskGroup = Parent->TaskGroup;
}
return this;
}
TaskData *Init(ParallelData *team, int taskType) {
TaskType = taskType;
execution = 1;
ImplicitTask = this;
Team = team;
return this;
}
void Reset() {
InBarrier = false;
TaskType = 0;
execution = 0;
BarrierIndex = 0;
RefCount = 1;
Parent = nullptr;
ImplicitTask = nullptr;
Team = nullptr;
TaskGroup = nullptr;
if (DependencyMap) {
for (auto i : *DependencyMap)
i.second->Delete();
delete DependencyMap;
}
DependencyMap = nullptr;
if (Dependencies)
free(Dependencies);
Dependencies = nullptr;
DependencyCount = 0;
#ifdef DEBUG
freed = 0;
#endif
}
static TaskData *New(TaskData *parent, int taskType) {
return DataPoolEntry<TaskData>::New()->Init(parent, taskType);
}
static TaskData *New(ParallelData *team, int taskType) {
return DataPoolEntry<TaskData>::New()->Init(team, taskType);
}
TaskData(DataPool<TaskData> *dp) : DataPoolEntry<TaskData>(dp) {}
};
static inline TaskData *ToTaskData(ompt_data_t *task_data) {
return reinterpret_cast<TaskData *>(task_data->ptr);
}
/// Store a mutex for each wait_id to resolve race condition with callbacks.
std::unordered_map<ompt_wait_id_t, std::mutex> Locks;
std::mutex LocksMutex;
static void ompt_tsan_thread_begin(ompt_thread_t thread_type,
ompt_data_t *thread_data) {
ParallelDataPool::ThreadDataPool = new ParallelDataPool;
TsanNewMemory(ParallelDataPool::ThreadDataPool,
sizeof(ParallelDataPool::ThreadDataPool));
TaskgroupPool::ThreadDataPool = new TaskgroupPool;
TsanNewMemory(TaskgroupPool::ThreadDataPool,
sizeof(TaskgroupPool::ThreadDataPool));
TaskDataPool::ThreadDataPool = new TaskDataPool;
TsanNewMemory(TaskDataPool::ThreadDataPool,
sizeof(TaskDataPool::ThreadDataPool));
DependencyDataPool::ThreadDataPool = new DependencyDataPool;
TsanNewMemory(DependencyDataPool::ThreadDataPool,
sizeof(DependencyDataPool::ThreadDataPool));
thread_data->value = my_next_id();
}
static void ompt_tsan_thread_end(ompt_data_t *thread_data) {
TsanIgnoreWritesBegin();
delete ParallelDataPool::ThreadDataPool;
delete TaskgroupPool::ThreadDataPool;
delete TaskDataPool::ThreadDataPool;
delete DependencyDataPool::ThreadDataPool;
TsanIgnoreWritesEnd();
}
/// OMPT event callbacks for handling parallel regions.
static void ompt_tsan_parallel_begin(ompt_data_t *parent_task_data,
const ompt_frame_t *parent_task_frame,
ompt_data_t *parallel_data,
uint32_t requested_team_size, int flag,
const void *codeptr_ra) {
ParallelData *Data = ParallelData::New(codeptr_ra);
parallel_data->ptr = Data;
TsanHappensBefore(Data->GetParallelPtr());
if (archer_flags->ignore_serial && ToTaskData(parent_task_data)->isInitial())
TsanIgnoreWritesEnd();
}
static void ompt_tsan_parallel_end(ompt_data_t *parallel_data,
ompt_data_t *task_data, int flag,
const void *codeptr_ra) {
if (archer_flags->ignore_serial && ToTaskData(task_data)->isInitial())
TsanIgnoreWritesBegin();
ParallelData *Data = ToParallelData(parallel_data);
TsanHappensAfter(Data->GetBarrierPtr(0));
TsanHappensAfter(Data->GetBarrierPtr(1));
Data->Delete();
#if (LLVM_VERSION >= 40)
if (&__archer_get_omp_status) {
if (__archer_get_omp_status() == 0 && archer_flags->flush_shadow)
__tsan_flush_memory();
}
#endif
}
static void ompt_tsan_implicit_task(ompt_scope_endpoint_t endpoint,
ompt_data_t *parallel_data,
ompt_data_t *task_data,
unsigned int team_size,
unsigned int thread_num, int type) {
switch (endpoint) {
case ompt_scope_begin:
if (type & ompt_task_initial) {
parallel_data->ptr = ParallelData::New(nullptr);
}
task_data->ptr = TaskData::New(ToParallelData(parallel_data), type);
TsanHappensAfter(ToParallelData(parallel_data)->GetParallelPtr());
TsanFuncEntry(ToParallelData(parallel_data)->codePtr);
break;
case ompt_scope_end: {
TaskData *Data = ToTaskData(task_data);
#ifdef DEBUG
assert(Data->freed == 0 && "Implicit task end should only be called once!");
Data->freed = 1;
#endif
assert(Data->RefCount == 1 &&
"All tasks should have finished at the implicit barrier!");
Data->Delete();
if (type & ompt_task_initial) {
ToParallelData(parallel_data)->Delete();
}
TsanFuncExit();
break;
}
case ompt_scope_beginend:
// Should not occur according to OpenMP 5.1
// Tested in OMPT tests
break;
}
}
static void ompt_tsan_sync_region(ompt_sync_region_t kind,
ompt_scope_endpoint_t endpoint,
ompt_data_t *parallel_data,
ompt_data_t *task_data,
const void *codeptr_ra) {
TaskData *Data = ToTaskData(task_data);
switch (endpoint) {
case ompt_scope_begin:
case ompt_scope_beginend:
TsanFuncEntry(codeptr_ra);
switch (kind) {
case ompt_sync_region_barrier_implementation:
case ompt_sync_region_barrier_implicit:
case ompt_sync_region_barrier_explicit:
case ompt_sync_region_barrier_implicit_parallel:
case ompt_sync_region_barrier_implicit_workshare:
case ompt_sync_region_barrier_teams:
case ompt_sync_region_barrier: {
char BarrierIndex = Data->BarrierIndex;
TsanHappensBefore(Data->Team->GetBarrierPtr(BarrierIndex));
if (hasReductionCallback < ompt_set_always) {
// We ignore writes inside the barrier. These would either occur during
// 1. reductions performed by the runtime which are guaranteed to be
// race-free.
// 2. execution of another task.
// For the latter case we will re-enable tracking in task_switch.
Data->InBarrier = true;
TsanIgnoreWritesBegin();
}
break;
}
case ompt_sync_region_taskwait:
break;
case ompt_sync_region_taskgroup:
Data->TaskGroup = Taskgroup::New(Data->TaskGroup);
break;
case ompt_sync_region_reduction:
// should never be reached
break;
}
if (endpoint == ompt_scope_begin)
break;
KMP_FALLTHROUGH();
case ompt_scope_end:
TsanFuncExit();
switch (kind) {
case ompt_sync_region_barrier_implementation:
case ompt_sync_region_barrier_implicit:
case ompt_sync_region_barrier_explicit:
case ompt_sync_region_barrier_implicit_parallel:
case ompt_sync_region_barrier_implicit_workshare:
case ompt_sync_region_barrier_teams:
case ompt_sync_region_barrier: {
if (hasReductionCallback < ompt_set_always) {
// We want to track writes after the barrier again.
Data->InBarrier = false;
TsanIgnoreWritesEnd();
}
char BarrierIndex = Data->BarrierIndex;
// Barrier will end after it has been entered by all threads.
if (parallel_data)
TsanHappensAfter(Data->Team->GetBarrierPtr(BarrierIndex));
// It is not guaranteed that all threads have exited this barrier before
// we enter the next one. So we will use a different address.
// We are however guaranteed that this current barrier is finished
// by the time we exit the next one. So we can then reuse the first
// address.
Data->BarrierIndex = (BarrierIndex + 1) % 2;
break;
}
case ompt_sync_region_taskwait: {
if (Data->execution > 1)
TsanHappensAfter(Data->GetTaskwaitPtr());
break;
}
case ompt_sync_region_taskgroup: {
assert(Data->TaskGroup != nullptr &&
"Should have at least one taskgroup!");
TsanHappensAfter(Data->TaskGroup->GetPtr());
// Delete this allocated taskgroup, all descendent task are finished by
// now.
Taskgroup *Parent = Data->TaskGroup->Parent;
Data->TaskGroup->Delete();
Data->TaskGroup = Parent;
break;
}
case ompt_sync_region_reduction:
// Should not occur according to OpenMP 5.1
// Tested in OMPT tests
break;
}
break;
}
}
static void ompt_tsan_reduction(ompt_sync_region_t kind,
ompt_scope_endpoint_t endpoint,
ompt_data_t *parallel_data,
ompt_data_t *task_data,
const void *codeptr_ra) {
switch (endpoint) {
case ompt_scope_begin:
switch (kind) {
case ompt_sync_region_reduction:
TsanIgnoreWritesBegin();
break;
default:
break;
}
break;
case ompt_scope_end:
switch (kind) {
case ompt_sync_region_reduction:
TsanIgnoreWritesEnd();
break;
default:
break;
}
break;
case ompt_scope_beginend:
// Should not occur according to OpenMP 5.1
// Tested in OMPT tests
// Would have no implications for DR detection
break;
}
}
/// OMPT event callbacks for handling tasks.
static void ompt_tsan_task_create(
ompt_data_t *parent_task_data, /* id of parent task */
const ompt_frame_t *parent_frame, /* frame data for parent task */
ompt_data_t *new_task_data, /* id of created task */
int type, int has_dependences,
const void *codeptr_ra) /* pointer to outlined function */
{
TaskData *Data;
assert(new_task_data->ptr == NULL &&
"Task data should be initialized to NULL");
if (type & ompt_task_initial) {
ompt_data_t *parallel_data;
int team_size = 1;
ompt_get_parallel_info(0, &parallel_data, &team_size);
ParallelData *PData = ParallelData::New(nullptr);
parallel_data->ptr = PData;
Data = TaskData::New(PData, type);
new_task_data->ptr = Data;
} else if (type & ompt_task_undeferred) {
Data = TaskData::New(ToTaskData(parent_task_data), type);
new_task_data->ptr = Data;
} else if (type & ompt_task_explicit || type & ompt_task_target) {
Data = TaskData::New(ToTaskData(parent_task_data), type);
new_task_data->ptr = Data;
// Use the newly created address. We cannot use a single address from the
// parent because that would declare wrong relationships with other
// sibling tasks that may be created before this task is started!
TsanHappensBefore(Data->GetTaskPtr());
ToTaskData(parent_task_data)->execution++;
}
}
static void freeTask(TaskData *task) {
while (task != nullptr && --task->RefCount == 0) {
TaskData *Parent = task->Parent;
task->Delete();
task = Parent;
}
}
static void releaseDependencies(TaskData *task) {
for (unsigned i = 0; i < task->DependencyCount; i++) {
task->Dependencies[i].AnnotateEnd();
}
}
static void acquireDependencies(TaskData *task) {
for (unsigned i = 0; i < task->DependencyCount; i++) {
task->Dependencies[i].AnnotateBegin();
}
}
static void ompt_tsan_task_schedule(ompt_data_t *first_task_data,
ompt_task_status_t prior_task_status,
ompt_data_t *second_task_data) {
//
// The necessary action depends on prior_task_status:
//
// ompt_task_early_fulfill = 5,
// -> ignored
//
// ompt_task_late_fulfill = 6,
// -> first completed, first freed, second ignored
//
// ompt_task_complete = 1,
// ompt_task_cancel = 3,
// -> first completed, first freed, second starts
//
// ompt_task_detach = 4,
// ompt_task_yield = 2,
// ompt_task_switch = 7
// -> first suspended, second starts
//
if (prior_task_status == ompt_task_early_fulfill)
return;
TaskData *FromTask = ToTaskData(first_task_data);
// Legacy handling for missing reduction callback
if (hasReductionCallback < ompt_set_always && FromTask->InBarrier) {
// We want to ignore writes in the runtime code during barriers,
// but not when executing tasks with user code!
TsanIgnoreWritesEnd();
}
// The late fulfill happens after the detached task finished execution
if (prior_task_status == ompt_task_late_fulfill)
TsanHappensAfter(FromTask->GetTaskPtr());
// task completed execution
if (prior_task_status == ompt_task_complete ||
prior_task_status == ompt_task_cancel ||
prior_task_status == ompt_task_late_fulfill) {
// Included tasks are executed sequentially, no need to track
// synchronization
if (!FromTask->isIncluded()) {
// Task will finish before a barrier in the surrounding parallel region
// ...
ParallelData *PData = FromTask->Team;
TsanHappensBefore(
PData->GetBarrierPtr(FromTask->ImplicitTask->BarrierIndex));
// ... and before an eventual taskwait by the parent thread.
TsanHappensBefore(FromTask->Parent->GetTaskwaitPtr());
if (FromTask->TaskGroup != nullptr) {
// This task is part of a taskgroup, so it will finish before the
// corresponding taskgroup_end.
TsanHappensBefore(FromTask->TaskGroup->GetPtr());
}
}
// release dependencies
releaseDependencies(FromTask);
// free the previously running task
freeTask(FromTask);
}
// For late fulfill of detached task, there is no task to schedule to
if (prior_task_status == ompt_task_late_fulfill) {
return;
}
TaskData *ToTask = ToTaskData(second_task_data);
// Legacy handling for missing reduction callback
if (hasReductionCallback < ompt_set_always && ToTask->InBarrier) {
// We re-enter runtime code which currently performs a barrier.
TsanIgnoreWritesBegin();
}
// task suspended
if (prior_task_status == ompt_task_switch ||
prior_task_status == ompt_task_yield ||
prior_task_status == ompt_task_detach) {
// Task may be resumed at a later point in time.
TsanHappensBefore(FromTask->GetTaskPtr());
ToTask->ImplicitTask = FromTask->ImplicitTask;
assert(ToTask->ImplicitTask != NULL &&
"A task belongs to a team and has an implicit task on the stack");
}
// Handle dependencies on first execution of the task
if (ToTask->execution == 0) {
ToTask->execution++;
acquireDependencies(ToTask);
}
// 1. Task will begin execution after it has been created.
// 2. Task will resume after it has been switched away.
TsanHappensAfter(ToTask->GetTaskPtr());
}
static void ompt_tsan_dependences(ompt_data_t *task_data,
const ompt_dependence_t *deps, int ndeps) {
if (ndeps > 0) {
// Copy the data to use it in task_switch and task_end.
TaskData *Data = ToTaskData(task_data);
if (!Data->Parent->DependencyMap)
Data->Parent->DependencyMap =
new std::unordered_map<void *, DependencyData *>();
Data->Dependencies =
(TaskDependency *)malloc(sizeof(TaskDependency) * ndeps);
Data->DependencyCount = ndeps;
for (int i = 0; i < ndeps; i++) {
auto ret = Data->Parent->DependencyMap->insert(
std::make_pair(deps[i].variable.ptr, nullptr));
if (ret.second) {
ret.first->second = DependencyData::New();
}
new ((void *)(Data->Dependencies + i))
TaskDependency(ret.first->second, deps[i].dependence_type);
}
// This callback is executed before this task is first started.
TsanHappensBefore(Data->GetTaskPtr());
}
}
/// OMPT event callbacks for handling locking.
static void ompt_tsan_mutex_acquired(ompt_mutex_t kind, ompt_wait_id_t wait_id,
const void *codeptr_ra) {
// Acquire our own lock to make sure that
// 1. the previous release has finished.
// 2. the next acquire doesn't start before we have finished our release.
LocksMutex.lock();
std::mutex &Lock = Locks[wait_id];
LocksMutex.unlock();
Lock.lock();
TsanHappensAfter(&Lock);
}
static void ompt_tsan_mutex_released(ompt_mutex_t kind, ompt_wait_id_t wait_id,
const void *codeptr_ra) {
LocksMutex.lock();
std::mutex &Lock = Locks[wait_id];
LocksMutex.unlock();
TsanHappensBefore(&Lock);
Lock.unlock();
}
// callback , signature , variable to store result , required support level
#define SET_OPTIONAL_CALLBACK_T(event, type, result, level) \
do { \
ompt_callback_##type##_t tsan_##event = &ompt_tsan_##event; \
result = ompt_set_callback(ompt_callback_##event, \
(ompt_callback_t)tsan_##event); \
if (result < level) \
printf("Registered callback '" #event "' is not supported at " #level \
" (%i)\n", \
result); \
} while (0)
#define SET_CALLBACK_T(event, type) \
do { \
int res; \
SET_OPTIONAL_CALLBACK_T(event, type, res, ompt_set_always); \
} while (0)
#define SET_CALLBACK(event) SET_CALLBACK_T(event, event)
static int ompt_tsan_initialize(ompt_function_lookup_t lookup, int device_num,
ompt_data_t *tool_data) {
const char *options = getenv("TSAN_OPTIONS");
TsanFlags tsan_flags(options);
ompt_set_callback_t ompt_set_callback =
(ompt_set_callback_t)lookup("ompt_set_callback");
if (ompt_set_callback == NULL) {
std::cerr << "Could not set callback, exiting..." << std::endl;
std::exit(1);
}
ompt_get_parallel_info =
(ompt_get_parallel_info_t)lookup("ompt_get_parallel_info");
ompt_get_thread_data = (ompt_get_thread_data_t)lookup("ompt_get_thread_data");
if (ompt_get_parallel_info == NULL) {
fprintf(stderr, "Could not get inquiry function 'ompt_get_parallel_info', "
"exiting...\n");
exit(1);
}
#if (defined __APPLE__ && defined __MACH__)
#define findTsanFunction(f, fSig) \
do { \
if (NULL == (f = fSig dlsym(RTLD_DEFAULT, #f))) \
printf("Unable to find TSan function " #f ".\n"); \
} while (0)
findTsanFunction(AnnotateHappensAfter,
(void (*)(const char *, int, const volatile void *)));
findTsanFunction(AnnotateHappensBefore,
(void (*)(const char *, int, const volatile void *)));
findTsanFunction(AnnotateIgnoreWritesBegin, (void (*)(const char *, int)));
findTsanFunction(AnnotateIgnoreWritesEnd, (void (*)(const char *, int)));
findTsanFunction(
AnnotateNewMemory,
(void (*)(const char *, int, const volatile void *, size_t)));
findTsanFunction(__tsan_func_entry, (void (*)(const void *)));
findTsanFunction(__tsan_func_exit, (void (*)(void)));
#endif
SET_CALLBACK(thread_begin);
SET_CALLBACK(thread_end);
SET_CALLBACK(parallel_begin);
SET_CALLBACK(implicit_task);
SET_CALLBACK(sync_region);
SET_CALLBACK(parallel_end);
SET_CALLBACK(task_create);
SET_CALLBACK(task_schedule);
SET_CALLBACK(dependences);
SET_CALLBACK_T(mutex_acquired, mutex);
SET_CALLBACK_T(mutex_released, mutex);
SET_OPTIONAL_CALLBACK_T(reduction, sync_region, hasReductionCallback,
ompt_set_never);
if (!tsan_flags.ignore_noninstrumented_modules)
fprintf(stderr,
"Warning: please export "
"TSAN_OPTIONS='ignore_noninstrumented_modules=1' "
"to avoid false positive reports from the OpenMP runtime!\n");
if (archer_flags->ignore_serial)
TsanIgnoreWritesBegin();
return 1; // success
}
static void ompt_tsan_finalize(ompt_data_t *tool_data) {
if (archer_flags->ignore_serial)
TsanIgnoreWritesEnd();
if (archer_flags->print_max_rss) {
struct rusage end;
getrusage(RUSAGE_SELF, &end);
printf("MAX RSS[KBytes] during execution: %ld\n", end.ru_maxrss);
}
if (archer_flags)
delete archer_flags;
}
extern "C" ompt_start_tool_result_t *
ompt_start_tool(unsigned int omp_version, const char *runtime_version) {
const char *options = getenv("ARCHER_OPTIONS");
archer_flags = new ArcherFlags(options);
if (!archer_flags->enabled) {
if (archer_flags->verbose)
std::cout << "Archer disabled, stopping operation" << std::endl;
delete archer_flags;
return NULL;
}
pagesize = getpagesize();
static ompt_start_tool_result_t ompt_start_tool_result = {
&ompt_tsan_initialize, &ompt_tsan_finalize, {0}};
// The OMPT start-up code uses dlopen with RTLD_LAZY. Therefore, we cannot
// rely on dlopen to fail if TSan is missing, but would get a runtime error
// for the first TSan call. We use RunningOnValgrind to detect whether
// an implementation of the Annotation interface is available in the
// execution or disable the tool (by returning NULL).
runOnTsan = 1;
RunningOnValgrind();
if (!runOnTsan) // if we are not running on TSAN, give a different tool the
// chance to be loaded
{
if (archer_flags->verbose)
std::cout << "Archer detected OpenMP application without TSan "
"stopping operation"
<< std::endl;
delete archer_flags;
return NULL;
}
if (archer_flags->verbose)
std::cout << "Archer detected OpenMP application with TSan, supplying "
"OpenMP synchronization semantics"
<< std::endl;
return &ompt_start_tool_result;
}