Files
clang-p2996/lldb/test/API/tools/lldb-server/main.cpp
Michał Górny 09531ede6d [lldb] [llgs] Improve stdio forwarding in multiprocess+nonstop
Enable stdio forwarding when nonstop mode is enabled, and disable it
once it is disabled.  This makes it possible to cleanly handle stdio
forwarding while running multiple processes in non-stop mode.

Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.llvm.org/D128932
2022-07-15 21:50:39 +02:00

397 lines
12 KiB
C++

#include <atomic>
#include <cassert>
#include <chrono>
#include <cstdlib>
#include <cstring>
#include <errno.h>
#include <future>
#include <inttypes.h>
#include <memory>
#include <mutex>
#if !defined(_WIN32)
#include <pthread.h>
#include <signal.h>
#include <unistd.h>
#endif
#include "thread.h"
#include <setjmp.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <string>
#include <thread>
#include <time.h>
#include <vector>
#if defined(__APPLE__)
#include <TargetConditionals.h>
#endif
static const char *const PRINT_PID_COMMAND = "print-pid";
static bool g_print_thread_ids = false;
static std::mutex g_print_mutex;
static bool g_threads_do_segfault = false;
static std::mutex g_jump_buffer_mutex;
static jmp_buf g_jump_buffer;
static bool g_is_segfaulting = false;
static char g_message[256];
static volatile char g_c1 = '0';
static volatile char g_c2 = '1';
static void print_pid() {
#if defined(_WIN32)
fprintf(stderr, "PID: %d\n", ::GetCurrentProcessId());
#else
fprintf(stderr, "PID: %d\n", getpid());
#endif
}
static void signal_handler(int signo) {
#if defined(_WIN32)
// No signal support on Windows.
#else
const char *signal_name = nullptr;
switch (signo) {
case SIGUSR1:
signal_name = "SIGUSR1";
break;
case SIGSEGV:
signal_name = "SIGSEGV";
break;
default:
signal_name = nullptr;
}
// Print notice that we received the signal on a given thread.
char buf[100];
if (signal_name)
snprintf(buf, sizeof(buf), "received %s on thread id: %" PRIx64 "\n", signal_name, get_thread_id());
else
snprintf(buf, sizeof(buf), "received signo %d (%s) on thread id: %" PRIx64 "\n", signo, strsignal(signo), get_thread_id());
write(STDOUT_FILENO, buf, strlen(buf));
// Reset the signal handler if we're one of the expected signal handlers.
switch (signo) {
case SIGSEGV:
if (g_is_segfaulting) {
// Fix up the pointer we're writing to. This needs to happen if nothing
// intercepts the SIGSEGV (i.e. if somebody runs this from the command
// line).
longjmp(g_jump_buffer, 1);
}
break;
case SIGUSR1:
if (g_is_segfaulting) {
// Fix up the pointer we're writing to. This is used to test gdb remote
// signal delivery. A SIGSEGV will be raised when the thread is created,
// switched out for a SIGUSR1, and then this code still needs to fix the
// seg fault. (i.e. if somebody runs this from the command line).
longjmp(g_jump_buffer, 1);
}
break;
}
// Reset the signal handler.
sig_t sig_result = signal(signo, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set signal handler: errno=%d\n", errno);
exit(1);
}
#endif
}
static void swap_chars() {
#if defined(__x86_64__) || defined(__i386__)
asm volatile("movb %1, (%2)\n\t"
"movb %0, (%3)\n\t"
"movb %0, (%2)\n\t"
"movb %1, (%3)\n\t"
:
: "i"('0'), "i"('1'), "r"(&g_c1), "r"(&g_c2)
: "memory");
#elif defined(__aarch64__)
asm volatile("strb %w1, [%2]\n\t"
"strb %w0, [%3]\n\t"
"strb %w0, [%2]\n\t"
"strb %w1, [%3]\n\t"
:
: "r"('0'), "r"('1'), "r"(&g_c1), "r"(&g_c2)
: "memory");
#elif defined(__arm__)
asm volatile("strb %1, [%2]\n\t"
"strb %0, [%3]\n\t"
"strb %0, [%2]\n\t"
"strb %1, [%3]\n\t"
:
: "r"('0'), "r"('1'), "r"(&g_c1), "r"(&g_c2)
: "memory");
#else
#warning This may generate unpredictible assembly and cause the single-stepping test to fail.
#warning Please add appropriate assembly for your target.
g_c1 = '1';
g_c2 = '0';
g_c1 = '0';
g_c2 = '1';
#endif
}
static void trap() {
#if defined(__x86_64__) || defined(__i386__)
asm volatile("int3");
#elif defined(__aarch64__)
asm volatile("brk #0xf000");
#elif defined(__arm__)
asm volatile("udf #254");
#elif defined(__powerpc__)
asm volatile("trap");
#elif __has_builtin(__builtin_debugtrap())
__builtin_debugtrap();
#else
#warning Don't know how to generate a trap. Some tests may fail.
#endif
}
static void hello() {
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("hello, world\n");
}
static void *thread_func(std::promise<void> ready) {
ready.set_value();
static std::atomic<int> s_thread_index(1);
const int this_thread_index = s_thread_index++;
if (g_print_thread_ids) {
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("thread %d id: %" PRIx64 "\n", this_thread_index, get_thread_id());
}
if (g_threads_do_segfault) {
// Sleep for a number of seconds based on the thread index.
// TODO add ability to send commands to test exe so we can
// handle timing more precisely. This is clunky. All we're
// trying to do is add predictability as to the timing of
// signal generation by created threads.
int sleep_seconds = 2 * (this_thread_index - 1);
std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds));
// Test creating a SEGV.
{
std::lock_guard<std::mutex> lock(g_jump_buffer_mutex);
g_is_segfaulting = true;
int *bad_p = nullptr;
if (setjmp(g_jump_buffer) == 0) {
// Force a seg fault signal on this thread.
*bad_p = 0;
} else {
// Tell the system we're no longer seg faulting.
// Used by the SIGUSR1 signal handler that we inject
// in place of the SIGSEGV so it only tries to
// recover from the SIGSEGV if this seg fault code
// was in play.
g_is_segfaulting = false;
}
}
{
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("thread %" PRIx64 ": past SIGSEGV\n", get_thread_id());
}
}
int sleep_seconds_remaining = 60;
std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds_remaining));
return nullptr;
}
static bool consume_front(std::string &str, const std::string &front) {
if (str.find(front) != 0)
return false;
str = str.substr(front.size());
return true;
}
int main(int argc, char **argv) {
lldb_enable_attach();
std::vector<std::thread> threads;
std::unique_ptr<uint8_t[]> heap_array_up;
int return_value = 0;
#if !defined(_WIN32)
bool is_child = false;
// Set the signal handler.
sig_t sig_result = signal(SIGALRM, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set SIGALRM signal handler: errno=%d\n", errno);
exit(1);
}
sig_result = signal(SIGUSR1, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
exit(1);
}
sig_result = signal(SIGSEGV, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set SIGSEGV handler: errno=%d\n", errno);
exit(1);
}
sig_result = signal(SIGCHLD, SIG_IGN);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set SIGCHLD handler: errno=%d\n", errno);
exit(1);
}
#endif
// Process command line args.
for (int i = 1; i < argc; ++i) {
std::string arg = argv[i];
if (consume_front(arg, "stderr:")) {
// Treat remainder as text to go to stderr.
fprintf(stderr, "%s\n", arg.c_str());
} else if (consume_front(arg, "retval:")) {
// Treat as the return value for the program.
return_value = std::atoi(arg.c_str());
} else if (consume_front(arg, "sleep:")) {
// Treat as the amount of time to have this process sleep (in seconds).
int sleep_seconds_remaining = std::atoi(arg.c_str());
// Loop around, sleeping until all sleep time is used up. Note that
// signals will cause sleep to end early with the number of seconds
// remaining.
std::this_thread::sleep_for(
std::chrono::seconds(sleep_seconds_remaining));
} else if (consume_front(arg, "set-message:")) {
// Copy the contents after "set-message:" to the g_message buffer.
// Used for reading inferior memory and verifying contents match
// expectations.
strncpy(g_message, arg.c_str(), sizeof(g_message));
// Ensure we're null terminated.
g_message[sizeof(g_message) - 1] = '\0';
} else if (consume_front(arg, "print-message:")) {
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("message: %s\n", g_message);
} else if (consume_front(arg, "get-data-address-hex:")) {
volatile void *data_p = nullptr;
if (arg == "g_message")
data_p = &g_message[0];
else if (arg == "g_c1")
data_p = &g_c1;
else if (arg == "g_c2")
data_p = &g_c2;
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("data address: %p\n", data_p);
} else if (consume_front(arg, "get-heap-address-hex:")) {
// Create a byte array if not already present.
if (!heap_array_up)
heap_array_up.reset(new uint8_t[32]);
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("heap address: %p\n", heap_array_up.get());
} else if (consume_front(arg, "get-stack-address-hex:")) {
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("stack address: %p\n", &return_value);
} else if (consume_front(arg, "get-code-address-hex:")) {
void (*func_p)() = nullptr;
if (arg == "hello")
func_p = hello;
else if (arg == "swap_chars")
func_p = swap_chars;
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("code address: %p\n", func_p);
} else if (consume_front(arg, "call-function:")) {
void (*func_p)() = nullptr;
if (arg == "hello")
func_p = hello;
else if (arg == "swap_chars")
func_p = swap_chars;
func_p();
#if !defined(_WIN32) && !defined(TARGET_OS_WATCH) && !defined(TARGET_OS_TV)
} else if (arg == "fork") {
pid_t fork_pid = fork();
assert(fork_pid != -1);
is_child = fork_pid == 0;
} else if (arg == "vfork") {
if (vfork() == 0)
_exit(0);
} else if (consume_front(arg, "process:sync:")) {
// this is only valid after fork
const char *filenames[] = {"parent", "child"};
std::string my_file = arg + "." + filenames[is_child];
std::string other_file = arg + "." + filenames[!is_child];
// indicate that we're ready
FILE *f = fopen(my_file.c_str(), "w");
assert(f);
fclose(f);
// wait for the other process to be ready
for (int i = 0; i < 5; ++i) {
f = fopen(other_file.c_str(), "r");
if (f)
break;
std::this_thread::sleep_for(std::chrono::milliseconds(125 * (1<<i)));
}
assert(f);
fclose(f);
#endif
} else if (consume_front(arg, "thread:new")) {
std::promise<void> promise;
std::future<void> ready = promise.get_future();
threads.push_back(std::thread(thread_func, std::move(promise)));
ready.wait();
} else if (consume_front(arg, "thread:print-ids")) {
// Turn on thread id announcing.
g_print_thread_ids = true;
// And announce us.
{
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("thread 0 id: %" PRIx64 "\n", get_thread_id());
}
} else if (consume_front(arg, "thread:segfault")) {
g_threads_do_segfault = true;
} else if (consume_front(arg, "print-pid")) {
print_pid();
} else if (consume_front(arg, "print-env:")) {
// Print the value of specified envvar to stdout.
const char *value = getenv(arg.c_str());
printf("%s\n", value ? value : "__unset__");
} else if (consume_front(arg, "trap")) {
trap();
#if !defined(_WIN32)
} else if (arg == "stop") {
raise(SIGINT);
#endif
} else {
// Treat the argument as text for stdout.
printf("%s\n", argv[i]);
}
}
// If we launched any threads, join them
for (std::vector<std::thread>::iterator it = threads.begin();
it != threads.end(); ++it)
it->join();
return return_value;
}