- Instead of comparing the identity of the `PointerValue`s, compare the underlying `StorageLocation`s. - If the `StorageLocation`s are the same, return a definite "true" as the result of the comparison. Before, if the `PointerValue`s were different, we would return an atom, even if the storage locations themselves were the same. - If the `StorageLocation`s are different, return an atom (as before). Pointers that have different storage locations may still alias, so we can't return a definite "false" in this case. The application-level gains from this are relatively modest. For the Crubit nullability check running on an internal codebase, this change reduces the number of functions on which the SAT solver times out from 223 to 221; the number of "pointer expression not modeled" errors reduces from 3815 to 3778. Still, it seems that the gain in precision is generally worthwhile. @Xazax-hun inspired me to think about this with his [comments](https://github.com/llvm/llvm-project/pull/73860#pullrequestreview-1761484615) on a different PR.
872 lines
30 KiB
C++
872 lines
30 KiB
C++
//===-- Transfer.cpp --------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines transfer functions that evaluate program statements and
|
|
// update an environment accordingly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/FlowSensitive/Transfer.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/OperationKinds.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Analysis/FlowSensitive/ASTOps.h"
|
|
#include "clang/Analysis/FlowSensitive/AdornedCFG.h"
|
|
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
|
|
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
|
|
#include "clang/Analysis/FlowSensitive/NoopAnalysis.h"
|
|
#include "clang/Analysis/FlowSensitive/RecordOps.h"
|
|
#include "clang/Analysis/FlowSensitive/Value.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/OperatorKinds.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <assert.h>
|
|
#include <cassert>
|
|
|
|
#define DEBUG_TYPE "dataflow"
|
|
|
|
namespace clang {
|
|
namespace dataflow {
|
|
|
|
const Environment *StmtToEnvMap::getEnvironment(const Stmt &S) const {
|
|
auto BlockIt = ACFG.getStmtToBlock().find(&ignoreCFGOmittedNodes(S));
|
|
if (BlockIt == ACFG.getStmtToBlock().end()) {
|
|
assert(false);
|
|
// Return null to avoid dereferencing the end iterator in non-assert builds.
|
|
return nullptr;
|
|
}
|
|
if (!ACFG.isBlockReachable(*BlockIt->getSecond()))
|
|
return nullptr;
|
|
if (BlockIt->getSecond()->getBlockID() == CurBlockID)
|
|
return &CurState.Env;
|
|
const auto &State = BlockToState[BlockIt->getSecond()->getBlockID()];
|
|
if (!(State))
|
|
return nullptr;
|
|
return &State->Env;
|
|
}
|
|
|
|
static BoolValue &evaluateBooleanEquality(const Expr &LHS, const Expr &RHS,
|
|
Environment &Env) {
|
|
Value *LHSValue = Env.getValue(LHS);
|
|
Value *RHSValue = Env.getValue(RHS);
|
|
|
|
if (LHSValue == RHSValue)
|
|
return Env.getBoolLiteralValue(true);
|
|
|
|
if (auto *LHSBool = dyn_cast_or_null<BoolValue>(LHSValue))
|
|
if (auto *RHSBool = dyn_cast_or_null<BoolValue>(RHSValue))
|
|
return Env.makeIff(*LHSBool, *RHSBool);
|
|
|
|
if (auto *LHSPtr = dyn_cast_or_null<PointerValue>(LHSValue))
|
|
if (auto *RHSPtr = dyn_cast_or_null<PointerValue>(RHSValue))
|
|
// If the storage locations are the same, the pointers definitely compare
|
|
// the same. If the storage locations are different, they may still alias,
|
|
// so we fall through to the case below that returns an atom.
|
|
if (&LHSPtr->getPointeeLoc() == &RHSPtr->getPointeeLoc())
|
|
return Env.getBoolLiteralValue(true);
|
|
|
|
return Env.makeAtomicBoolValue();
|
|
}
|
|
|
|
static BoolValue &unpackValue(BoolValue &V, Environment &Env) {
|
|
if (auto *Top = llvm::dyn_cast<TopBoolValue>(&V)) {
|
|
auto &A = Env.getDataflowAnalysisContext().arena();
|
|
return A.makeBoolValue(A.makeAtomRef(Top->getAtom()));
|
|
}
|
|
return V;
|
|
}
|
|
|
|
// Unpacks the value (if any) associated with `E` and updates `E` to the new
|
|
// value, if any unpacking occured. Also, does the lvalue-to-rvalue conversion,
|
|
// by skipping past the reference.
|
|
static Value *maybeUnpackLValueExpr(const Expr &E, Environment &Env) {
|
|
auto *Loc = Env.getStorageLocation(E);
|
|
if (Loc == nullptr)
|
|
return nullptr;
|
|
auto *Val = Env.getValue(*Loc);
|
|
|
|
auto *B = dyn_cast_or_null<BoolValue>(Val);
|
|
if (B == nullptr)
|
|
return Val;
|
|
|
|
auto &UnpackedVal = unpackValue(*B, Env);
|
|
if (&UnpackedVal == Val)
|
|
return Val;
|
|
Env.setValue(*Loc, UnpackedVal);
|
|
return &UnpackedVal;
|
|
}
|
|
|
|
static void propagateValue(const Expr &From, const Expr &To, Environment &Env) {
|
|
if (From.getType()->isRecordType())
|
|
return;
|
|
if (auto *Val = Env.getValue(From))
|
|
Env.setValue(To, *Val);
|
|
}
|
|
|
|
static void propagateStorageLocation(const Expr &From, const Expr &To,
|
|
Environment &Env) {
|
|
if (auto *Loc = Env.getStorageLocation(From))
|
|
Env.setStorageLocation(To, *Loc);
|
|
}
|
|
|
|
// Propagates the value or storage location of `From` to `To` in cases where
|
|
// `From` may be either a glvalue or a prvalue. `To` must be a glvalue iff
|
|
// `From` is a glvalue.
|
|
static void propagateValueOrStorageLocation(const Expr &From, const Expr &To,
|
|
Environment &Env) {
|
|
assert(From.isGLValue() == To.isGLValue());
|
|
if (From.isGLValue())
|
|
propagateStorageLocation(From, To, Env);
|
|
else
|
|
propagateValue(From, To, Env);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class TransferVisitor : public ConstStmtVisitor<TransferVisitor> {
|
|
public:
|
|
TransferVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env,
|
|
Environment::ValueModel &Model)
|
|
: StmtToEnv(StmtToEnv), Env(Env), Model(Model) {}
|
|
|
|
void VisitBinaryOperator(const BinaryOperator *S) {
|
|
const Expr *LHS = S->getLHS();
|
|
assert(LHS != nullptr);
|
|
|
|
const Expr *RHS = S->getRHS();
|
|
assert(RHS != nullptr);
|
|
|
|
switch (S->getOpcode()) {
|
|
case BO_Assign: {
|
|
auto *LHSLoc = Env.getStorageLocation(*LHS);
|
|
if (LHSLoc == nullptr)
|
|
break;
|
|
|
|
auto *RHSVal = Env.getValue(*RHS);
|
|
if (RHSVal == nullptr)
|
|
break;
|
|
|
|
// Assign a value to the storage location of the left-hand side.
|
|
Env.setValue(*LHSLoc, *RHSVal);
|
|
|
|
// Assign a storage location for the whole expression.
|
|
Env.setStorageLocation(*S, *LHSLoc);
|
|
break;
|
|
}
|
|
case BO_LAnd:
|
|
case BO_LOr: {
|
|
BoolValue &LHSVal = getLogicOperatorSubExprValue(*LHS);
|
|
BoolValue &RHSVal = getLogicOperatorSubExprValue(*RHS);
|
|
|
|
if (S->getOpcode() == BO_LAnd)
|
|
Env.setValue(*S, Env.makeAnd(LHSVal, RHSVal));
|
|
else
|
|
Env.setValue(*S, Env.makeOr(LHSVal, RHSVal));
|
|
break;
|
|
}
|
|
case BO_NE:
|
|
case BO_EQ: {
|
|
auto &LHSEqRHSValue = evaluateBooleanEquality(*LHS, *RHS, Env);
|
|
Env.setValue(*S, S->getOpcode() == BO_EQ ? LHSEqRHSValue
|
|
: Env.makeNot(LHSEqRHSValue));
|
|
break;
|
|
}
|
|
case BO_Comma: {
|
|
propagateValueOrStorageLocation(*RHS, *S, Env);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void VisitDeclRefExpr(const DeclRefExpr *S) {
|
|
const ValueDecl *VD = S->getDecl();
|
|
assert(VD != nullptr);
|
|
|
|
// Some `DeclRefExpr`s aren't glvalues, so we can't associate them with a
|
|
// `StorageLocation`, and there's also no sensible `Value` that we can
|
|
// assign to them. Examples:
|
|
// - Non-static member variables
|
|
// - Non static member functions
|
|
// Note: Member operators are an exception to this, but apparently only
|
|
// if the `DeclRefExpr` is used within the callee of a
|
|
// `CXXOperatorCallExpr`. In other cases, for example when applying the
|
|
// address-of operator, the `DeclRefExpr` is a prvalue.
|
|
if (!S->isGLValue())
|
|
return;
|
|
|
|
auto *DeclLoc = Env.getStorageLocation(*VD);
|
|
if (DeclLoc == nullptr)
|
|
return;
|
|
|
|
Env.setStorageLocation(*S, *DeclLoc);
|
|
}
|
|
|
|
void VisitDeclStmt(const DeclStmt *S) {
|
|
// Group decls are converted into single decls in the CFG so the cast below
|
|
// is safe.
|
|
const auto &D = *cast<VarDecl>(S->getSingleDecl());
|
|
|
|
ProcessVarDecl(D);
|
|
}
|
|
|
|
void ProcessVarDecl(const VarDecl &D) {
|
|
// Static local vars are already initialized in `Environment`.
|
|
if (D.hasGlobalStorage())
|
|
return;
|
|
|
|
// If this is the holding variable for a `BindingDecl`, we may already
|
|
// have a storage location set up -- so check. (See also explanation below
|
|
// where we process the `BindingDecl`.)
|
|
if (D.getType()->isReferenceType() && Env.getStorageLocation(D) != nullptr)
|
|
return;
|
|
|
|
assert(Env.getStorageLocation(D) == nullptr);
|
|
|
|
Env.setStorageLocation(D, Env.createObject(D));
|
|
|
|
// `DecompositionDecl` must be handled after we've interpreted the loc
|
|
// itself, because the binding expression refers back to the
|
|
// `DecompositionDecl` (even though it has no written name).
|
|
if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D)) {
|
|
// If VarDecl is a DecompositionDecl, evaluate each of its bindings. This
|
|
// needs to be evaluated after initializing the values in the storage for
|
|
// VarDecl, as the bindings refer to them.
|
|
// FIXME: Add support for ArraySubscriptExpr.
|
|
// FIXME: Consider adding AST nodes used in BindingDecls to the CFG.
|
|
for (const auto *B : Decomp->bindings()) {
|
|
if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding())) {
|
|
auto *DE = dyn_cast_or_null<DeclRefExpr>(ME->getBase());
|
|
if (DE == nullptr)
|
|
continue;
|
|
|
|
// ME and its base haven't been visited because they aren't included
|
|
// in the statements of the CFG basic block.
|
|
VisitDeclRefExpr(DE);
|
|
VisitMemberExpr(ME);
|
|
|
|
if (auto *Loc = Env.getStorageLocation(*ME))
|
|
Env.setStorageLocation(*B, *Loc);
|
|
} else if (auto *VD = B->getHoldingVar()) {
|
|
// Holding vars are used to back the `BindingDecl`s of tuple-like
|
|
// types. The holding var declarations appear after the
|
|
// `DecompositionDecl`, so we have to explicitly process them here
|
|
// to know their storage location. They will be processed a second
|
|
// time when we visit their `VarDecl`s, so we have code that protects
|
|
// against this above.
|
|
ProcessVarDecl(*VD);
|
|
auto *VDLoc = Env.getStorageLocation(*VD);
|
|
assert(VDLoc != nullptr);
|
|
Env.setStorageLocation(*B, *VDLoc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VisitImplicitCastExpr(const ImplicitCastExpr *S) {
|
|
const Expr *SubExpr = S->getSubExpr();
|
|
assert(SubExpr != nullptr);
|
|
|
|
switch (S->getCastKind()) {
|
|
case CK_IntegralToBoolean: {
|
|
// This cast creates a new, boolean value from the integral value. We
|
|
// model that with a fresh value in the environment, unless it's already a
|
|
// boolean.
|
|
if (auto *SubExprVal =
|
|
dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr)))
|
|
Env.setValue(*S, *SubExprVal);
|
|
else
|
|
// FIXME: If integer modeling is added, then update this code to create
|
|
// the boolean based on the integer model.
|
|
Env.setValue(*S, Env.makeAtomicBoolValue());
|
|
break;
|
|
}
|
|
|
|
case CK_LValueToRValue: {
|
|
// When an L-value is used as an R-value, it may result in sharing, so we
|
|
// need to unpack any nested `Top`s.
|
|
auto *SubExprVal = maybeUnpackLValueExpr(*SubExpr, Env);
|
|
if (SubExprVal == nullptr)
|
|
break;
|
|
|
|
Env.setValue(*S, *SubExprVal);
|
|
break;
|
|
}
|
|
|
|
case CK_IntegralCast:
|
|
// FIXME: This cast creates a new integral value from the
|
|
// subexpression. But, because we don't model integers, we don't
|
|
// distinguish between this new value and the underlying one. If integer
|
|
// modeling is added, then update this code to create a fresh location and
|
|
// value.
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_ConstructorConversion:
|
|
case CK_UserDefinedConversion:
|
|
// FIXME: Add tests that excercise CK_UncheckedDerivedToBase,
|
|
// CK_ConstructorConversion, and CK_UserDefinedConversion.
|
|
case CK_NoOp: {
|
|
// FIXME: Consider making `Environment::getStorageLocation` skip noop
|
|
// expressions (this and other similar expressions in the file) instead
|
|
// of assigning them storage locations.
|
|
propagateValueOrStorageLocation(*SubExpr, *S, Env);
|
|
break;
|
|
}
|
|
case CK_NullToPointer: {
|
|
auto &NullPointerVal =
|
|
Env.getOrCreateNullPointerValue(S->getType()->getPointeeType());
|
|
Env.setValue(*S, NullPointerVal);
|
|
break;
|
|
}
|
|
case CK_NullToMemberPointer:
|
|
// FIXME: Implement pointers to members. For now, don't associate a value
|
|
// with this expression.
|
|
break;
|
|
case CK_FunctionToPointerDecay: {
|
|
StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr);
|
|
if (PointeeLoc == nullptr)
|
|
break;
|
|
|
|
Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc));
|
|
break;
|
|
}
|
|
case CK_BuiltinFnToFnPtr:
|
|
// Despite its name, the result type of `BuiltinFnToFnPtr` is a function,
|
|
// not a function pointer. In addition, builtin functions can only be
|
|
// called directly; it is not legal to take their address. We therefore
|
|
// don't need to create a value or storage location for them.
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void VisitUnaryOperator(const UnaryOperator *S) {
|
|
const Expr *SubExpr = S->getSubExpr();
|
|
assert(SubExpr != nullptr);
|
|
|
|
switch (S->getOpcode()) {
|
|
case UO_Deref: {
|
|
const auto *SubExprVal = Env.get<PointerValue>(*SubExpr);
|
|
if (SubExprVal == nullptr)
|
|
break;
|
|
|
|
Env.setStorageLocation(*S, SubExprVal->getPointeeLoc());
|
|
break;
|
|
}
|
|
case UO_AddrOf: {
|
|
// FIXME: Model pointers to members.
|
|
if (S->getType()->isMemberPointerType())
|
|
break;
|
|
|
|
if (StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr))
|
|
Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc));
|
|
break;
|
|
}
|
|
case UO_LNot: {
|
|
auto *SubExprVal = dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr));
|
|
if (SubExprVal == nullptr)
|
|
break;
|
|
|
|
Env.setValue(*S, Env.makeNot(*SubExprVal));
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void VisitCXXThisExpr(const CXXThisExpr *S) {
|
|
auto *ThisPointeeLoc = Env.getThisPointeeStorageLocation();
|
|
if (ThisPointeeLoc == nullptr)
|
|
// Unions are not supported yet, and will not have a location for the
|
|
// `this` expression's pointee.
|
|
return;
|
|
|
|
Env.setValue(*S, Env.create<PointerValue>(*ThisPointeeLoc));
|
|
}
|
|
|
|
void VisitCXXNewExpr(const CXXNewExpr *S) {
|
|
if (Value *Val = Env.createValue(S->getType()))
|
|
Env.setValue(*S, *Val);
|
|
}
|
|
|
|
void VisitCXXDeleteExpr(const CXXDeleteExpr *S) {
|
|
// Empty method.
|
|
// We consciously don't do anything on deletes. Diagnosing double deletes
|
|
// (for example) should be done by a specific analysis, not by the
|
|
// framework.
|
|
}
|
|
|
|
void VisitReturnStmt(const ReturnStmt *S) {
|
|
if (!Env.getDataflowAnalysisContext().getOptions().ContextSensitiveOpts)
|
|
return;
|
|
|
|
auto *Ret = S->getRetValue();
|
|
if (Ret == nullptr)
|
|
return;
|
|
|
|
if (Ret->isPRValue()) {
|
|
if (Ret->getType()->isRecordType())
|
|
return;
|
|
|
|
auto *Val = Env.getValue(*Ret);
|
|
if (Val == nullptr)
|
|
return;
|
|
|
|
// FIXME: Model NRVO.
|
|
Env.setReturnValue(Val);
|
|
} else {
|
|
auto *Loc = Env.getStorageLocation(*Ret);
|
|
if (Loc == nullptr)
|
|
return;
|
|
|
|
// FIXME: Model NRVO.
|
|
Env.setReturnStorageLocation(Loc);
|
|
}
|
|
}
|
|
|
|
void VisitMemberExpr(const MemberExpr *S) {
|
|
ValueDecl *Member = S->getMemberDecl();
|
|
assert(Member != nullptr);
|
|
|
|
// FIXME: Consider assigning pointer values to function member expressions.
|
|
if (Member->isFunctionOrFunctionTemplate())
|
|
return;
|
|
|
|
// FIXME: if/when we add support for modeling enums, use that support here.
|
|
if (isa<EnumConstantDecl>(Member))
|
|
return;
|
|
|
|
if (auto *D = dyn_cast<VarDecl>(Member)) {
|
|
if (D->hasGlobalStorage()) {
|
|
auto *VarDeclLoc = Env.getStorageLocation(*D);
|
|
if (VarDeclLoc == nullptr)
|
|
return;
|
|
|
|
Env.setStorageLocation(*S, *VarDeclLoc);
|
|
return;
|
|
}
|
|
}
|
|
|
|
RecordStorageLocation *BaseLoc = getBaseObjectLocation(*S, Env);
|
|
if (BaseLoc == nullptr)
|
|
return;
|
|
|
|
auto *MemberLoc = BaseLoc->getChild(*Member);
|
|
if (MemberLoc == nullptr)
|
|
return;
|
|
Env.setStorageLocation(*S, *MemberLoc);
|
|
}
|
|
|
|
void VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *S) {
|
|
const Expr *ArgExpr = S->getExpr();
|
|
assert(ArgExpr != nullptr);
|
|
propagateValueOrStorageLocation(*ArgExpr, *S, Env);
|
|
|
|
if (S->isPRValue() && S->getType()->isRecordType()) {
|
|
auto &Loc = Env.getResultObjectLocation(*S);
|
|
Env.initializeFieldsWithValues(Loc);
|
|
}
|
|
}
|
|
|
|
void VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) {
|
|
const Expr *InitExpr = S->getExpr();
|
|
assert(InitExpr != nullptr);
|
|
|
|
// If this is a prvalue of record type, the handler for `*InitExpr` (if one
|
|
// exists) will initialize the result object; there is no value to propgate
|
|
// here.
|
|
if (S->getType()->isRecordType() && S->isPRValue())
|
|
return;
|
|
|
|
propagateValueOrStorageLocation(*InitExpr, *S, Env);
|
|
}
|
|
|
|
void VisitCXXConstructExpr(const CXXConstructExpr *S) {
|
|
const CXXConstructorDecl *ConstructorDecl = S->getConstructor();
|
|
assert(ConstructorDecl != nullptr);
|
|
|
|
// `CXXConstructExpr` can have array type if default-initializing an array
|
|
// of records. We don't handle this specifically beyond potentially inlining
|
|
// the call.
|
|
if (!S->getType()->isRecordType()) {
|
|
transferInlineCall(S, ConstructorDecl);
|
|
return;
|
|
}
|
|
|
|
RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
|
|
|
|
if (ConstructorDecl->isCopyOrMoveConstructor()) {
|
|
// It is permissible for a copy/move constructor to have additional
|
|
// parameters as long as they have default arguments defined for them.
|
|
assert(S->getNumArgs() != 0);
|
|
|
|
const Expr *Arg = S->getArg(0);
|
|
assert(Arg != nullptr);
|
|
|
|
auto *ArgLoc = Env.get<RecordStorageLocation>(*Arg);
|
|
if (ArgLoc == nullptr)
|
|
return;
|
|
|
|
// Even if the copy/move constructor call is elidable, we choose to copy
|
|
// the record in all cases (which isn't wrong, just potentially not
|
|
// optimal).
|
|
copyRecord(*ArgLoc, Loc, Env);
|
|
return;
|
|
}
|
|
|
|
Env.initializeFieldsWithValues(Loc, S->getType());
|
|
|
|
transferInlineCall(S, ConstructorDecl);
|
|
}
|
|
|
|
void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) {
|
|
if (S->getOperator() == OO_Equal) {
|
|
assert(S->getNumArgs() == 2);
|
|
|
|
const Expr *Arg0 = S->getArg(0);
|
|
assert(Arg0 != nullptr);
|
|
|
|
const Expr *Arg1 = S->getArg(1);
|
|
assert(Arg1 != nullptr);
|
|
|
|
// Evaluate only copy and move assignment operators.
|
|
const auto *Method =
|
|
dyn_cast_or_null<CXXMethodDecl>(S->getDirectCallee());
|
|
if (!Method)
|
|
return;
|
|
if (!Method->isCopyAssignmentOperator() &&
|
|
!Method->isMoveAssignmentOperator())
|
|
return;
|
|
|
|
RecordStorageLocation *LocSrc = nullptr;
|
|
if (Arg1->isPRValue()) {
|
|
LocSrc = &Env.getResultObjectLocation(*Arg1);
|
|
} else {
|
|
LocSrc = Env.get<RecordStorageLocation>(*Arg1);
|
|
}
|
|
auto *LocDst = Env.get<RecordStorageLocation>(*Arg0);
|
|
|
|
if (LocSrc == nullptr || LocDst == nullptr)
|
|
return;
|
|
|
|
copyRecord(*LocSrc, *LocDst, Env);
|
|
|
|
// The assignment operator can have an arbitrary return type. We model the
|
|
// return value only if the return type is the same as or a base class of
|
|
// the destination type.
|
|
if (S->getType().getCanonicalType().getUnqualifiedType() !=
|
|
LocDst->getType().getCanonicalType().getUnqualifiedType()) {
|
|
auto ReturnDecl = S->getType()->getAsCXXRecordDecl();
|
|
auto DstDecl = LocDst->getType()->getAsCXXRecordDecl();
|
|
if (ReturnDecl == nullptr || DstDecl == nullptr)
|
|
return;
|
|
if (!DstDecl->isDerivedFrom(ReturnDecl))
|
|
return;
|
|
}
|
|
|
|
if (S->isGLValue())
|
|
Env.setStorageLocation(*S, *LocDst);
|
|
else
|
|
copyRecord(*LocDst, Env.getResultObjectLocation(*S), Env);
|
|
|
|
return;
|
|
}
|
|
|
|
// `CXXOperatorCallExpr` can be a prvalue. Call `VisitCallExpr`() to
|
|
// initialize the prvalue's fields with values.
|
|
VisitCallExpr(S);
|
|
}
|
|
|
|
void VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
|
|
propagateValue(*RBO->getSemanticForm(), *RBO, Env);
|
|
}
|
|
|
|
void VisitCallExpr(const CallExpr *S) {
|
|
// Of clang's builtins, only `__builtin_expect` is handled explicitly, since
|
|
// others (like trap, debugtrap, and unreachable) are handled by CFG
|
|
// construction.
|
|
if (S->isCallToStdMove()) {
|
|
assert(S->getNumArgs() == 1);
|
|
|
|
const Expr *Arg = S->getArg(0);
|
|
assert(Arg != nullptr);
|
|
|
|
auto *ArgLoc = Env.getStorageLocation(*Arg);
|
|
if (ArgLoc == nullptr)
|
|
return;
|
|
|
|
Env.setStorageLocation(*S, *ArgLoc);
|
|
} else if (S->getDirectCallee() != nullptr &&
|
|
S->getDirectCallee()->getBuiltinID() ==
|
|
Builtin::BI__builtin_expect) {
|
|
assert(S->getNumArgs() > 0);
|
|
assert(S->getArg(0) != nullptr);
|
|
auto *ArgVal = Env.getValue(*S->getArg(0));
|
|
if (ArgVal == nullptr)
|
|
return;
|
|
Env.setValue(*S, *ArgVal);
|
|
} else if (const FunctionDecl *F = S->getDirectCallee()) {
|
|
transferInlineCall(S, F);
|
|
|
|
// If this call produces a prvalue of record type, initialize its fields
|
|
// with values.
|
|
if (S->getType()->isRecordType() && S->isPRValue()) {
|
|
RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
|
|
Env.initializeFieldsWithValues(Loc);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *S) {
|
|
const Expr *SubExpr = S->getSubExpr();
|
|
assert(SubExpr != nullptr);
|
|
|
|
StorageLocation &Loc = Env.createStorageLocation(*S);
|
|
Env.setStorageLocation(*S, Loc);
|
|
|
|
if (SubExpr->getType()->isRecordType())
|
|
// Nothing else left to do -- we initialized the record when transferring
|
|
// `SubExpr`.
|
|
return;
|
|
|
|
if (Value *SubExprVal = Env.getValue(*SubExpr))
|
|
Env.setValue(Loc, *SubExprVal);
|
|
}
|
|
|
|
void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) {
|
|
const Expr *SubExpr = S->getSubExpr();
|
|
assert(SubExpr != nullptr);
|
|
|
|
propagateValue(*SubExpr, *S, Env);
|
|
}
|
|
|
|
void VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) {
|
|
if (S->getCastKind() == CK_NoOp) {
|
|
const Expr *SubExpr = S->getSubExpr();
|
|
assert(SubExpr != nullptr);
|
|
|
|
propagateValueOrStorageLocation(*SubExpr, *S, Env);
|
|
}
|
|
}
|
|
|
|
void VisitConditionalOperator(const ConditionalOperator *S) {
|
|
const Environment *TrueEnv = StmtToEnv.getEnvironment(*S->getTrueExpr());
|
|
const Environment *FalseEnv = StmtToEnv.getEnvironment(*S->getFalseExpr());
|
|
|
|
if (TrueEnv == nullptr || FalseEnv == nullptr) {
|
|
// If the true or false branch is dead, we may not have an environment for
|
|
// it. We could handle this specifically by forwarding the value or
|
|
// location of the live branch, but this case is rare enough that this
|
|
// probably isn't worth the additional complexity.
|
|
return;
|
|
}
|
|
|
|
if (S->isGLValue()) {
|
|
StorageLocation *TrueLoc = TrueEnv->getStorageLocation(*S->getTrueExpr());
|
|
StorageLocation *FalseLoc =
|
|
FalseEnv->getStorageLocation(*S->getFalseExpr());
|
|
if (TrueLoc == FalseLoc && TrueLoc != nullptr)
|
|
Env.setStorageLocation(*S, *TrueLoc);
|
|
} else if (!S->getType()->isRecordType()) {
|
|
// The conditional operator can evaluate to either of the values of the
|
|
// two branches. To model this, join these two values together to yield
|
|
// the result of the conditional operator.
|
|
// Note: Most joins happen in `computeBlockInputState()`, but this case is
|
|
// different:
|
|
// - `computeBlockInputState()` (which in turn calls `Environment::join()`
|
|
// joins values associated with the _same_ expression or storage
|
|
// location, then associates the joined value with that expression or
|
|
// storage location. This join has nothing to do with transfer --
|
|
// instead, it joins together the results of performing transfer on two
|
|
// different blocks.
|
|
// - Here, we join values associated with _different_ expressions (the
|
|
// true and false branch), then associate the joined value with a third
|
|
// expression (the conditional operator itself). This join is what it
|
|
// means to perform transfer on the conditional operator.
|
|
if (Value *Val = Environment::joinValues(
|
|
S->getType(), TrueEnv->getValue(*S->getTrueExpr()), *TrueEnv,
|
|
FalseEnv->getValue(*S->getFalseExpr()), *FalseEnv, Env, Model))
|
|
Env.setValue(*S, *Val);
|
|
}
|
|
}
|
|
|
|
void VisitInitListExpr(const InitListExpr *S) {
|
|
QualType Type = S->getType();
|
|
|
|
if (!Type->isRecordType()) {
|
|
// Until array initialization is implemented, we skip arrays and don't
|
|
// need to care about cases where `getNumInits() > 1`.
|
|
if (!Type->isArrayType() && S->getNumInits() == 1)
|
|
propagateValueOrStorageLocation(*S->getInit(0), *S, Env);
|
|
return;
|
|
}
|
|
|
|
// If the initializer list is transparent, there's nothing to do.
|
|
if (S->isSemanticForm() && S->isTransparent())
|
|
return;
|
|
|
|
RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
|
|
|
|
// Initialization of base classes and fields of record type happens when we
|
|
// visit the nested `CXXConstructExpr` or `InitListExpr` for that base class
|
|
// or field. We therefore only need to deal with fields of non-record type
|
|
// here.
|
|
|
|
RecordInitListHelper InitListHelper(S);
|
|
|
|
for (auto [Field, Init] : InitListHelper.field_inits()) {
|
|
if (Field->getType()->isRecordType())
|
|
continue;
|
|
if (Field->getType()->isReferenceType()) {
|
|
assert(Field->getType().getCanonicalType()->getPointeeType() ==
|
|
Init->getType().getCanonicalType());
|
|
Loc.setChild(*Field, &Env.createObject(Field->getType(), Init));
|
|
continue;
|
|
}
|
|
assert(Field->getType().getCanonicalType().getUnqualifiedType() ==
|
|
Init->getType().getCanonicalType().getUnqualifiedType());
|
|
StorageLocation *FieldLoc = Loc.getChild(*Field);
|
|
// Locations for non-reference fields must always be non-null.
|
|
assert(FieldLoc != nullptr);
|
|
Value *Val = Env.getValue(*Init);
|
|
if (Val == nullptr && isa<ImplicitValueInitExpr>(Init) &&
|
|
Init->getType()->isPointerType())
|
|
Val =
|
|
&Env.getOrCreateNullPointerValue(Init->getType()->getPointeeType());
|
|
if (Val == nullptr)
|
|
Val = Env.createValue(Field->getType());
|
|
if (Val != nullptr)
|
|
Env.setValue(*FieldLoc, *Val);
|
|
}
|
|
|
|
for (const auto &[FieldName, FieldLoc] : Loc.synthetic_fields()) {
|
|
QualType FieldType = FieldLoc->getType();
|
|
if (FieldType->isRecordType()) {
|
|
Env.initializeFieldsWithValues(*cast<RecordStorageLocation>(FieldLoc));
|
|
} else {
|
|
if (Value *Val = Env.createValue(FieldType))
|
|
Env.setValue(*FieldLoc, *Val);
|
|
}
|
|
}
|
|
|
|
// FIXME: Implement array initialization.
|
|
}
|
|
|
|
void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) {
|
|
Env.setValue(*S, Env.getBoolLiteralValue(S->getValue()));
|
|
}
|
|
|
|
void VisitIntegerLiteral(const IntegerLiteral *S) {
|
|
Env.setValue(*S, Env.getIntLiteralValue(S->getValue()));
|
|
}
|
|
|
|
void VisitParenExpr(const ParenExpr *S) {
|
|
// The CFG does not contain `ParenExpr` as top-level statements in basic
|
|
// blocks, however manual traversal to sub-expressions may encounter them.
|
|
// Redirect to the sub-expression.
|
|
auto *SubExpr = S->getSubExpr();
|
|
assert(SubExpr != nullptr);
|
|
Visit(SubExpr);
|
|
}
|
|
|
|
void VisitExprWithCleanups(const ExprWithCleanups *S) {
|
|
// The CFG does not contain `ExprWithCleanups` as top-level statements in
|
|
// basic blocks, however manual traversal to sub-expressions may encounter
|
|
// them. Redirect to the sub-expression.
|
|
auto *SubExpr = S->getSubExpr();
|
|
assert(SubExpr != nullptr);
|
|
Visit(SubExpr);
|
|
}
|
|
|
|
private:
|
|
/// Returns the value for the sub-expression `SubExpr` of a logic operator.
|
|
BoolValue &getLogicOperatorSubExprValue(const Expr &SubExpr) {
|
|
// `SubExpr` and its parent logic operator might be part of different basic
|
|
// blocks. We try to access the value that is assigned to `SubExpr` in the
|
|
// corresponding environment.
|
|
if (const Environment *SubExprEnv = StmtToEnv.getEnvironment(SubExpr))
|
|
if (auto *Val =
|
|
dyn_cast_or_null<BoolValue>(SubExprEnv->getValue(SubExpr)))
|
|
return *Val;
|
|
|
|
// The sub-expression may lie within a basic block that isn't reachable,
|
|
// even if we need it to evaluate the current (reachable) expression
|
|
// (see https://discourse.llvm.org/t/70775). In this case, visit `SubExpr`
|
|
// within the current environment and then try to get the value that gets
|
|
// assigned to it.
|
|
if (Env.getValue(SubExpr) == nullptr)
|
|
Visit(&SubExpr);
|
|
if (auto *Val = dyn_cast_or_null<BoolValue>(Env.getValue(SubExpr)))
|
|
return *Val;
|
|
|
|
// If the value of `SubExpr` is still unknown, we create a fresh symbolic
|
|
// boolean value for it.
|
|
return Env.makeAtomicBoolValue();
|
|
}
|
|
|
|
// If context sensitivity is enabled, try to analyze the body of the callee
|
|
// `F` of `S`. The type `E` must be either `CallExpr` or `CXXConstructExpr`.
|
|
template <typename E>
|
|
void transferInlineCall(const E *S, const FunctionDecl *F) {
|
|
const auto &Options = Env.getDataflowAnalysisContext().getOptions();
|
|
if (!(Options.ContextSensitiveOpts &&
|
|
Env.canDescend(Options.ContextSensitiveOpts->Depth, F)))
|
|
return;
|
|
|
|
const AdornedCFG *ACFG = Env.getDataflowAnalysisContext().getAdornedCFG(F);
|
|
if (!ACFG)
|
|
return;
|
|
|
|
// FIXME: We don't support context-sensitive analysis of recursion, so
|
|
// we should return early here if `F` is the same as the `FunctionDecl`
|
|
// holding `S` itself.
|
|
|
|
auto ExitBlock = ACFG->getCFG().getExit().getBlockID();
|
|
|
|
auto CalleeEnv = Env.pushCall(S);
|
|
|
|
// FIXME: Use the same analysis as the caller for the callee. Note,
|
|
// though, that doing so would require support for changing the analysis's
|
|
// ASTContext.
|
|
auto Analysis = NoopAnalysis(ACFG->getDecl().getASTContext(),
|
|
DataflowAnalysisOptions{Options});
|
|
|
|
auto BlockToOutputState =
|
|
dataflow::runDataflowAnalysis(*ACFG, Analysis, CalleeEnv);
|
|
assert(BlockToOutputState);
|
|
assert(ExitBlock < BlockToOutputState->size());
|
|
|
|
auto &ExitState = (*BlockToOutputState)[ExitBlock];
|
|
assert(ExitState);
|
|
|
|
Env.popCall(S, ExitState->Env);
|
|
}
|
|
|
|
const StmtToEnvMap &StmtToEnv;
|
|
Environment &Env;
|
|
Environment::ValueModel &Model;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void transfer(const StmtToEnvMap &StmtToEnv, const Stmt &S, Environment &Env,
|
|
Environment::ValueModel &Model) {
|
|
TransferVisitor(StmtToEnv, Env, Model).Visit(&S);
|
|
}
|
|
|
|
} // namespace dataflow
|
|
} // namespace clang
|