This change adds a new `SparseTensorType` class for making the "dim" vs "lvl" distinction more overt, and for abstracting over the differences between sparse-tensors and dense-tensors. In addition, this change also adds new type aliases `Dimension`, `Level`, and `FieldIndex` to make code more self-documenting. Although the diff is very large, the majority of the changes are mechanical in nature (e.g., changing types to use the new aliases, updating variable names to match, etc). Along the way I also made many variables `const` when they could be; the majority of which required only adding the keyword. A few places had conditional definitions of these variables, requiring actual code changes; however, that was only done when the overall change was extremely local and easy to extract. All these changes are included in the current patch only because it would be too onerous to split them off into a separate patch. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D143800
794 lines
31 KiB
C++
794 lines
31 KiB
C++
//===- LoopEmitter.cpp ----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "LoopEmitter.h"
|
|
#include "CodegenUtils.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// File local helper functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Generates a pointer/index load from the sparse storage scheme. Narrower
|
|
/// data types need to be zero extended before casting the value into the
|
|
/// index type used for looping and indexing.
|
|
static Value genIndexLoad(OpBuilder &builder, Location loc, Value ptr,
|
|
Value s) {
|
|
// For the scalar case, we simply zero extend narrower indices into 64-bit
|
|
// values before casting to index without a performance penalty. Here too,
|
|
// however, indices that already are 64-bit, in theory, cannot express the
|
|
// full range as explained above.
|
|
Value load = builder.create<memref::LoadOp>(loc, ptr, s);
|
|
if (!load.getType().isa<IndexType>()) {
|
|
if (load.getType().getIntOrFloatBitWidth() < 64)
|
|
load = builder.create<arith::ExtUIOp>(loc, builder.getI64Type(), load);
|
|
load =
|
|
builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), load);
|
|
}
|
|
return load;
|
|
}
|
|
|
|
// TODO: Support dynamic sized slice.
|
|
static Value getSliceOffset(OpBuilder &builder, Location loc,
|
|
SparseTensorEncodingAttr enc, unsigned lvl) {
|
|
return constantIndex(builder, loc, *enc.getStaticLvlSliceOffset(lvl));
|
|
}
|
|
|
|
static Value getSliceSize(OpBuilder &builder, Location loc,
|
|
SparseTensorEncodingAttr enc, unsigned lvl) {
|
|
return constantIndex(builder, loc, *enc.getStaticLvlSliceSize(lvl));
|
|
}
|
|
|
|
static Value getSliceStride(OpBuilder &builder, Location loc,
|
|
SparseTensorEncodingAttr enc, unsigned lvl) {
|
|
return constantIndex(builder, loc, *enc.getStaticLvlSliceStride(lvl));
|
|
}
|
|
|
|
// Converts a coordinate relative to the slice to the coordinate relative
|
|
// to the underlying tensor.
|
|
static Value toSliceCoord(OpBuilder &builder, Location loc, Value v,
|
|
SparseTensorEncodingAttr enc, unsigned lvl) {
|
|
|
|
Value stride = getSliceStride(builder, loc, enc, lvl);
|
|
Value offset = getSliceOffset(builder, loc, enc, lvl);
|
|
// iv = iv * stride + offset
|
|
v = builder.create<arith::MulIOp>(loc, v, stride);
|
|
v = builder.create<arith::AddIOp>(loc, v, offset);
|
|
return v;
|
|
}
|
|
|
|
// Converts a coordinate relative to the underlying tensor to the coordinate
|
|
// relative to the slice, returns a extra reminder value
|
|
static std::pair<Value, Value> fromSliceCoord(OpBuilder &builder, Location loc,
|
|
Value v,
|
|
SparseTensorEncodingAttr enc,
|
|
unsigned lvl) {
|
|
Value stride = getSliceStride(builder, loc, enc, lvl);
|
|
Value offset = getSliceOffset(builder, loc, enc, lvl);
|
|
// iv = (iv - offset) / stride
|
|
v = builder.create<arith::SubIOp>(loc, v, offset);
|
|
Value rem = builder.create<arith::RemUIOp>(loc, v, stride);
|
|
v = builder.create<arith::DivUIOp>(loc, v, stride);
|
|
return std::make_pair(v, rem);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse tensor loop emitter class implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value LoopEmitter::genAddress(OpBuilder &builder, Location loc, size_t tid,
|
|
size_t dim, Value iv) {
|
|
Value p = dim == 0 ? constantIndex(builder, loc, 0) : pidxs[tid][dim - 1];
|
|
Value mul = builder.create<arith::MulIOp>(loc, highs[tid][dim], p);
|
|
if (isSparseSlices[tid]) {
|
|
auto enc = getSparseTensorEncoding(tensors[tid].getType());
|
|
iv = toSliceCoord(builder, loc, iv, enc, dim);
|
|
}
|
|
Value add = builder.create<arith::AddIOp>(loc, mul, iv);
|
|
return add;
|
|
}
|
|
|
|
LoopEmitter::LoopEmitter(ValueRange tensors, StringAttr loopTag, bool hasOutput,
|
|
bool isSparseOut, ArrayRef<unsigned> topSort) {
|
|
initialize(tensors, loopTag, hasOutput, isSparseOut, topSort);
|
|
}
|
|
|
|
void LoopEmitter::initialize(ValueRange tensors, StringAttr loopTag,
|
|
bool hasOutput, bool isSparseOut,
|
|
ArrayRef<unsigned> topSort) {
|
|
// First initializes fields.
|
|
this->loopTag = loopTag;
|
|
this->hasOutput = hasOutput;
|
|
this->isSparseOut = isSparseOut;
|
|
this->tensors.assign(tensors.begin(), tensors.end());
|
|
this->isSparseSlices.assign(tensors.size(), false);
|
|
this->dimTypes.assign(tensors.size(), std::vector<DimLevelType>());
|
|
this->pidxs.assign(tensors.size(), std::vector<Value>());
|
|
this->coord.assign(tensors.size(), std::vector<Value>());
|
|
this->highs.assign(tensors.size(), std::vector<Value>());
|
|
this->ptrBuffer.assign(tensors.size(), std::vector<Value>());
|
|
this->idxBuffer.assign(tensors.size(), std::vector<Value>());
|
|
this->valBuffer.assign(tensors.size(), nullptr);
|
|
this->loopStack.reserve(topSort.size());
|
|
this->sparsiferLoopLvlMap.assign(topSort.size(), 0);
|
|
|
|
for (size_t tid = 0, e = tensors.size(); tid < e; tid++) {
|
|
auto t = tensors[tid];
|
|
// a scalar or 0-dimension tensors
|
|
if (isZeroRankedTensorOrScalar(t.getType()))
|
|
continue;
|
|
auto rtp = getRankedTensorType(t);
|
|
auto rank = static_cast<size_t>(rtp.getRank());
|
|
auto enc = getSparseTensorEncoding(rtp);
|
|
// We always treat sparse output tensor as dense so that we always iterate
|
|
// it based on dim size.
|
|
if (enc && !(isOutputTensor(tid) && isSparseOut)) {
|
|
isSparseSlices[tid] = enc.isSlice();
|
|
for (auto dimTp : enc.getDimLevelType())
|
|
dimTypes[tid].push_back(dimTp);
|
|
} else
|
|
dimTypes[tid].assign(rank, DimLevelType::Dense);
|
|
|
|
// Initialize using empty value.
|
|
pidxs[tid].assign(rank, Value());
|
|
coord[tid].assign(rank, Value());
|
|
highs[tid].assign(rank, Value());
|
|
ptrBuffer[tid].assign(rank, Value());
|
|
idxBuffer[tid].assign(rank, Value());
|
|
}
|
|
|
|
// FIXME: This map should be maintained outside loop emitter.
|
|
for (unsigned i = 0, e = topSort.size(); i < e; i++) {
|
|
// This is an inverse map of the topologically sorted loop index from
|
|
// sparsifier. This is needed to map the AffineDimExpr back to the loopStack
|
|
// index used in loop emitter.
|
|
sparsiferLoopLvlMap[topSort[i]] = i;
|
|
}
|
|
}
|
|
|
|
void LoopEmitter::initializeLoopEmit(OpBuilder &builder, Location loc,
|
|
LoopEmitter::OutputUpdater updater) {
|
|
// For every tensor, find lower and upper bound on dimensions, set the
|
|
// same bounds on loop indices, and obtain dense or sparse buffer(s).
|
|
for (size_t t = 0, e = tensors.size(); t < e; t++) {
|
|
const auto tensor = tensors[t];
|
|
const auto rtp = tensor.getType().dyn_cast<RankedTensorType>();
|
|
if (!rtp)
|
|
// Skips only scalar, zero ranked tensor still need to be bufferized and
|
|
// (probably) filled with zeros by users.
|
|
continue;
|
|
// FIXME: the definition of `lvlRank` looks more like a dim-rank;
|
|
// but the variable is used as a level everywhere below, which
|
|
// suggests there may be some dim/lvl confusion going on here.
|
|
const Level lvlRank = rtp.getRank();
|
|
const auto shape = rtp.getShape();
|
|
const auto enc = getSparseTensorEncoding(rtp);
|
|
const Level cooStart = enc ? getCOOStart(enc) : lvlRank;
|
|
// Scan all levels of current tensor.
|
|
for (Level l = 0; l < lvlRank; l++) {
|
|
// This should be called only once at beginning.
|
|
assert(!ptrBuffer[t][l] && !idxBuffer[t][l] && !highs[t][l]);
|
|
const auto dlt = dimTypes[t][l];
|
|
// Handle sparse storage schemes.
|
|
if (isCompressedDLT(dlt)) {
|
|
// Generate sparse primitives to obtains pointer and indices.
|
|
ptrBuffer[t][l] = genToPointers(builder, loc, tensor, l);
|
|
idxBuffer[t][l] = genToIndices(builder, loc, tensor, l, cooStart);
|
|
} else if (isSingletonDLT(dlt)) {
|
|
// Singleton dimension, fetch indices.
|
|
idxBuffer[t][l] = genToIndices(builder, loc, tensor, l, cooStart);
|
|
} else {
|
|
// Dense dimension, nothing to fetch.
|
|
assert(isDenseDLT(dlt));
|
|
}
|
|
|
|
// Find upper bound in current dimension.
|
|
// FIXME: `toOrigDim` is deprecated
|
|
const Dimension d = toOrigDim(enc, l);
|
|
highs[t][l] = mlir::linalg::createOrFoldDimOp(builder, loc, tensor, d);
|
|
}
|
|
|
|
// Perform the required bufferization. Dense inputs materialize
|
|
// from the input tensors. Sparse inputs use sparse primitives to obtain the
|
|
// values.
|
|
// Delegates extra output initialization to clients.
|
|
bool isOutput = isOutputTensor(t);
|
|
Type elementType = rtp.getElementType();
|
|
if (!enc) {
|
|
// Non-annotated dense tensors.
|
|
BaseMemRefType denseTp = MemRefType::get(shape, elementType);
|
|
|
|
// TODO: if we unconditionally use fully dynamic layout here, it breaks
|
|
// some vectorization passes which requires static stride = 1.
|
|
// Is it possible to call vectorization pass after bufferization?
|
|
if (llvm::isa_and_nonnull<tensor::ExtractSliceOp>(tensor.getDefiningOp()))
|
|
denseTp = bufferization::getMemRefTypeWithFullyDynamicLayout(rtp);
|
|
|
|
Value denseVal =
|
|
builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
|
|
// Dense outputs need special handling.
|
|
if (isOutput && updater)
|
|
denseVal = updater(builder, loc, denseVal, tensor);
|
|
|
|
valBuffer[t] = denseVal;
|
|
} else {
|
|
// Annotated sparse tensors.
|
|
// We also need the value buffer for annotated all dense `sparse` tensor.
|
|
valBuffer[t] = genToValues(builder, loc, tensor);
|
|
}
|
|
// NOTE: we can also prepare for 0 dim here in advance, this will hosit
|
|
// some loop preparation from tensor iteration, but will also (undesirably)
|
|
// hosit the code ouside if conditions.
|
|
}
|
|
}
|
|
|
|
void LoopEmitter::enterNewLoopSeq(OpBuilder &builder, Location loc,
|
|
ArrayRef<size_t> tids,
|
|
ArrayRef<size_t> dims) {
|
|
assert(loopSeqStack.size() == loopStack.size());
|
|
// Universal Index starts from 0.
|
|
loopSeqStack.emplace_back(constantIndex(builder, loc, 0));
|
|
// Prepares for all the tensors used in the current loop sequence.
|
|
for (auto [tid, dim] : llvm::zip(tids, dims))
|
|
prepareLoopOverTensorAtDim(builder, loc, tid, dim);
|
|
}
|
|
|
|
Value LoopEmitter::genAffine(OpBuilder &builder, AffineExpr a, Location loc) {
|
|
switch (a.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
unsigned idx = a.cast<AffineDimExpr>().getPosition();
|
|
return loopStack[sparsiferLoopLvlMap[idx]].iv;
|
|
}
|
|
case AffineExprKind::Add: {
|
|
auto binOp = a.cast<AffineBinaryOpExpr>();
|
|
return builder.create<arith::AddIOp>(
|
|
loc, genAffine(builder, binOp.getLHS(), loc),
|
|
genAffine(builder, binOp.getRHS(), loc));
|
|
}
|
|
case AffineExprKind::Mul: {
|
|
auto binOp = a.cast<AffineBinaryOpExpr>();
|
|
return builder.create<arith::MulIOp>(
|
|
loc, genAffine(builder, binOp.getLHS(), loc),
|
|
genAffine(builder, binOp.getRHS(), loc));
|
|
}
|
|
case AffineExprKind::Constant: {
|
|
int64_t c = a.cast<AffineConstantExpr>().getValue();
|
|
return constantIndex(builder, loc, c);
|
|
}
|
|
default:
|
|
llvm_unreachable("unexpected affine subscript");
|
|
}
|
|
}
|
|
|
|
Operation *LoopEmitter::enterLoopOverTensorAtDim(
|
|
OpBuilder &builder, Location loc, ArrayRef<size_t> tids,
|
|
ArrayRef<size_t> dims, MutableArrayRef<Value> reduc, bool isParallel) {
|
|
// TODO: support multiple return on parallel for?
|
|
assert(!isParallel || reduc.size() <= 1);
|
|
bool isSparseInput = false;
|
|
size_t tid = tids.front(), dim = dims.front();
|
|
for (auto [t, d] : llvm::zip(tids, dims)) {
|
|
assert(dimTypes[t].size() > d); // Must be a valid tid, dim pair
|
|
assert(!coord[t][d]); // We cannot re-enter the same level
|
|
auto dimType = dimTypes[t][d];
|
|
// Must be a recognizable DLT.
|
|
assert(isDenseDLT(dimType) || isCompressedDLT(dimType) ||
|
|
isSingletonDLT(dimType));
|
|
bool isSparse = isCompressedDLT(dimType) || isSingletonDLT(dimType);
|
|
// We can at most have one sparse input, otherwise, a while loop is required
|
|
// to co-iterate multiple sparse tensors.
|
|
assert(!isSparseInput || !isSparse);
|
|
if (isSparse) {
|
|
tid = t;
|
|
dim = d;
|
|
}
|
|
isSparseInput = isSparseInput || isSparse;
|
|
}
|
|
|
|
auto enc = getSparseTensorEncoding(tensors[tid].getType());
|
|
// TODO: support dynamic slices.
|
|
Value step = constantIndex(builder, loc, 1);
|
|
Value lo = isSparseInput ? pidxs[tid][dim] // current offset
|
|
: loopSeqStack.back(); // universal index
|
|
Value hi = highs[tid][dim];
|
|
|
|
Operation *loop = nullptr;
|
|
Value iv;
|
|
if (isParallel) {
|
|
scf::ParallelOp parOp =
|
|
builder.create<scf::ParallelOp>(loc, lo, hi, step, reduc);
|
|
builder.setInsertionPointToStart(parOp.getBody());
|
|
assert(parOp.getNumReductions() == reduc.size());
|
|
iv = parOp.getInductionVars()[0];
|
|
|
|
// In-place update on the reduction variable vector.
|
|
// Note that the init vals is not the actual reduction variables but instead
|
|
// used as a `special handle` to (temporarily) represent them. The
|
|
// expression on init vals will be moved into scf.reduce and replaced with
|
|
// the block arguments when exiting the loop (see exitForLoop). This is
|
|
// needed as we can not build the actual reduction block and get the actual
|
|
// reduction varaible before users fill parallel loop body.
|
|
for (int i = 0, e = reduc.size(); i < e; i++)
|
|
reduc[i] = parOp.getInitVals()[i];
|
|
loop = parOp;
|
|
} else {
|
|
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
|
|
builder.setInsertionPointToStart(forOp.getBody());
|
|
iv = forOp.getInductionVar();
|
|
|
|
// In-place update on the reduction variable vector.
|
|
assert(forOp.getNumRegionIterArgs() == reduc.size());
|
|
for (int i = 0, e = reduc.size(); i < e; i++)
|
|
reduc[i] = forOp.getRegionIterArg(i);
|
|
loop = forOp;
|
|
}
|
|
assert(loop && iv);
|
|
|
|
Value c;
|
|
if (isSparseInput) {
|
|
pidxs[tid][dim] = iv;
|
|
// Generating a load on the indices array yields the coordinate.
|
|
Value ptr = idxBuffer[tid][dim];
|
|
c = genIndexLoad(builder, loc, ptr, iv);
|
|
} else {
|
|
// Dense tensor, the coordinates is the inducation variable.
|
|
c = iv;
|
|
}
|
|
|
|
if (isSparseSlices[tid] && isSparseInput) {
|
|
// For sparse level slices, we need to filter out invalid coordinates that
|
|
// are not included in the slice.
|
|
std::pair<Value, Value> trans = fromSliceCoord(builder, loc, c, enc, dim);
|
|
SmallVector<Type> types;
|
|
for (Value red : reduc)
|
|
types.push_back(red.getType());
|
|
|
|
// First, coord >= offset (TODO: seems unsigned >= 0 won't be folded, skip
|
|
// the check if the offset is zero).
|
|
auto geOff =
|
|
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, c,
|
|
getSliceOffset(builder, loc, enc, dim));
|
|
// Second, coords < length
|
|
auto ltLen = builder.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::ult, trans.first,
|
|
getSliceSize(builder, loc, enc, dim));
|
|
|
|
// Third, rem == 0; confirmed that (a % 1) will be folded to 0
|
|
auto fitStride = builder.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, trans.second,
|
|
constantIndex(builder, loc, 0));
|
|
|
|
auto pred = builder.create<arith::AndIOp>(loc, geOff, ltLen);
|
|
pred = builder.create<arith::AndIOp>(loc, pred, fitStride);
|
|
bool hasReduc = !types.empty();
|
|
scf::IfOp ifOp =
|
|
builder.create<scf::IfOp>(loc, types, pred, /*else*/ hasReduc);
|
|
if (hasReduc) {
|
|
// scf.for (a) -> v
|
|
// %s = scf.if (a) -> v
|
|
// user-generated code.
|
|
// else
|
|
// yield a
|
|
// yield %s
|
|
builder.create<scf::YieldOp>(loc, ifOp.getResults());
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
// On mismatch.
|
|
builder.create<scf::YieldOp>(loc, reduc);
|
|
}
|
|
// Set the insertion point to matched branch.
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
c = trans.first;
|
|
}
|
|
|
|
assert(c);
|
|
coord[tid][dim] = c;
|
|
// NOTE: we can also prepare for next dim here in advance
|
|
// Push the loop into stack
|
|
loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), loop,
|
|
coord[tid][dim], loopTag);
|
|
// Emit extra locals.
|
|
emitExtraLocalsForTensorsAtDenseDims(builder, loc, tids, dims);
|
|
|
|
return loop;
|
|
}
|
|
|
|
Operation *LoopEmitter::enterFilterLoopOverTensorAtDim(
|
|
OpBuilder &builder, Location loc, size_t tid, size_t dim, AffineExpr affine,
|
|
MutableArrayRef<Value> reduc) {
|
|
assert(!affine.isa<AffineDimExpr>() && !isDenseDLT(dimTypes[tid][dim]));
|
|
assert(dimTypes[tid].size() > dim);
|
|
// We can not re-enter the same level.
|
|
assert(!coord[tid][dim]);
|
|
|
|
Value step = constantIndex(builder, loc, 1);
|
|
|
|
Value lo = pidxs[tid][dim];
|
|
Value hi = highs[tid][dim];
|
|
|
|
// TODO: We should instead use a whileOp for filter loop to allow early
|
|
// break when exceeding (for ordered dimensions).
|
|
// TODO: There are many other potiential opportunities that we might apply in
|
|
// the future. E.g., we could use binary search to located the pointer index.
|
|
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
|
|
|
|
// In-place update on the reduction variable vector.
|
|
assert(forOp.getNumRegionIterArgs() == reduc.size());
|
|
for (int i = 0, e = reduc.size(); i < e; i++)
|
|
reduc[i] = forOp.getRegionIterArg(i);
|
|
|
|
builder.setInsertionPointToStart(forOp.getBody());
|
|
Value iv = forOp.getInductionVar();
|
|
|
|
pidxs[tid][dim] = iv;
|
|
// Generating a load on the indices array yields the coordinate.
|
|
Value ptr = idxBuffer[tid][dim];
|
|
coord[tid][dim] = genIndexLoad(builder, loc, ptr, iv);
|
|
|
|
// Generate an if condition to filter out indices that is not equal to the
|
|
// result of the affine expression.
|
|
Value expected = genAffine(builder, affine, loc);
|
|
auto pred = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
|
coord[tid][dim], expected);
|
|
SmallVector<Type> types;
|
|
for (Value red : reduc) {
|
|
types.push_back(red.getType());
|
|
}
|
|
|
|
bool hasReduc = !types.empty();
|
|
scf::IfOp ifOp =
|
|
builder.create<scf::IfOp>(loc, types, pred, /*else*/ hasReduc);
|
|
if (hasReduc) {
|
|
// scf.for (a) -> v
|
|
// %s = scf.if (a) -> v
|
|
// user-generated code.
|
|
// else
|
|
// yield a
|
|
// yield %s
|
|
builder.create<scf::YieldOp>(loc, ifOp.getResults());
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
// On mismatch.
|
|
builder.create<scf::YieldOp>(loc, reduc);
|
|
}
|
|
// Set the insert point to matched branch.
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
|
|
// NOTE: we can also prepare for next dim here in advance
|
|
// Push the loop into stack
|
|
loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), forOp,
|
|
coord[tid][dim], nullptr);
|
|
return forOp;
|
|
}
|
|
|
|
void LoopEmitter::genDenseAffineAddressAtCurLevel(OpBuilder &builder,
|
|
Location loc, size_t tid,
|
|
size_t dim,
|
|
AffineExpr affine) {
|
|
Value affineV = genAffine(builder, affine, loc);
|
|
pidxs[tid][dim] = genAddress(builder, loc, tid, dim, affineV);
|
|
}
|
|
|
|
Operation *LoopEmitter::enterCoIterationOverTensorsAtDims(
|
|
OpBuilder &builder, Location loc, ArrayRef<size_t> tids,
|
|
ArrayRef<size_t> dims, bool needsUniv, MutableArrayRef<Value> reduc) {
|
|
assert(tids.size() == dims.size());
|
|
SmallVector<Type> types;
|
|
SmallVector<Value> operands;
|
|
// Construct the while-loop with a parameter for each index.
|
|
Type indexType = builder.getIndexType();
|
|
for (auto [tid, dim] : llvm::zip(tids, dims)) {
|
|
if (isCompressedDLT(dimTypes[tid][dim]) ||
|
|
isSingletonDLT(dimTypes[tid][dim])) {
|
|
assert(pidxs[tid][dim]);
|
|
types.push_back(indexType);
|
|
operands.push_back(pidxs[tid][dim]);
|
|
}
|
|
}
|
|
// The position where user-supplied reduction variable starts.
|
|
for (Value rec : reduc) {
|
|
types.push_back(rec.getType());
|
|
operands.push_back(rec);
|
|
}
|
|
if (needsUniv) {
|
|
types.push_back(indexType);
|
|
// Update universal index.
|
|
operands.push_back(loopSeqStack.back());
|
|
}
|
|
assert(types.size() == operands.size());
|
|
scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);
|
|
|
|
SmallVector<Location> locs(types.size(), loc);
|
|
Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
|
|
Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
|
|
|
|
// Build the "before" region, which effectively consists
|
|
// of a conjunction of "i < upper" tests on all induction.
|
|
builder.setInsertionPointToStart(&whileOp.getBefore().front());
|
|
Value cond;
|
|
unsigned o = 0;
|
|
for (auto [tid, dim] : llvm::zip(tids, dims)) {
|
|
if (isCompressedDLT(dimTypes[tid][dim]) ||
|
|
isSingletonDLT(dimTypes[tid][dim])) {
|
|
Value op1 = before->getArgument(o);
|
|
Value op2 = highs[tid][dim];
|
|
Value opc = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
|
|
op1, op2);
|
|
cond = cond ? builder.create<arith::AndIOp>(loc, cond, opc) : opc;
|
|
// Update
|
|
pidxs[tid][dim] = after->getArgument(o++);
|
|
}
|
|
}
|
|
builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
|
|
|
|
// Generates while body.
|
|
builder.setInsertionPointToStart(&whileOp.getAfter().front());
|
|
Value min;
|
|
for (auto [tid, dim] : llvm::zip(tids, dims)) {
|
|
// Prepares for next level.
|
|
if (isCompressedDLT(dimTypes[tid][dim]) ||
|
|
isSingletonDLT(dimTypes[tid][dim])) {
|
|
Value ptr = idxBuffer[tid][dim];
|
|
Value s = pidxs[tid][dim];
|
|
Value load = genIndexLoad(builder, loc, ptr, s);
|
|
coord[tid][dim] = load;
|
|
if (!needsUniv) {
|
|
if (min) {
|
|
Value cmp = builder.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::ult, load, min);
|
|
min = builder.create<arith::SelectOp>(loc, cmp, load, min);
|
|
} else {
|
|
min = load;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (needsUniv) {
|
|
assert(!min);
|
|
// Otherwise, universal index is the minimal pidx.
|
|
min = after->getArguments().back();
|
|
}
|
|
|
|
// Sets up the loop stack.
|
|
loopStack.emplace_back(tids, dims, whileOp, min, loopTag);
|
|
assert(loopStack.size() == loopSeqStack.size());
|
|
|
|
// Emits extra locals
|
|
emitExtraLocalsForTensorsAtDenseDims(builder, loc, tids, dims);
|
|
|
|
// Updates reduction variables
|
|
assert(after->getNumArguments() == o + reduc.size() + (needsUniv ? 1 : 0));
|
|
// In-place update on reduction variable.
|
|
for (unsigned i = 0, e = reduc.size(); i < e; i++)
|
|
reduc[i] = after->getArgument(o + i);
|
|
|
|
return whileOp;
|
|
}
|
|
|
|
void LoopEmitter::prepareLoopOverTensorAtDim(OpBuilder &builder, Location loc,
|
|
size_t tid, size_t dim) {
|
|
assert(dimTypes[tid].size() > dim);
|
|
auto dimType = dimTypes[tid][dim];
|
|
|
|
if (isDenseDLT(dimType))
|
|
return;
|
|
|
|
// Either the first dimension, or the previous dimension has been set.
|
|
assert(dim == 0 || pidxs[tid][dim - 1]);
|
|
Value c0 = constantIndex(builder, loc, 0);
|
|
Value c1 = constantIndex(builder, loc, 1);
|
|
if (isCompressedDLT(dimType)) {
|
|
Value ptr = ptrBuffer[tid][dim];
|
|
|
|
Value pLo = dim == 0 ? c0 : pidxs[tid][dim - 1];
|
|
pidxs[tid][dim] = genIndexLoad(builder, loc, ptr, pLo);
|
|
|
|
Value pHi = builder.create<arith::AddIOp>(loc, pLo, c1);
|
|
highs[tid][dim] = genIndexLoad(builder, loc, ptr, pHi);
|
|
return;
|
|
}
|
|
if (isSingletonDLT(dimType)) {
|
|
Value pLo = dim == 0 ? c0 : pidxs[tid][dim - 1];
|
|
Value pHi = builder.create<arith::AddIOp>(loc, pLo, c1);
|
|
|
|
pidxs[tid][dim] = pLo;
|
|
highs[tid][dim] = pHi;
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unrecognizable dimesion type!");
|
|
}
|
|
|
|
void LoopEmitter::emitExtraLocalsForTensorsAtDenseDims(OpBuilder &builder,
|
|
Location loc,
|
|
ArrayRef<size_t> tids,
|
|
ArrayRef<size_t> dims) {
|
|
// Initialize dense positions. Note that we generate dense indices of the
|
|
// output tensor unconditionally, since they may not appear in the lattice,
|
|
// but may be needed for linearized codegen.
|
|
for (auto [tid, dim] : llvm::zip(tids, dims)) {
|
|
if (isDenseDLT(dimTypes[tid][dim])) {
|
|
auto enc = getSparseTensorEncoding(tensors[tid].getType());
|
|
if (enc && !isSparseOutput(tid)) {
|
|
bool validPidx = dim == 0 || pidxs[tid][dim - 1];
|
|
if (!validPidx) {
|
|
// We might not find the pidx for the sparse output tensor as it is
|
|
// unconditionally required by the sparsification.
|
|
assert(isOutputTensor(tid));
|
|
continue;
|
|
}
|
|
pidxs[tid][dim] =
|
|
genAddress(builder, loc, tid, dim, loopStack.back().iv);
|
|
// NOTE: we can also prepare for next dim here in advance
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void LoopEmitter::exitForLoop(RewriterBase &rewriter, Location loc,
|
|
MutableArrayRef<Value> reduc) {
|
|
LoopLevelInfo &loopInfo = loopStack.back();
|
|
auto &dims = loopStack.back().dims;
|
|
auto &tids = loopStack.back().tids;
|
|
auto forOp = llvm::dyn_cast<scf::ForOp>(loopInfo.loop);
|
|
if (forOp) {
|
|
if (!reduc.empty()) {
|
|
assert(reduc.size() == forOp.getNumResults());
|
|
rewriter.create<scf::YieldOp>(loc, reduc);
|
|
}
|
|
// Exit the loop.
|
|
rewriter.setInsertionPointAfter(forOp);
|
|
// In-place update reduction variables.
|
|
for (unsigned i = 0, e = forOp.getResults().size(); i < e; i++)
|
|
reduc[i] = forOp.getResult(i);
|
|
} else {
|
|
auto parOp = llvm::cast<scf::ParallelOp>(loopInfo.loop);
|
|
if (!reduc.empty()) {
|
|
assert(reduc.size() == parOp.getInitVals().size() && reduc.size() == 1);
|
|
Operation *redExp = reduc.front().getDefiningOp();
|
|
// Reduction expression should have no use.
|
|
assert(redExp->getUses().empty());
|
|
// This must be a binary operation.
|
|
// NOTE: This is users' responsibilty to ensure the operation are
|
|
// commutative.
|
|
assert(redExp->getNumOperands() == 2 && redExp->getNumResults() == 1);
|
|
|
|
Value redVal = parOp.getInitVals().front();
|
|
Value curVal;
|
|
if (redExp->getOperand(0) == redVal)
|
|
curVal = redExp->getOperand(1);
|
|
else if (redExp->getOperand(1) == redVal)
|
|
curVal = redExp->getOperand(0);
|
|
// One of the operands must be the init value (which is also the
|
|
// previous reduction value).
|
|
assert(curVal);
|
|
// The reduction expression should be the only user of the reduction val
|
|
// inside the parallel for.
|
|
unsigned numUsers = 0;
|
|
for (Operation *op : redVal.getUsers()) {
|
|
if (op->getParentOp() == parOp)
|
|
numUsers++;
|
|
}
|
|
assert(numUsers == 1);
|
|
(void)numUsers; // to silence unused variable warning in release build
|
|
|
|
rewriter.setInsertionPointAfter(redExp);
|
|
auto redOp = rewriter.create<scf::ReduceOp>(loc, curVal);
|
|
// Attach to the reduction op.
|
|
Block *redBlock = &redOp.getRegion().getBlocks().front();
|
|
rewriter.setInsertionPointToEnd(redBlock);
|
|
Operation *newRed = rewriter.clone(*redExp);
|
|
// Replaces arguments of the reduction expression by using the block
|
|
// arguments from scf.reduce.
|
|
rewriter.updateRootInPlace(
|
|
newRed, [&]() { newRed->setOperands(redBlock->getArguments()); });
|
|
// Erases the out-dated reduction expression.
|
|
rewriter.eraseOp(redExp);
|
|
rewriter.setInsertionPointToEnd(redBlock);
|
|
rewriter.create<scf::ReduceReturnOp>(loc, newRed->getResult(0));
|
|
}
|
|
rewriter.setInsertionPointAfter(parOp);
|
|
// In-place update reduction variables.
|
|
for (unsigned i = 0, e = parOp.getResults().size(); i < e; i++)
|
|
reduc[i] = parOp.getResult(i);
|
|
}
|
|
|
|
// Finished iterating a tensor, clean up
|
|
// We only do the clean up on for loop as while loops do not necessarily
|
|
// finish the iteration on a sparse tensor
|
|
for (auto [tid, dim] : llvm::zip(tids, dims)) {
|
|
// Reset to null.
|
|
coord[tid][dim] = Value();
|
|
pidxs[tid][dim] = Value();
|
|
// Dense dimension, high is fixed.
|
|
if (!isDenseDLT(dimTypes[tid][dim]))
|
|
highs[tid][dim] = Value();
|
|
}
|
|
}
|
|
|
|
void LoopEmitter::exitCoIterationLoop(OpBuilder &builder, Location loc,
|
|
MutableArrayRef<Value> reduc) {
|
|
auto whileOp = llvm::cast<scf::WhileOp>(loopStack.back().loop);
|
|
auto &dims = loopStack.back().dims;
|
|
auto &tids = loopStack.back().tids;
|
|
Value iv = loopStack.back().iv;
|
|
// Generation while loop induction at the end.
|
|
builder.setInsertionPointToEnd(&whileOp.getAfter().front());
|
|
// Finalize the induction. Note that the induction could be performed
|
|
// in the individual if-branches to avoid re-evaluating the conditions.
|
|
// However, that would result in a rather elaborate forest of yield
|
|
// instructions during code generation. Moreover, performing the induction
|
|
// after the if-statements more closely resembles code generated by TACO.
|
|
unsigned o = 0;
|
|
SmallVector<Value> operands;
|
|
Value one = constantIndex(builder, loc, 1);
|
|
for (auto [tid, dim] : llvm::zip(tids, dims)) {
|
|
if (isCompressedDLT(dimTypes[tid][dim]) ||
|
|
isSingletonDLT(dimTypes[tid][dim])) {
|
|
Value op1 = coord[tid][dim];
|
|
Value op3 = pidxs[tid][dim];
|
|
Value cmp =
|
|
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, op1, iv);
|
|
Value add = builder.create<arith::AddIOp>(loc, op3, one);
|
|
operands.push_back(builder.create<arith::SelectOp>(loc, cmp, add, op3));
|
|
// Following loops continue iteration from the break point of the
|
|
// current while loop.
|
|
pidxs[tid][dim] = whileOp->getResult(o++);
|
|
// The coordinates are invalid now.
|
|
coord[tid][dim] = nullptr;
|
|
// highs remains unchanged.
|
|
}
|
|
}
|
|
|
|
// Reduction value from users.
|
|
for (auto &i : reduc) {
|
|
operands.push_back(i);
|
|
// In place update reduction variable.
|
|
i = whileOp->getResult(o++);
|
|
}
|
|
|
|
// An (optional) universal index.
|
|
if (operands.size() < whileOp.getNumResults()) {
|
|
assert(operands.size() + 1 == whileOp.getNumResults());
|
|
// The last one is the universial index.
|
|
operands.push_back(builder.create<arith::AddIOp>(loc, iv, one));
|
|
// update the loop starting point of current loop sequence
|
|
loopSeqStack.back() = whileOp->getResult(o++);
|
|
}
|
|
|
|
assert(o == operands.size());
|
|
builder.create<scf::YieldOp>(loc, operands);
|
|
builder.setInsertionPointAfter(whileOp);
|
|
}
|
|
|
|
void LoopEmitter::exitCurrentLoop(RewriterBase &rewriter, Location loc,
|
|
MutableArrayRef<Value> reduc) {
|
|
// Clean up the values, it would help use to discover potential bug at a
|
|
// earlier stage (instead of silently using a wrong value).
|
|
LoopLevelInfo &loopInfo = loopStack.back();
|
|
assert(loopInfo.tids.size() == loopInfo.dims.size());
|
|
SmallVector<Value> red;
|
|
if (llvm::isa<scf::WhileOp>(loopInfo.loop)) {
|
|
exitCoIterationLoop(rewriter, loc, reduc);
|
|
} else {
|
|
exitForLoop(rewriter, loc, reduc);
|
|
}
|
|
|
|
assert(loopStack.size() == loopSeqStack.size());
|
|
loopStack.pop_back();
|
|
}
|