Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
wren romano f708a549b8 [mlir][sparse] Factoring out SparseTensorType class
This change adds a new `SparseTensorType` class for making the "dim" vs "lvl" distinction more overt, and for abstracting over the differences between sparse-tensors and dense-tensors.  In addition, this change also adds new type aliases `Dimension`, `Level`, and `FieldIndex` to make code more self-documenting.

Although the diff is very large, the majority of the changes are mechanical in nature (e.g., changing types to use the new aliases, updating variable names to match, etc).  Along the way I also made many variables `const` when they could be; the majority of which required only adding the keyword.  A few places had conditional definitions of these variables, requiring actual code changes; however, that was only done when the overall change was extremely local and easy to extract.  All these changes are included in the current patch only because it would be too onerous to split them off into a separate patch.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D143800
2023-02-14 19:17:19 -08:00

1502 lines
65 KiB
C++

//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor primitives into calls into a runtime
// support library. Sparse tensor types are converted into opaque pointers
// to the underlying sparse storage schemes. The use of opaque pointers
// together with runtime support library keeps the conversion relatively
// simple, but at the expense of IR opacity, which obscures opportunities
// for subsequent optimization of the IR. An alternative is provided by
// the SparseTensorCodegen pass.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Maps each sparse tensor type to an opaque pointer.
static std::optional<Type> convertSparseTensorTypes(Type type) {
if (getSparseTensorEncoding(type) != nullptr)
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
return std::nullopt;
}
/// Replaces the `op` with a `CallOp` to the function reference returned
/// by `getFunc()`.
static func::CallOp replaceOpWithFuncCall(RewriterBase &rewriter, Operation *op,
StringRef name, TypeRange resultType,
ValueRange operands,
EmitCInterface emitCInterface) {
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, resultType, operands,
emitCInterface);
return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
operands);
}
/// Generates call to lookup a level-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genLvlSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t lvl) {
StringRef name = "sparseLvlSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, lvl)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Generates call to lookup a dimension-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genDimSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t dim) {
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, dim)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Looks up a level-size by returning a statically-computed constant
/// (when possible), or by calling `genLvlSizeCall` (when dynamic).
static Value createOrFoldLvlCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Level lvl) {
// Only sparse tensors have "levels" to query.
assert(stt.hasEncoding());
// TODO: The following implementation only handles permutations;
// we'll need to generalize this to handle arbitrary AffineExpr.
//
// There's no need to assert `isPermutation` here: because
// `getDimPosition` checks that the expr isa `AffineDimExpr`,
// which is all we care about (for supporting permutations).
const Dimension dim =
stt.isIdentity() ? lvl : stt.getDimToLvlMap().getDimPosition(lvl);
if (const auto sz = stt.getStaticDimSize(dim))
return constantIndex(builder, loc, *sz);
// If we cannot statically compute the size from the shape, then we
// must dynamically query it. (In principle we could also dynamically
// compute it, but since we already did so to construct the `tensor`
// in the first place, we might as well query rather than recompute.)
return genLvlSizeCall(builder, loc, tensor, lvl);
}
/// Looks up a dimension-size by returning a constant from the shape
/// (for static sizes), or by calling `genDimSizeCall` (for dynamic sizes
/// of sparse tensors) or `linalg::createOrFoldDimOp` (for dynamic sizes
/// of dense tensors).
static Value createOrFoldDimCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Dimension dim) {
if (const auto sz = stt.getStaticDimSize(dim))
return constantIndex(builder, loc, *sz);
if (stt.hasEncoding())
return genDimSizeCall(builder, loc, tensor, dim);
return linalg::createOrFoldDimOp(builder, loc, tensor, dim);
}
/// Populates the array with the dimension-sizes of the given tensor.
static void fillDimSizes(OpBuilder &builder, Location loc, SparseTensorType stt,
Value tensor, SmallVectorImpl<Value> &out) {
const Dimension dimRank = stt.getDimRank();
out.clear();
out.reserve(dimRank);
for (Dimension d = 0; d < dimRank; d++)
out.push_back(createOrFoldDimCall(builder, loc, stt, tensor, d));
}
/// Returns an array with the dimension-sizes of the given tensor.
static SmallVector<Value> getDimSizes(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor) {
SmallVector<Value> out;
fillDimSizes(builder, loc, stt, tensor, out);
return out;
}
/// Populates the array with the dimension-shape of the given
/// `SparseTensorType`, where dynamic sizes are represented by zero.
static void fillDimShape(OpBuilder &builder, Location loc, SparseTensorType stt,
SmallVectorImpl<Value> &out) {
out.clear();
out.reserve(stt.getDimRank());
for (const DynSize sh : stt.getDimShape()) {
const auto s = ShapedType::isDynamic(sh) ? 0 : sh;
out.push_back(constantIndex(builder, loc, s));
}
}
/// Returns an array with the dimension-shape of the given `SparseTensorType`,
/// where dynamic sizes are represented by zero.
static SmallVector<Value> getDimShape(OpBuilder &builder, Location loc,
SparseTensorType stt) {
SmallVector<Value> out;
fillDimShape(builder, loc, stt, out);
return out;
}
/// Populates the given sizes array for concatenation from type (for static
/// sizes) and from an already-converted opaque pointer source (for dynamic
/// sizes).
static void concatDimSizesFromInputs(OpBuilder &builder, Location loc,
SparseTensorType dstTp, ValueRange srcs,
Dimension dim,
SmallVectorImpl<Value> &dimSizes) {
assert(dim < dstTp.getDimRank() && "Dimension is out of bounds");
dimSizes.clear();
// We first fills the sizes from an input tensor, and then
// compute the size of the concatenation dimension if necessary.
const auto srcTp = getSparseTensorType(srcs[0]);
if (srcTp.hasEncoding())
// Reuses sizes from an arbitrary input tensor is fine.
fillDimSizes(builder, loc, srcTp, srcs[0], dimSizes);
else
sizesFromSrc(builder, dimSizes, loc, srcs[0]);
if (const auto sz = dstTp.getStaticDimSize(dim)) {
// Faithfully take the static size.
dimSizes[dim] = constantIndex(builder, loc, *sz);
} else {
// Else, dynamically compute the size.
for (const auto src : srcs.drop_front()) {
const auto srcTp = getSparseTensorType(src);
Value srcSz = createOrFoldDimCall(builder, loc, srcTp, src, dim);
dimSizes[dim] = builder.create<arith::AddIOp>(loc, dimSizes[dim], srcSz);
}
}
}
/// Generates an uninitialized buffer of the given size and type,
/// but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
/// this buffer must be explicitly deallocated by client.
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamic}, tp);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
}
/// Generates a temporary buffer for the level-types of the given encoding.
static Value genLvlTypesBuffer(OpBuilder &builder, Location loc,
SparseTensorType stt) {
SmallVector<Value> lvlTypes;
lvlTypes.reserve(stt.getLvlRank());
for (const auto dlt : stt.getEncoding().getDimLevelType())
lvlTypes.push_back(constantDimLevelTypeEncoding(builder, loc, dlt));
return allocaBuffer(builder, loc, lvlTypes);
}
/// This class abstracts over the API of `_mlir_ciface_newSparseTensor`:
/// the "swiss army knife" method of the sparse runtime support library
/// for materializing sparse tensors into the computation. This abstraction
/// reduces the need to make modifications to client code whenever that
/// API changes.
class NewCallParams final {
public:
/// Allocates the `ValueRange` for the `func::CallOp` parameters,
/// but does not initialize them.
NewCallParams(OpBuilder &builder, Location loc)
: builder(builder), loc(loc), pTp(getOpaquePointerType(builder)) {}
/// Initializes all static parameters (i.e., those which indicate
/// type-level information such as the encoding and sizes), generating
/// MLIR buffers as needed, and returning `this` for method chaining.
/// This method does not set the action and pointer arguments, since
/// those are handled by `genNewCall` instead.
NewCallParams &genBuffers(SparseTensorType stt, ValueRange dimSizes);
/// (Re)sets the C++ template type parameters, and returns `this`
/// for method chaining. This is already done as part of `genBuffers`,
/// but is factored out so that it can also be called independently
/// whenever subsequent `genNewCall` calls want to reuse the same
/// buffers but different type parameters.
//
// TODO: This is only ever used by sparse2sparse-viaCOO `ConvertOp`;
// is there a better way to handle that than this one-off setter method?
NewCallParams &setTemplateTypes(SparseTensorType stt) {
const auto enc = stt.getEncoding();
params[kParamPtrTp] = constantPointerTypeEncoding(builder, loc, enc);
params[kParamIndTp] = constantIndexTypeEncoding(builder, loc, enc);
params[kParamValTp] =
constantPrimaryTypeEncoding(builder, loc, stt.getElementType());
return *this;
}
/// Checks whether all the static parameters have been initialized.
bool isInitialized() const {
for (unsigned i = 0; i < kNumStaticParams; ++i)
if (!params[i])
return false;
return true;
}
/// Gets the dimension-to-level mapping.
//
// TODO: This is only ever used for passing into `genAddEltCall`;
// is there a better way to encapsulate that pattern (both to avoid
// this one-off getter, and to avoid potential mixups)?
Value getDim2LvlMap() const {
assert(isInitialized() && "Must initialize before getDim2LvlMap");
return params[kParamDim2Lvl];
}
/// Generates a function call, with the current static parameters
/// and the given dynamic arguments.
Value genNewCall(Action action, Value ptr = Value()) {
assert(isInitialized() && "Must initialize before genNewCall");
StringRef name = "newSparseTensor";
params[kParamAction] = constantAction(builder, loc, action);
params[kParamPtr] = ptr ? ptr : builder.create<LLVM::NullOp>(loc, pTp);
return createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On)
.getResult(0);
}
private:
static constexpr unsigned kNumStaticParams = 8;
static constexpr unsigned kNumDynamicParams = 2;
static constexpr unsigned kNumParams = kNumStaticParams + kNumDynamicParams;
static constexpr unsigned kParamDimSizes = 0;
static constexpr unsigned kParamLvlSizes = 1;
static constexpr unsigned kParamLvlTypes = 2;
static constexpr unsigned kParamLvl2Dim = 3;
static constexpr unsigned kParamDim2Lvl = 4;
static constexpr unsigned kParamPtrTp = 5;
static constexpr unsigned kParamIndTp = 6;
static constexpr unsigned kParamValTp = 7;
static constexpr unsigned kParamAction = 8;
static constexpr unsigned kParamPtr = 9;
OpBuilder &builder;
Location loc;
Type pTp;
Value params[kNumParams];
};
// TODO: see the note at `_mlir_ciface_newSparseTensor` about how
// the meaning of the various arguments (e.g., "sizes" vs "shapes")
// is inconsistent between the different actions.
NewCallParams &NewCallParams::genBuffers(SparseTensorType stt,
ValueRange dimSizes) {
const Level lvlRank = stt.getLvlRank();
const Dimension dimRank = stt.getDimRank();
// Sparsity annotations.
params[kParamLvlTypes] = genLvlTypesBuffer(builder, loc, stt);
// Dimension-sizes array of the enveloping tensor. Useful for either
// verification of external data, or for construction of internal data.
assert(dimSizes.size() == static_cast<size_t>(dimRank) &&
"Dimension-rank mismatch");
params[kParamDimSizes] = allocaBuffer(builder, loc, dimSizes);
// The level-sizes array must be passed as well, since for arbitrary
// dim2lvl mappings it cannot be trivially reconstructed at runtime.
// For now however, since we're still assuming permutations, we will
// initialize this parameter alongside the `dim2lvl` and `lvl2dim`
// parameters below. We preinitialize `lvlSizes` for code symmetry.
SmallVector<Value> lvlSizes(lvlRank);
// The dimension-to-level mapping and its inverse. We must preinitialize
// `dim2lvl` so that the true branch below can perform random-access
// `operator[]` assignment. We preinitialize `lvl2dim` for code symmetry.
SmallVector<Value> dim2lvl(dimRank);
SmallVector<Value> lvl2dim(lvlRank);
if (!stt.isIdentity()) {
const auto dimOrder = stt.getDimToLvlMap();
assert(dimOrder.isPermutation());
for (Level l = 0; l < lvlRank; l++) {
// The `d`th source variable occurs in the `l`th result position.
const Dimension d = dimOrder.getDimPosition(l);
dim2lvl[d] = constantIndex(builder, loc, l);
lvl2dim[l] = constantIndex(builder, loc, d);
lvlSizes[l] = dimSizes[d];
}
} else {
// The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
// when `isIdentity`; so no need to re-assert it here.
for (Level l = 0; l < lvlRank; l++) {
dim2lvl[l] = lvl2dim[l] = constantIndex(builder, loc, l);
lvlSizes[l] = dimSizes[l];
}
}
params[kParamLvlSizes] = allocaBuffer(builder, loc, lvlSizes);
params[kParamLvl2Dim] = allocaBuffer(builder, loc, lvl2dim);
params[kParamDim2Lvl] = stt.isIdentity()
? params[kParamLvl2Dim]
: allocaBuffer(builder, loc, dim2lvl);
// Secondary and primary types encoding.
setTemplateTypes(stt);
// Finally, make note that initialization is complete.
assert(isInitialized() && "Initialization failed");
// And return `this` for method chaining.
return *this;
}
/// Generates a call to obtain the values array.
static Value genValuesCall(OpBuilder &builder, Location loc, ShapedType tp,
ValueRange ptr) {
SmallString<15> name{"sparseValues",
primaryTypeFunctionSuffix(tp.getElementType())};
return createFuncCall(builder, loc, name, tp, ptr, EmitCInterface::On)
.getResult(0);
}
/// Generates a call to release/delete a `SparseTensorCOO`.
static void genDelCOOCall(OpBuilder &builder, Location loc, Type elemTp,
Value coo) {
SmallString<21> name{"delSparseTensorCOO", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(builder, loc, name, {}, coo, EmitCInterface::Off);
}
/// Generates a call to release/delete a `SparseTensorIterator`.
static void genDelIteratorCall(OpBuilder &builder, Location loc, Type elemTp,
Value iter) {
SmallString<26> name{"delSparseTensorIterator",
primaryTypeFunctionSuffix(elemTp)};
createFuncCall(builder, loc, name, {}, iter, EmitCInterface::Off);
}
/// Generates a call that adds one element to a coordinate scheme.
/// In particular, this generates code like the following:
/// val = a[i1,..,ik];
/// if val != 0
/// t->add(&val, [i1,..,ik], [p1,..,pk]);
static void genAddEltCall(OpBuilder &builder, Location loc, Type eltType,
Value lvlCOO, Value valPtr, Value dimInd,
Value dim2lvl) {
SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
SmallVector<Value, 4> params{lvlCOO, valPtr, dimInd, dim2lvl};
Type pTp = getOpaquePointerType(builder);
createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On);
}
/// Generates a call to `iter->getNext()`. If there is a next element,
/// then it is copied into the out-parameters `ind` and `elemPtr`,
/// and the return value is true. If there isn't a next element, then
/// the return value is false.
static Value genGetNextCall(OpBuilder &builder, Location loc, Value iter,
Value ind, Value elemPtr) {
Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
SmallVector<Value, 3> params{iter, ind, elemPtr};
Type i1 = builder.getI1Type();
return createFuncCall(builder, loc, name, i1, params, EmitCInterface::On)
.getResult(0);
}
/// Converts a pointer to COO (from calls to iter->next()) into a vector of
/// indices, apply (optional) `offset` on `offsetDim`.
static SmallVector<Value> loadIndices(OpBuilder &builder, Location loc,
unsigned rank, Value ind,
unsigned offsetDim = 0,
Value offset = Value()) {
SmallVector<Value> ivs;
ivs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
Value idx = constantIndex(builder, loc, i);
idx = builder.create<memref::LoadOp>(loc, ind, idx);
if (offsetDim == i && offset)
idx = builder.create<arith::AddIOp>(loc, idx, offset);
ivs.push_back(idx);
}
return ivs;
}
/// Inserts a value stored in `elemPtr` into a dense tensor created by
/// allocDenseTensor().
static void insertScalarIntoDenseTensor(OpBuilder &builder, Location loc,
Value elemPtr, Value tensor,
ValueRange ivs) {
Value elemV = builder.create<memref::LoadOp>(loc, elemPtr);
builder.create<memref::StoreOp>(loc, elemV, tensor, ivs);
}
/// Determine if the runtime library supports direct conversion to the
/// given target `dimTypes`.
static bool canUseDirectConversion(ArrayRef<DimLevelType> dimTypes) {
bool alreadyCompressed = false;
for (const auto dlt : dimTypes) {
if (isCompressedDLT(dlt)) {
if (alreadyCompressed)
return false; // Multiple compressed dimensions not yet supported.
alreadyCompressed = true;
} else if (isDenseDLT(dlt)) {
if (alreadyCompressed)
return false; // Dense after Compressed not yet supported.
} else if (isSingletonDLT(dlt)) {
// Direct conversion doesn't have any particular problems with
// singleton after compressed.
} else { // TODO: investigate
return false;
}
}
return true;
}
/// Helper method to translate indices during a reshaping operation.
/// TODO: provide as general utility to MLIR at large?
static void translateIndices(Location loc, ConversionPatternRewriter &rewriter,
ArrayRef<ReassociationIndices> reassociation,
TensorType dstTp, TensorType srcTp, Value dstIdx,
Value srcIdx, ArrayRef<Value> dstShape,
ArrayRef<Value> srcShape) {
const Dimension dstRank = dstTp.getRank();
const Dimension srcRank = srcTp.getRank();
SmallVector<Value> srcIndices;
srcIndices.reserve(srcRank);
for (Dimension d = 0; d < srcRank; d++) {
Value idx = rewriter.create<memref::LoadOp>(
loc, srcIdx, constantIndex(rewriter, loc, d));
srcIndices.push_back(idx);
}
SmallVector<Value> dstIndices;
translateIndicesArray(rewriter, loc, reassociation, srcIndices, srcShape,
dstShape, dstIndices);
for (Dimension d = 0; d < dstRank; d++)
rewriter.create<memref::StoreOp>(loc, dstIndices[d], dstIdx,
constantIndex(rewriter, loc, d));
}
/// Generate code for a general sparse to sparse reshaping operation.
/// Note that unlike dense reshaping (which can be done with a "cheap"
/// change of view), sparse reshaping is currently done with actual
/// data shuffling.
///
/// TODO: proportional to nnz, but still a lot of data movement
/// https://github.com/llvm/llvm-project/issues/56477
///
/// iter = src->toCOO();
/// coo = newSparseCOO()
/// while (elem = iter->getNext()) {
/// coo->add(reshape(elem.indices), elem.value)
/// }
/// s = newSparseTensor(coo)
template <typename ReshapeOp>
static LogicalResult
genSparse2SparseReshape(ReshapeOp op, typename ReshapeOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) {
Location loc = op.getLoc();
const auto srcTp = getSparseTensorType(op.getSrc());
const auto dstTp = getSparseTensorType(op.getResult());
if (!srcTp.hasEncoding() || !dstTp.hasEncoding())
return failure();
Type elemTp = srcTp.getElementType();
assert(elemTp == dstTp.getElementType() &&
"reshape should not change element type");
// Start an iterator over the source tensor (in original index order).
SmallVector<Value> srcDimSizes =
getDimSizes(rewriter, loc, srcTp, adaptor.getSrc());
NewCallParams params(rewriter, loc);
Value iter = params.genBuffers(srcTp.withoutOrdering(), srcDimSizes)
.genNewCall(Action::kToIterator, adaptor.getSrc());
// Start a new COO for the destination tensor.
SmallVector<Value> dstDimSizes;
if (dstTp.hasStaticDimShape())
// Static "shapes" are in fact "sizes".
fillDimShape(rewriter, loc, dstTp, dstDimSizes);
else
genReshapeDstShape(loc, rewriter, dstDimSizes, srcDimSizes,
dstTp.getDimShape(), op.getReassociationIndices());
Value coo =
params.genBuffers(dstTp, dstDimSizes).genNewCall(Action::kEmptyCOO);
Value dstPerm = params.getDim2LvlMap();
// Construct a while loop over the iterator.
Type iTp = rewriter.getIndexType();
Value srcIdx = genAlloca(rewriter, loc, srcTp.getDimRank(), iTp);
Value dstIdx = genAlloca(rewriter, loc, dstTp.getDimRank(), iTp);
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
SmallVector<Value> noArgs;
SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, srcIdx, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
// Translate indices from source to target and insert. Note that we do
// not need to store the value in elemPtr, as the value is still there.
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
translateIndices(loc, rewriter, op.getReassociationIndices(), dstTp, srcTp,
dstIdx, srcIdx, dstDimSizes, srcDimSizes);
genAddEltCall(rewriter, loc, elemTp, coo, elemPtr, dstIdx, dstPerm);
rewriter.create<scf::YieldOp>(loc);
// Final call to construct sparse tensor storage and free temporary resources.
rewriter.setInsertionPointAfter(whileOp);
Value dst = params.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, elemTp, coo);
genDelIteratorCall(rewriter, loc, elemTp, iter);
rewriter.replaceOp(op, dst);
return success();
}
// Generates a while loop that iterates over the COO list extracted
// from `t`, using `bodyBuilder` to build the loop body.
// while (elem = coo->getNext()) {
// bodyBuilder
// }
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
// reduce code repetition!
// TODO: rename to `genSparseIterationLoop`?
static void genSparseCOOIterationLoop(
ConversionPatternRewriter &rewriter, Location loc, Value t,
SparseTensorType stt,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilder) {
assert(stt.hasEncoding() &&
"Generating Sparse Tensor COO Loop on a Dense Tensor!");
const Dimension dimRank = stt.getDimRank();
const Type elemTp = stt.getElementType();
// Start an iterator over the tensor (in original index order).
const auto noPerm = stt.withoutOrdering();
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, noPerm, t);
Value iter = NewCallParams(rewriter, loc)
.genBuffers(noPerm, dimSizes)
.genNewCall(Action::kToIterator, t);
// Construct a while loop over the iterator.
Value srcIdx = genAlloca(rewriter, loc, dimRank, rewriter.getIndexType());
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
SmallVector<Value> noArgs;
SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, srcIdx, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
const bool hasDenseDim =
llvm::any_of(stt.getEncoding().getDimLevelType(), isDenseDLT);
if (hasDenseDim) {
Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
Value isZero = genIsNonzero(rewriter, loc, elemV);
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, isZero, /*else*/ false);
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
// Callback here to build loop body.
bodyBuilder(rewriter, loc, srcIdx, elemPtr);
// Exit the scope from the IfOp.
if (hasDenseDim)
rewriter.setInsertionPointToEnd(after);
rewriter.create<scf::YieldOp>(loc);
// Finish generating loop.
rewriter.setInsertionPointAfter(whileOp);
// Free memory for iterator.
genDelIteratorCall(rewriter, loc, elemTp, iter);
}
// Generate loop that iterates over a dense tensor.
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// bodyBuilder(v, [i1, ..., ik])
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
// reduce code repetition!
static void genDenseTensorIterationLoop(
ConversionPatternRewriter &rewriter, Location loc, Value t,
SparseTensorType stt,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
assert(!stt.hasEncoding() &&
"Generating Dense Tensor Loop on a Sparse Tensor!");
const Dimension dimRank = stt.getDimRank();
Value zero = constantIndex(rewriter, loc, 0);
Value one = constantIndex(rewriter, loc, 1);
SmallVector<Value> lo;
SmallVector<Value> hi;
SmallVector<Value> st;
// Fill out loop iteration information.
for (Dimension d = 0; d < dimRank; d++) {
lo.push_back(zero);
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, t, d));
st.push_back(one);
}
scf::buildLoopNest(rewriter, loc, lo, hi, st, {},
[&](OpBuilder &builder, Location loc, ValueRange ivs,
ValueRange args) -> scf::ValueVector {
// Invoke callback to build the body of the loop.
bodyBuilder(builder, loc, ivs);
return {};
});
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for accessing dimension-sizes.
class SparseTensorToDimSizeConverter
: public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto stt = getSparseTensorType(op.getSource());
// Only rewrite sparse DimOp.
if (!stt.hasEncoding())
return failure();
// Only rewrite DimOp with constant index.
std::optional<int64_t> dim = op.getConstantIndex();
if (!dim)
return failure();
// Generate the call.
Value src = adaptor.getOperands()[0];
rewriter.replaceOp(
op, createOrFoldDimCall(rewriter, op->getLoc(), stt, src, *dim));
return success();
}
};
/// Sparse conversion rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for a reshape operator.
template <typename ReshapeOp>
class SparseReshapeConverter : public OpConversionPattern<ReshapeOp> {
public:
using OpAdaptor = typename OpConversionPattern<ReshapeOp>::OpAdaptor;
using OpConversionPattern<ReshapeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ReshapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
return genSparse2SparseReshape(op, adaptor, rewriter);
}
};
/// Sparse conversion rule for the new operator.
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
const Dimension dimRank = stt.getDimRank();
const Level lvlRank = stt.getLvlRank();
// Construct the dimShape.
SmallVector<Value> dimShapeValues = getDimShape(rewriter, loc, stt);
Value dimShapeBuffer = allocaBuffer(rewriter, loc, dimShapeValues);
// Allocate `SparseTensorReader` and perform all initial setup that
// does not depend on lvlSizes (nor dim2lvl, lvl2dim, etc).
Type opaqueTp = getOpaquePointerType(rewriter);
Value valTp =
constantPrimaryTypeEncoding(rewriter, loc, stt.getElementType());
Value reader =
createFuncCall(rewriter, loc, "createCheckedSparseTensorReader",
opaqueTp,
{adaptor.getOperands()[0], dimShapeBuffer, valTp},
EmitCInterface::On)
.getResult(0);
// Construct the lvlSizes. If the dimShape is static, then it's
// identical to dimSizes: so we can compute lvlSizes entirely at
// compile-time. If dimShape is dynamic, then we'll need to generate
// code for computing lvlSizes from the `reader`'s actual dimSizes.
//
// TODO: For now we're still assuming `dim2lvl` is a permutation.
// But since we're computing lvlSizes here (rather than in the runtime),
// we can easily generalize that simply by adjusting this code.
//
// FIXME: reduce redundancy vs `NewCallParams::genBuffers`.
Value dimSizesBuffer;
if (stt.hasDynamicDimShape()) {
Type indexTp = rewriter.getIndexType();
auto memTp = MemRefType::get({ShapedType::kDynamic}, indexTp);
dimSizesBuffer =
createFuncCall(rewriter, loc, "getSparseTensorReaderDimSizes", memTp,
reader, EmitCInterface::On)
.getResult(0);
}
Value lvlSizesBuffer;
Value lvl2dimBuffer;
Value dim2lvlBuffer;
if (!stt.isIdentity()) {
const auto dimOrder = stt.getDimToLvlMap();
assert(dimOrder.isPermutation() && "Got non-permutation");
// We preinitialize `dim2lvlValues` since we need random-access writing.
// And we preinitialize the others for stylistic consistency.
SmallVector<Value> lvlSizeValues(lvlRank);
SmallVector<Value> lvl2dimValues(lvlRank);
SmallVector<Value> dim2lvlValues(dimRank);
for (Level l = 0; l < lvlRank; l++) {
// The `d`th source variable occurs in the `l`th result position.
Dimension d = dimOrder.getDimPosition(l);
Value lvl = constantIndex(rewriter, loc, l);
Value dim = constantIndex(rewriter, loc, d);
dim2lvlValues[d] = lvl;
lvl2dimValues[l] = dim;
lvlSizeValues[l] =
stt.isDynamicDim(d)
? rewriter.create<memref::LoadOp>(loc, dimSizesBuffer, dim)
: dimShapeValues[d];
}
lvlSizesBuffer = allocaBuffer(rewriter, loc, lvlSizeValues);
lvl2dimBuffer = allocaBuffer(rewriter, loc, lvl2dimValues);
dim2lvlBuffer = allocaBuffer(rewriter, loc, dim2lvlValues);
} else {
// The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
// when `isIdentity`; so no need to re-assert it here.
SmallVector<Value> iotaValues;
iotaValues.reserve(lvlRank);
for (Level l = 0; l < lvlRank; l++)
iotaValues.push_back(constantIndex(rewriter, loc, l));
lvlSizesBuffer = dimSizesBuffer ? dimSizesBuffer : dimShapeBuffer;
dim2lvlBuffer = lvl2dimBuffer = allocaBuffer(rewriter, loc, iotaValues);
}
// Use the `reader` to parse the file.
SmallVector<Value, 8> params{
reader,
lvlSizesBuffer,
genLvlTypesBuffer(rewriter, loc, stt),
lvl2dimBuffer,
dim2lvlBuffer,
constantPointerTypeEncoding(rewriter, loc, stt.getEncoding()),
constantIndexTypeEncoding(rewriter, loc, stt.getEncoding()),
valTp};
Value tensor = createFuncCall(rewriter, loc, "newSparseTensorFromReader",
opaqueTp, params, EmitCInterface::On)
.getResult(0);
// Free the memory for `reader`.
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
EmitCInterface::Off);
rewriter.replaceOp(op, tensor);
return success();
}
};
/// Sparse conversion rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getCopy())
return rewriter.notifyMatchFailure(op,
"sparse tensor copy not implemented");
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
// Gather all dimension sizes as SSA values.
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizes;
dimSizes.reserve(dimRank);
unsigned operandCtr = 0;
for (Dimension d = 0; d < dimRank; ++d) {
dimSizes.push_back(
stt.isDynamicDim(d)
? adaptor.getOperands()[operandCtr++]
: constantIndex(rewriter, loc, op.getStaticSize(d)));
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizes)
.genNewCall(Action::kEmpty));
return success();
}
};
/// Sparse conversion rule for the convert operator.
class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorConvertConverter(MLIRContext *context,
SparseTensorConversionOptions o)
: OpConversionPattern<ConvertOp>(context), options(o) {}
SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context,
SparseTensorConversionOptions o)
: OpConversionPattern<ConvertOp>(typeConv, context), options(o) {}
LogicalResult
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getSource());
const auto dstTp = getSparseTensorType(op);
if (!srcTp.hasEncoding() && !dstTp.hasEncoding())
return failure();
const Dimension dimRank = srcTp.getDimRank();
const Type elemTp = srcTp.getElementType();
const Value src = adaptor.getOperands()[0];
if (srcTp.hasEncoding() && dstTp.hasEncoding()) {
const auto srcEnc = srcTp.getEncoding();
const auto dstEnc = dstTp.getEncoding();
// This is a sparse => sparse conversion, which is handled as follows:
// t = src->toCOO(); ; src to COO in dst order
// dst = newSparseTensor(t)
// Using the coordinate scheme as an intermediate does not always
// yield the fastest conversion but avoids the need for a full
// O(N^2) conversion matrix.
if (dstEnc == srcEnc) {
rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
return success();
}
NewCallParams params(rewriter, loc);
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
bool useDirectConversion;
switch (options.sparseToSparseStrategy) {
case SparseToSparseConversionStrategy::kViaCOO:
useDirectConversion = false;
break;
case SparseToSparseConversionStrategy::kDirect:
useDirectConversion = true;
assert(canUseDirectConversion(dstEnc.getDimLevelType()) &&
"Unsupported target for direct sparse-to-sparse conversion");
break;
case SparseToSparseConversionStrategy::kAuto:
useDirectConversion = canUseDirectConversion(dstEnc.getDimLevelType());
break;
}
if (useDirectConversion) {
rewriter.replaceOp(
op, params.genBuffers(srcTp.withEncoding(dstEnc), dimSizes)
.genNewCall(Action::kSparseToSparse, src));
} else { // use via-COO conversion.
// Set up encoding with right mix of src and dst so that the two
// method calls can share most parameters, while still providing
// the correct sparsity information to either of them.
const auto mixedEnc = SparseTensorEncodingAttr::get(
op->getContext(), dstEnc.getDimLevelType(), dstEnc.getDimOrdering(),
dstEnc.getHigherOrdering(), srcEnc.getPointerBitWidth(),
srcEnc.getIndexBitWidth());
// TODO: This is the only place where `kToCOO` (or `kToIterator`)
// is called with a non-identity permutation. Is there any clean
// way to push the permutation over to the `kFromCOO` side instead?
Value coo = params.genBuffers(srcTp.withEncoding(mixedEnc), dimSizes)
.genNewCall(Action::kToCOO, src);
Value dst = params.setTemplateTypes(srcTp.withEncoding(dstEnc))
.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.replaceOp(op, dst);
}
return success();
}
if (srcTp.hasEncoding() && !dstTp.hasEncoding()) {
const auto srcEnc = srcTp.getEncoding();
// This is sparse => dense conversion, which is handled as follows:
// dst = new Tensor(0);
// iter = new SparseTensorIterator(src);
// while (elem = iter->getNext()) {
// dst[elem.indices] = elem.value;
// }
// delete iter;
//
// Fabricate a no-permutation encoding for NewCallParams
// The pointer/index types must be those of `src`.
// The dimLevelTypes aren't actually used by Action::kToIterator.
const auto dstEnc = SparseTensorEncodingAttr::get(
op->getContext(),
SmallVector<DimLevelType>(dimRank, DimLevelType::Dense), AffineMap(),
AffineMap(), srcEnc.getPointerBitWidth(), srcEnc.getIndexBitWidth());
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
Value iter = NewCallParams(rewriter, loc)
.genBuffers(dstTp.withEncoding(dstEnc), dimSizes)
.genNewCall(Action::kToIterator, src);
Value ind = genAlloca(rewriter, loc, dimRank, rewriter.getIndexType());
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
Block *insertionBlock = rewriter.getInsertionBlock();
// TODO: Dense buffers should be allocated/deallocated via the callback
// in BufferizationOptions.
Value dst = allocDenseTensor(rewriter, loc, dstTp, dimSizes);
SmallVector<Value> noArgs;
SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, ind, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
SmallVector<Value> ivs = loadIndices(rewriter, loc, dimRank, ind);
insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, ivs);
rewriter.create<scf::YieldOp>(loc);
rewriter.setInsertionPointAfter(whileOp);
genDelIteratorCall(rewriter, loc, elemTp, iter);
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(
op, dstTp.getRankedTensorType(), dst);
// Deallocate the buffer.
if (bufferization::allocationDoesNotEscape(op->getOpResult(0))) {
rewriter.setInsertionPoint(insertionBlock->getTerminator());
deallocDenseTensor(rewriter, loc, dst);
}
return success();
}
assert(!srcTp.hasEncoding() && dstTp.hasEncoding());
// This is a dense => sparse conversion or a sparse constant in COO =>
// sparse conversion, which is handled as follows:
// t = newSparseCOO()
// ...code to fill the COO tensor t...
// s = newSparseTensor(t)
//
// To fill the COO tensor from a dense tensor:
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// To fill the COO tensor from a sparse constant in COO format:
// for i in range(NNZ)
// val = values[i]
// [i1,..,ik] = indices[i]
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// Note that the dense tensor traversal code is actually implemented
// using MLIR IR to avoid having to expose too much low-level
// memref traversal details to the runtime support library.
// Also note that the code below only generates the "new" ops and
// the loop-nest per se; whereas the entire body of the innermost
// loop is generated by genAddElt().
SmallVector<Value> dimSizes;
sizesFromSrc(rewriter, dimSizes, loc, src);
NewCallParams params(rewriter, loc);
Value coo =
params.genBuffers(dstTp, dimSizes).genNewCall(Action::kEmptyCOO);
Value ind = genAlloca(rewriter, loc, dimRank, rewriter.getIndexType());
Value perm = params.getDim2LvlMap();
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
genDenseTensorOrSparseConstantIterLoop(
rewriter, loc, src, dimRank,
[&](OpBuilder &builder, Location loc, Value val, ValueRange ivs) {
for (Dimension d = 0; d < dimRank; d++) {
Value dim = constantIndex(builder, loc, d);
builder.create<memref::StoreOp>(loc, ivs[d], ind, dim);
}
builder.create<memref::StoreOp>(loc, val, elemPtr);
genAddEltCall(builder, loc, elemTp, coo, elemPtr, ind, perm);
});
// Final call to construct sparse tensor storage.
Value dst = params.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.replaceOp(op, dst);
return success();
}
private:
/// Options to control sparse code generation.
SparseTensorConversionOptions options;
};
/// Sparse conversion rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorType(op.getTensor()).hasEncoding())
return failure();
StringRef name = "delSparseTensor";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse conversion rule for pointer accesses.
class SparseTensorToPointersConverter
: public OpConversionPattern<ToPointersOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type ptrType = resType.cast<ShapedType>().getElementType();
SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)};
Value dim =
constantIndex(rewriter, op->getLoc(), op.getDimension().getZExtValue());
replaceOpWithFuncCall(rewriter, op, name, resType,
{adaptor.getTensor(), dim}, EmitCInterface::On);
return success();
}
};
/// Sparse conversion rule for index accesses.
class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type indType = resType.cast<ShapedType>().getElementType();
SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)};
Location loc = op->getLoc();
Value dim = constantIndex(rewriter, loc, op.getDimension().getZExtValue());
// The function returns a MemRef without a layout.
MemRefType callRetType = get1DMemRefType(indType, false);
SmallVector<Value> operands{adaptor.getTensor(), dim};
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, callRetType,
operands, EmitCInterface::On);
Value callRet =
rewriter.create<func::CallOp>(loc, callRetType, fn, operands)
.getResult(0);
// Cast the MemRef type to the type expected by the users, though these
// two types should be compatible at runtime.
if (resType != callRetType)
callRet = rewriter.create<memref::CastOp>(loc, resType, callRet);
rewriter.replaceOp(op, callRet);
return success();
}
};
/// Sparse conversion rule for value accesses.
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto resType = op.getType().cast<ShapedType>();
rewriter.replaceOp(op, genValuesCall(rewriter, op.getLoc(), resType,
adaptor.getOperands()));
return success();
}
};
/// Sparse conversion rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// Query values array size for the actually stored values size.
Type eltType = op.getTensor().getType().cast<ShapedType>().getElementType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, eltType);
Value values = genValuesCall(rewriter, loc, resTp, adaptor.getOperands());
rewriter.replaceOpWithNewOp<memref::DimOp>(op, values,
constantIndex(rewriter, loc, 0));
return success();
}
};
/// Sparse conversion rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getHasInserts()) {
// Finalize any pending insertions.
StringRef name = "endInsert";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
}
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for the insertion operator.
class SparseTensorInsertConverter : public OpConversionPattern<InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Note that the current regime only allows for strict lexicographic
// index order. All values are passed by reference through stack
// allocated memrefs.
Location loc = op->getLoc();
const auto stt = getSparseTensorType(op.getTensor());
const auto elemTp = stt.getElementType();
const Dimension dimRank = stt.getDimRank();
auto mref = genAlloca(rewriter, loc, dimRank, rewriter.getIndexType());
auto vref = genAllocaScalar(rewriter, loc, elemTp);
for (Dimension d = 0; d < dimRank; d++)
rewriter.create<memref::StoreOp>(loc, adaptor.getIndices()[d], mref,
constantIndex(rewriter, loc, d));
rewriter.create<memref::StoreOp>(loc, adaptor.getValue(), vref);
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {}, {adaptor.getTensor(), mref, vref},
EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
return success();
}
};
/// Sparse conversion rule for the expand operator.
class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getTensor());
Type eltType = srcTp.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Get the cardinality of valid coordinates for the innermost level.
Value sz = createOrFoldLvlCall(rewriter, loc, srcTp, adaptor.getTensor(),
srcTp.getLvlRank() - 1);
// Allocate temporary buffers for values, filled-switch, and indices.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(rewriter, loc, sz, eltType);
Value filled = genAlloc(rewriter, loc, sz, boolType);
Value indices = genAlloc(rewriter, loc, sz, idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial index.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, indices, zero});
return success();
}
};
/// Sparse conversion rule for the compress operator.
class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
// Note that this method call resets the values/filled-switch back to
// all-zero/false by only iterating over the set elements, so the
// complexity remains proportional to the sparsity of the expanded
// access pattern.
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
Value tensor = adaptor.getTensor();
const auto stt = getSparseTensorType(op.getTensor());
const Type elemTp = stt.getElementType();
const Dimension dimRank = stt.getDimRank();
auto mref = genAlloca(rewriter, loc, dimRank, rewriter.getIndexType());
for (Dimension d = 0; d < dimRank - 1; d++)
rewriter.create<memref::StoreOp>(loc, adaptor.getIndices()[d], mref,
constantIndex(rewriter, loc, d));
SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{tensor, mref, values, filled, added, count},
EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
// Deallocate the buffers on exit of the loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
return success();
}
};
/// Sparse conversion rule for the concatenate operator.
class SparseTensorConcatConverter : public OpConversionPattern<ConcatenateOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConcatenateOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// The conversion works as follow:
// (1). When output is sparse and not all dims are dense, and mix of inputs:
// a_sparse = concat (b_dense, c_sparse, ....)
// =>
// coo_for_a = newSparseCOO(shapeOf(a))
// for i, j, k // dense input
// coo->add(adjustForOffset(i,j,k), b[i,j,k])
//
// for elem in sparse_input
// coo->add(adjustForOffset(elem.indices), elem.value)
// ...
// a = newSparseTensor(coo_for_a)
// return a
//
// (2). When output is dense or annotated all dense, and mix of inputs:
// a_dense = concat (b_dense, c_sparse, ....)
// =>
// a = malloc(shapeOf(a)) or newSparseAllDense(shapeOf(a))
// for i, j, k // dense input
// a[ adjustForOffset(i,j,k) ] = b[i,j,k]
//
// for elem in sparse_input
// a[ adjustForOffset(elem.indices) ] = elem.value
// return a
Location loc = op.getLoc();
const auto dstTp = getSparseTensorType(op);
const auto dstEnc = dstTp.getEncoding();
const Type elemTp = dstTp.getElementType();
const Dimension concatDim = op.getDimension().getZExtValue();
const Dimension dimRank = dstTp.getDimRank();
Value dst; // destination tensor
Value dstPerm; // destination tensor permutation (if sparse out)
// A pointer to the value being inserted (if dense => sparse)
Value elemPtr;
// Memory that holds the dim-indices for destination tensor (if sparse out)
Value dstInd;
// The offset applied to the dimenstion to be concated (starting from 0)
Value offset = constantIndex(rewriter, loc, 0);
SmallVector<Value> dimSizes;
concatDimSizesFromInputs(rewriter, loc, dstTp, op.getInputs(), concatDim,
dimSizes);
NewCallParams params(rewriter, loc);
const bool allDense = dstTp.hasEncoding() && dstTp.isAllDense();
Value dstTensor;
if (dstTp.hasEncoding()) {
// Start a new COO or an initialized annotated all dense sparse tensor.
dst = params.genBuffers(dstTp, dimSizes)
.genNewCall(allDense ? Action::kEmpty : Action::kEmptyCOO);
dstInd = genAlloca(rewriter, loc, dimRank, rewriter.getIndexType());
if (allDense) {
dstTensor = dst;
// Get the values buffer for the sparse tensor and reshape it to the
// corresponding dense tensor shape.
dst = genValuesCall(rewriter, loc,
MemRefType::get({ShapedType::kDynamic}, elemTp),
{dst});
// Use the dstInd to store the level sizes.
dst =
reshapeValuesToLevels(rewriter, loc, dstEnc, dimSizes, dst, dstInd);
} else {
dstPerm = params.getDim2LvlMap();
elemPtr = genAllocaScalar(rewriter, loc, elemTp);
}
} else {
// TODO: Dense buffers should be allocated/deallocated via the callback
// in BufferizationOptions.
dst = allocDenseTensor(rewriter, loc, dstTp, dimSizes);
}
const Level lvlRank = dstTp.getLvlRank();
const auto dimIvs2LvlIvs = [&](ValueRange dimIvs) -> SmallVector<Value> {
SmallVector<Value> lvlIvs;
lvlIvs.reserve(lvlRank);
for (Level l = 0; l < lvlRank; l++)
// FIXME: `toOrigDim` is deprecated
lvlIvs.push_back(dimIvs[toOrigDim(dstEnc, l)]);
return lvlIvs;
};
for (const auto &it : llvm::zip(op.getInputs(), adaptor.getInputs())) {
Value orignalOp = std::get<0>(it); // Input (with encoding) from Op
Value adaptedOp = std::get<1>(it); // Input (type converted) from adaptor
const auto srcTp = getSparseTensorType(orignalOp);
if (srcTp.hasEncoding()) {
genSparseCOOIterationLoop(
rewriter, loc, adaptedOp, srcTp,
[&](OpBuilder &builder, Location loc, Value idx,
Value elemPtr) -> void {
SmallVector<Value> dimIvs =
loadIndices(builder, loc, dimRank, idx, concatDim, offset);
if (dstTp.hasEncoding() && !allDense) {
// Case: sparse => sparse, except for annotated all dense.
storeIndices(builder, loc, dimRank, dstInd, dimIvs);
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstInd,
dstPerm);
} else {
// Case: sparse => dense, or annotated all dense.
const auto lvlIvs = allDense ? dimIvs2LvlIvs(dimIvs) : dimIvs;
insertScalarIntoDenseTensor(builder, loc, elemPtr, dst, lvlIvs);
}
});
} else {
genDenseTensorIterationLoop(
rewriter, loc, adaptedOp, srcTp,
[&](OpBuilder &builder, Location loc, ValueRange dimIvs) -> void {
if (dstTp.hasEncoding() && !allDense) {
// Case: dense => sparse, except for annotated all dense.
storeIndices(builder, loc, dimRank, dstInd, dimIvs, concatDim,
offset);
Value val = genValueForDense(builder, loc, adaptedOp, dimIvs);
builder.create<memref::StoreOp>(loc, val, elemPtr);
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstInd,
dstPerm);
} else {
// Case: dense => dense, or annotated all dense.
Value val = genValueForDense(builder, loc, adaptedOp, dimIvs);
// Despite the name, this isn't actually level-ivs until
// after the `dimIvs2LvlIvs` call.
SmallVector<Value> lvlIvs(dimIvs);
// Apply offset.
lvlIvs[concatDim] = builder.create<arith::AddIOp>(
loc, lvlIvs[concatDim], offset);
if (allDense)
lvlIvs = dimIvs2LvlIvs(lvlIvs);
builder.create<memref::StoreOp>(loc, val, dst, lvlIvs);
}
});
}
// Accumulate offset.
// TODO: avoid calling sparseDimSize multiple times by caching the result!
Value curDim =
createOrFoldDimCall(rewriter, loc, srcTp, adaptedOp, concatDim);
offset = rewriter.create<arith::AddIOp>(loc, offset, curDim);
}
if (dstTp.hasEncoding()) {
if (!allDense) {
// In sparse output case, the destination holds the COO.
Value coo = dst;
dst = params.genNewCall(Action::kFromCOO, coo);
// Release resources.
genDelCOOCall(rewriter, loc, elemTp, coo);
} else {
dst = dstTensor;
}
rewriter.replaceOp(op, dst);
} else {
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(
op, dstTp.getRankedTensorType(), dst);
}
return success();
}
};
/// Sparse conversion rule for the output operator.
class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(OutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getTensor());
// Convert to default permuted COO.
Value src = adaptor.getOperands()[0];
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
Value coo = NewCallParams(rewriter, loc)
.genBuffers(srcTp.withoutOrdering(), dimSizes)
.genNewCall(Action::kToCOO, src);
// Then output the tensor to external file with indices in the externally
// visible lexicographic index order. A sort is required if the source was
// not in that order yet (note that the sort can be dropped altogether if
// external format does not care about the order at all, but here we assume
// it does).
const Value sort = constantI1(rewriter, loc, !srcTp.isIdentity());
SmallVector<Value, 3> outParams{coo, adaptor.getOperands()[1], sort};
const Type elemTp = srcTp.getElementType();
SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {}, outParams, EmitCInterface::Off);
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.eraseOp(op);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into opaque pointer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToPtrConverter::SparseTensorTypeToPtrConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorTypes);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorConversionPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
const SparseTensorConversionOptions &options) {
patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
SparseCastConverter, SparseTensorNewConverter,
SparseReshapeConverter<tensor::ExpandShapeOp>,
SparseReshapeConverter<tensor::CollapseShapeOp>,
SparseTensorConcatConverter, SparseTensorAllocConverter,
SparseTensorDeallocConverter, SparseTensorToPointersConverter,
SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
SparseNumberOfEntriesConverter, SparseTensorLoadConverter,
SparseTensorInsertConverter, SparseTensorExpandConverter,
SparseTensorCompressConverter, SparseTensorOutConverter>(
typeConverter, patterns.getContext());
patterns.add<SparseTensorConvertConverter>(typeConverter,
patterns.getContext(), options);
}