Summary: This one will normalize cluster twice, leaving edges connecting two basic block untouched (cherry picked from FBD5207416)
443 lines
13 KiB
C++
443 lines
13 KiB
C++
//===--- BinaryBasicBlock.cpp - Interface for assembly-level basic block --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "BinaryBasicBlock.h"
|
|
#include "BinaryContext.h"
|
|
#include "BinaryFunction.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include <limits>
|
|
#include <string>
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "bolt"
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
constexpr uint32_t BinaryBasicBlock::INVALID_OFFSET;
|
|
|
|
bool operator<(const BinaryBasicBlock &LHS, const BinaryBasicBlock &RHS) {
|
|
return LHS.Index < RHS.Index;
|
|
}
|
|
|
|
void BinaryBasicBlock::adjustNumPseudos(const MCInst &Inst, int Sign) {
|
|
auto &BC = Function->getBinaryContext();
|
|
if (BC.MII->get(Inst.getOpcode()).isPseudo())
|
|
NumPseudos += Sign;
|
|
}
|
|
|
|
BinaryBasicBlock::iterator BinaryBasicBlock::getFirstNonPseudo() {
|
|
const auto &BC = Function->getBinaryContext();
|
|
for (auto II = Instructions.begin(), E = Instructions.end(); II != E; ++II) {
|
|
if (!BC.MII->get(II->getOpcode()).isPseudo())
|
|
return II;
|
|
}
|
|
return end();
|
|
}
|
|
|
|
BinaryBasicBlock::reverse_iterator BinaryBasicBlock::getLastNonPseudo() {
|
|
const auto &BC = Function->getBinaryContext();
|
|
for (auto RII = Instructions.rbegin(), E = Instructions.rend();
|
|
RII != E; ++RII) {
|
|
if (!BC.MII->get(RII->getOpcode()).isPseudo())
|
|
return RII;
|
|
}
|
|
return rend();
|
|
}
|
|
|
|
bool BinaryBasicBlock::validateSuccessorInvariants() {
|
|
const auto *Inst = getLastNonPseudoInstr();
|
|
const auto *JT = Inst ? Function->getJumpTable(*Inst) : nullptr;
|
|
auto &BC = Function->getBinaryContext();
|
|
bool Valid = true;
|
|
|
|
if (JT) {
|
|
// Note: for now we assume that successors do not reference labels from
|
|
// any overlapping jump tables. We only look at the entries for the jump
|
|
// table that is referenced at the last instruction.
|
|
const auto Range = JT->getEntriesForAddress(BC.MIA->getJumpTable(*Inst));
|
|
const std::vector<const MCSymbol *> Entries(&JT->Entries[Range.first],
|
|
&JT->Entries[Range.second]);
|
|
std::set<const MCSymbol *> UniqueSyms(Entries.begin(), Entries.end());
|
|
for (auto *Succ : Successors) {
|
|
auto Itr = UniqueSyms.find(Succ->getLabel());
|
|
if (Itr != UniqueSyms.end()) {
|
|
UniqueSyms.erase(Itr);
|
|
} else {
|
|
// Work on the assumption that jump table blocks don't
|
|
// have a conditional successor.
|
|
Valid = false;
|
|
}
|
|
}
|
|
// If there are any leftover entries in the jump table, they
|
|
// must be one of the function end labels.
|
|
for (auto *Sym : UniqueSyms) {
|
|
Valid &= (Sym == Function->getFunctionEndLabel() ||
|
|
Sym == Function->getFunctionColdEndLabel());
|
|
}
|
|
} else {
|
|
const MCSymbol *TBB = nullptr;
|
|
const MCSymbol *FBB = nullptr;
|
|
MCInst *CondBranch = nullptr;
|
|
MCInst *UncondBranch = nullptr;
|
|
|
|
if (analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) {
|
|
switch (Successors.size()) {
|
|
case 0:
|
|
Valid = !CondBranch && !UncondBranch;
|
|
break;
|
|
case 1:
|
|
Valid = !CondBranch ||
|
|
(CondBranch &&
|
|
!Function->getBasicBlockForLabel(BC.MIA->getTargetSymbol(*CondBranch)));
|
|
break;
|
|
case 2:
|
|
Valid =
|
|
(!CondBranch ||
|
|
(TBB == getConditionalSuccessor(true)->getLabel() &&
|
|
((!UncondBranch && !FBB) ||
|
|
(UncondBranch &&
|
|
FBB == getConditionalSuccessor(false)->getLabel()))));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!Valid) {
|
|
errs() << "BOLT-WARNING: CFG invalid in " << *getFunction() << " @ "
|
|
<< getName() << "\n";
|
|
if (JT) {
|
|
errs() << "Jump Table instruction addr = 0x"
|
|
<< Twine::utohexstr(BC.MIA->getJumpTable(*Inst)) << "\n";
|
|
JT->print(errs());
|
|
}
|
|
dump();
|
|
}
|
|
return Valid;
|
|
}
|
|
|
|
BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label) const {
|
|
if (!Label && succ_size() == 1)
|
|
return *succ_begin();
|
|
|
|
for (BinaryBasicBlock *BB : successors()) {
|
|
if (BB->getLabel() == Label)
|
|
return BB;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
BinaryBasicBlock *BinaryBasicBlock::getLandingPad(const MCSymbol *Label) const {
|
|
for (BinaryBasicBlock *BB : landing_pads()) {
|
|
if (BB->getLabel() == Label)
|
|
return BB;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
int32_t BinaryBasicBlock::getCFIStateAtInstr(const MCInst *Instr) const {
|
|
assert(
|
|
getFunction()->getState() >= BinaryFunction::State::CFG &&
|
|
"can only calculate CFI state when function is in or past the CFG state");
|
|
|
|
const auto &FDEProgram = getFunction()->getFDEProgram();
|
|
|
|
// Find the last CFI preceding Instr in this basic block.
|
|
const MCInst *LastCFI = nullptr;
|
|
bool InstrSeen = (Instr == nullptr);
|
|
for (auto RII = Instructions.rbegin(), E = Instructions.rend();
|
|
RII != E; ++RII) {
|
|
if (!InstrSeen) {
|
|
InstrSeen = (&*RII == Instr);
|
|
continue;
|
|
}
|
|
if (Function->getBinaryContext().MIA->isCFI(*RII)) {
|
|
LastCFI = &*RII;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(InstrSeen && "instruction expected in basic block");
|
|
|
|
// CFI state is the same as at basic block entry point.
|
|
if (!LastCFI)
|
|
return getCFIState();
|
|
|
|
// Fold all RememberState/RestoreState sequences, such as for:
|
|
//
|
|
// [ CFI #(K-1) ]
|
|
// RememberState (#K)
|
|
// ....
|
|
// RestoreState
|
|
// RememberState
|
|
// ....
|
|
// RestoreState
|
|
// [ GNU_args_size ]
|
|
// RememberState
|
|
// ....
|
|
// RestoreState <- LastCFI
|
|
//
|
|
// we return K - the most efficient state to (re-)generate.
|
|
int64_t State = LastCFI->getOperand(0).getImm();
|
|
while (State >= 0 &&
|
|
FDEProgram[State].getOperation() == MCCFIInstruction::OpRestoreState) {
|
|
int32_t Depth = 1;
|
|
--State;
|
|
assert(State >= 0 && "first CFI cannot be RestoreState");
|
|
while (Depth && State >= 0) {
|
|
const auto &CFIInstr = FDEProgram[State];
|
|
if (CFIInstr.getOperation() == MCCFIInstruction::OpRestoreState) {
|
|
++Depth;
|
|
} else if (CFIInstr.getOperation() == MCCFIInstruction::OpRememberState) {
|
|
--Depth;
|
|
}
|
|
--State;
|
|
}
|
|
assert(Depth == 0 && "unbalanced RememberState/RestoreState stack");
|
|
|
|
// Skip any GNU_args_size.
|
|
while (State >= 0 &&
|
|
FDEProgram[State].getOperation() == MCCFIInstruction::OpGnuArgsSize){
|
|
--State;
|
|
}
|
|
}
|
|
|
|
assert((State + 1 >= 0) && "miscalculated CFI state");
|
|
return State + 1;
|
|
}
|
|
|
|
void BinaryBasicBlock::addSuccessor(BinaryBasicBlock *Succ,
|
|
uint64_t Count,
|
|
uint64_t MispredictedCount) {
|
|
Successors.push_back(Succ);
|
|
BranchInfo.push_back({Count, MispredictedCount});
|
|
Succ->Predecessors.push_back(this);
|
|
}
|
|
|
|
void BinaryBasicBlock::replaceSuccessor(BinaryBasicBlock *Succ,
|
|
BinaryBasicBlock *NewSucc,
|
|
uint64_t Count,
|
|
uint64_t MispredictedCount) {
|
|
Succ->removePredecessor(this);
|
|
auto I = succ_begin();
|
|
auto BI = BranchInfo.begin();
|
|
for (; I != succ_end(); ++I) {
|
|
assert(BI != BranchInfo.end() && "missing BranchInfo entry");
|
|
if (*I == Succ)
|
|
break;
|
|
++BI;
|
|
}
|
|
assert(I != succ_end() && "no such successor!");
|
|
|
|
*I = NewSucc;
|
|
*BI = BinaryBranchInfo{Count, MispredictedCount};
|
|
NewSucc->addPredecessor(this);
|
|
}
|
|
|
|
void BinaryBasicBlock::removeSuccessor(BinaryBasicBlock *Succ) {
|
|
Succ->removePredecessor(this);
|
|
auto I = succ_begin();
|
|
auto BI = BranchInfo.begin();
|
|
for (; I != succ_end(); ++I) {
|
|
assert(BI != BranchInfo.end() && "missing BranchInfo entry");
|
|
if (*I == Succ)
|
|
break;
|
|
++BI;
|
|
}
|
|
assert(I != succ_end() && "no such successor!");
|
|
|
|
Successors.erase(I);
|
|
BranchInfo.erase(BI);
|
|
}
|
|
|
|
void BinaryBasicBlock::addPredecessor(BinaryBasicBlock *Pred) {
|
|
Predecessors.push_back(Pred);
|
|
}
|
|
|
|
void BinaryBasicBlock::removePredecessor(BinaryBasicBlock *Pred) {
|
|
auto I = std::find(pred_begin(), pred_end(), Pred);
|
|
assert(I != pred_end() && "Pred is not a predecessor of this block!");
|
|
Predecessors.erase(I);
|
|
}
|
|
|
|
void BinaryBasicBlock::removeDuplicateConditionalSuccessor(MCInst *CondBranch) {
|
|
assert(succ_size() == 2 && Successors[0] == Successors[1] &&
|
|
"conditional successors expected");
|
|
|
|
auto *Succ = Successors[0];
|
|
const auto CondBI = BranchInfo[0];
|
|
const auto UncondBI = BranchInfo[1];
|
|
|
|
eraseInstruction(CondBranch);
|
|
|
|
Successors.clear();
|
|
BranchInfo.clear();
|
|
|
|
Successors.push_back(Succ);
|
|
|
|
uint64_t Count = COUNT_NO_PROFILE;
|
|
if (CondBI.Count != COUNT_NO_PROFILE && UncondBI.Count != COUNT_NO_PROFILE)
|
|
Count = CondBI.Count + UncondBI.Count;
|
|
BranchInfo.push_back({Count, 0});
|
|
}
|
|
|
|
void BinaryBasicBlock::addLandingPad(BinaryBasicBlock *LPBlock) {
|
|
if (std::find(LandingPads.begin(), LandingPads.end(), LPBlock) == LandingPads.end()) {
|
|
LandingPads.push_back(LPBlock);
|
|
}
|
|
LPBlock->Throwers.insert(this);
|
|
}
|
|
|
|
void BinaryBasicBlock::clearLandingPads() {
|
|
for (auto *LPBlock : LandingPads) {
|
|
auto Count = LPBlock->Throwers.erase(this);
|
|
(void)Count;
|
|
assert(Count == 1 && "Possible duplicate entry in LandingPads");
|
|
}
|
|
LandingPads.clear();
|
|
}
|
|
|
|
bool BinaryBasicBlock::analyzeBranch(const MCSymbol *&TBB,
|
|
const MCSymbol *&FBB,
|
|
MCInst *&CondBranch,
|
|
MCInst *&UncondBranch) {
|
|
auto &MIA = Function->getBinaryContext().MIA;
|
|
return MIA->analyzeBranch(Instructions, TBB, FBB, CondBranch, UncondBranch);
|
|
}
|
|
|
|
MCInst *BinaryBasicBlock::getTerminatorBefore(MCInst *Pos) {
|
|
auto &BC = Function->getBinaryContext();
|
|
auto Itr = rbegin();
|
|
bool Check = Pos ? false : true;
|
|
MCInst *FirstTerminator{nullptr};
|
|
while (Itr != rend()) {
|
|
if (!Check) {
|
|
if (&*Itr == Pos)
|
|
Check = true;
|
|
++Itr;
|
|
continue;
|
|
}
|
|
if (BC.MIA->isTerminator(*Itr))
|
|
FirstTerminator = &*Itr;
|
|
++Itr;
|
|
}
|
|
return FirstTerminator;
|
|
}
|
|
|
|
bool BinaryBasicBlock::hasTerminatorAfter(MCInst *Pos) {
|
|
auto &BC = Function->getBinaryContext();
|
|
auto Itr = rbegin();
|
|
while (Itr != rend()) {
|
|
if (&*Itr == Pos)
|
|
return false;
|
|
if (BC.MIA->isTerminator(*Itr))
|
|
return true;
|
|
++Itr;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool BinaryBasicBlock::swapConditionalSuccessors() {
|
|
if (succ_size() != 2)
|
|
return false;
|
|
|
|
std::swap(Successors[0], Successors[1]);
|
|
std::swap(BranchInfo[0], BranchInfo[1]);
|
|
return true;
|
|
}
|
|
|
|
void BinaryBasicBlock::addBranchInstruction(const BinaryBasicBlock *Successor) {
|
|
assert(isSuccessor(Successor));
|
|
auto &BC = Function->getBinaryContext();
|
|
MCInst NewInst;
|
|
BC.MIA->createUncondBranch(NewInst, Successor->getLabel(), BC.Ctx.get());
|
|
Instructions.emplace_back(std::move(NewInst));
|
|
}
|
|
|
|
void BinaryBasicBlock::addTailCallInstruction(const MCSymbol *Target) {
|
|
auto &BC = Function->getBinaryContext();
|
|
MCInst NewInst;
|
|
BC.MIA->createTailCall(NewInst, Target, BC.Ctx.get());
|
|
Instructions.emplace_back(std::move(NewInst));
|
|
}
|
|
|
|
uint32_t BinaryBasicBlock::getNumPseudos() const {
|
|
#ifndef NDEBUG
|
|
auto &BC = Function->getBinaryContext();
|
|
uint32_t N = 0;
|
|
for (auto &Instr : Instructions) {
|
|
if (BC.MII->get(Instr.getOpcode()).isPseudo())
|
|
++N;
|
|
}
|
|
if (N != NumPseudos) {
|
|
errs() << "BOLT-ERROR: instructions for basic block " << getName()
|
|
<< " in function " << *Function << ": calculated pseudos "
|
|
<< N << ", set pseudos " << NumPseudos << ", size " << size()
|
|
<< '\n';
|
|
llvm_unreachable("pseudos mismatch");
|
|
}
|
|
#endif
|
|
return NumPseudos;
|
|
}
|
|
|
|
ErrorOr<std::pair<double, double>>
|
|
BinaryBasicBlock::getBranchStats(const BinaryBasicBlock *Succ) const {
|
|
if (Function->hasValidProfile()) {
|
|
uint64_t TotalCount = 0;
|
|
uint64_t TotalMispreds = 0;
|
|
for (const auto &BI : BranchInfo) {
|
|
if (BI.Count != COUNT_NO_PROFILE) {
|
|
TotalCount += BI.Count;
|
|
TotalMispreds += BI.MispredictedCount;
|
|
}
|
|
}
|
|
|
|
if (TotalCount > 0) {
|
|
auto Itr = std::find(Successors.begin(), Successors.end(), Succ);
|
|
assert(Itr != Successors.end());
|
|
const auto &BI = BranchInfo[Itr - Successors.begin()];
|
|
if (BI.Count && BI.Count != COUNT_NO_PROFILE) {
|
|
if (TotalMispreds == 0) TotalMispreds = 1;
|
|
return std::make_pair(double(BI.Count) / TotalCount,
|
|
double(BI.MispredictedCount) / TotalMispreds);
|
|
}
|
|
}
|
|
}
|
|
return make_error_code(llvm::errc::result_out_of_range);
|
|
}
|
|
|
|
void BinaryBasicBlock::dump() const {
|
|
auto &BC = Function->getBinaryContext();
|
|
if (Label) outs() << Label->getName() << ":\n";
|
|
BC.printInstructions(outs(), Instructions.begin(), Instructions.end(),
|
|
getOffset());
|
|
outs() << "preds:";
|
|
for (auto itr = pred_begin(); itr != pred_end(); ++itr) {
|
|
outs() << " " << (*itr)->getName();
|
|
}
|
|
outs() << "\nsuccs:";
|
|
for (auto itr = succ_begin(); itr != succ_end(); ++itr) {
|
|
outs() << " " << (*itr)->getName();
|
|
}
|
|
outs() << "\n";
|
|
}
|
|
|
|
uint64_t BinaryBasicBlock::estimateSize() const {
|
|
return Function->getBinaryContext().computeCodeSize(begin(), end());
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|