Files
clang-p2996/mlir/test/lib/TestDialect/TestPatterns.cpp
Jacques Pienaar fa26a37d36 [mlir] Add shaped container component type interface
Summary:
* Add shaped container type interface which allows infering the shape, element
  type and attribute of shaped container type separately. Show usage by way of
  tensor type inference trait which combines the shape & element type in
  infering a tensor type;
  - All components need not be specified;
  - Attribute is added to allow for layout attribute that was previously
    discussed;
* Expand the test driver to make it easier to test new creation instances
  (adding new operands or ops with attributes or regions would trigger build
  functions/type inference methods);
  - The verification part will be moved out of the test and to verify method
    instead of ops implementing the type inference interface in a follow up;
* Add MLIRContext as arg to possible to create type for ops without arguments,
  region or location;
* Also move out the section in OpDefinitions doc to separate ShapeInference doc
  where the shape function requirements can be captured;
  - Part of this would move to the shape dialect and/or shape dialect ops be
    included as subsection of this doc;
* Update ODS's variable usage to match camelBack format for builder,
  state and arg variables;
  - I could have split this out, but I had to make some changes around
    these and the inconsistency bugged me :)

Differential Revision: https://reviews.llvm.org/D72432
2020-01-15 13:28:39 -08:00

527 lines
21 KiB
C++

//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TestDialect.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
// Native function for testing NativeCodeCall
static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
return choice.getValue() ? input1 : input2;
}
static void createOpI(PatternRewriter &rewriter, Value input) {
rewriter.create<OpI>(rewriter.getUnknownLoc(), input);
}
static void handleNoResultOp(PatternRewriter &rewriter,
OpSymbolBindingNoResult op) {
// Turn the no result op to a one-result op.
rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
op.operand());
}
namespace {
#include "TestPatterns.inc"
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Canonicalizer Driver.
//===----------------------------------------------------------------------===//
namespace {
struct TestPatternDriver : public FunctionPass<TestPatternDriver> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
// Verify named pattern is generated with expected name.
patterns.insert<TestNamedPatternRule>(&getContext());
applyPatternsGreedily(getFunction(), patterns);
}
};
} // end anonymous namespace
static mlir::PassRegistration<TestPatternDriver>
pass("test-patterns", "Run test dialect patterns");
//===----------------------------------------------------------------------===//
// ReturnType Driver.
//===----------------------------------------------------------------------===//
namespace {
// Generate ops for each instance where the type can be succesfully infered.
template <typename OpTy>
static void invokeCreateWithInferedReturnType(Operation *op) {
auto *context = op->getContext();
auto fop = op->getParentOfType<FuncOp>();
auto location = UnknownLoc::get(context);
OpBuilder b(op);
b.setInsertionPointAfter(op);
// Use permutations of 2 args as operands.
assert(fop.getNumArguments() >= 2);
for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
for (int j = 0; j < e; ++j) {
std::array<Value, 2> values = {fop.getArgument(i), fop.getArgument(j)};
SmallVector<Type, 2> inferedReturnTypes;
if (succeeded(OpTy::inferReturnTypes(context, llvm::None, values,
op->getAttrs(), op->getRegions(),
inferedReturnTypes))) {
OperationState state(location, OpTy::getOperationName());
// TODO(jpienaar): Expand to regions.
OpTy::build(&b, state, values, op->getAttrs());
(void)b.createOperation(state);
}
}
}
}
struct TestReturnTypeDriver : public FunctionPass<TestReturnTypeDriver> {
void runOnFunction() override {
if (getFunction().getName() == "testCreateFunctions") {
std::vector<Operation *> ops;
// Collect ops to avoid triggering on inserted ops.
for (auto &op : getFunction().getBody().front())
ops.push_back(&op);
// Generate test patterns for each, but skip terminator.
for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
// Test create method of each of the Op classes below. The resultant
// output would be in reverse order underneath `op` from which
// the attributes and regions are used.
invokeCreateWithInferedReturnType<OpWithInferTypeInterfaceOp>(op);
invokeCreateWithInferedReturnType<OpWithShapedTypeInferTypeInterfaceOp>(
op);
};
return;
}
// Verification check.
// TODO: Move to ops that implement type infer interface.
getFunction().walk([this](Operation *op) -> void {
auto retTypeFn = dyn_cast<InferTypeOpInterface>(op);
if (!retTypeFn)
return;
auto *context = &getContext();
SmallVector<Type, 2> inferedReturnTypes;
if (failed(retTypeFn.inferReturnTypes(
context, op->getLoc(), op->getOperands(), op->getAttrs(),
op->getRegions(), inferedReturnTypes)))
return;
SmallVector<Type, 1> resultTypes(op->getResultTypes());
if (!retTypeFn.isCompatibleReturnTypes(inferedReturnTypes, resultTypes)) {
op->emitOpError(
"inferred type incompatible with return type of operation");
return;
}
});
}
};
} // end anonymous namespace
static mlir::PassRegistration<TestReturnTypeDriver>
rt_pass("test-return-type", "Run return type functions");
//===----------------------------------------------------------------------===//
// Legalization Driver.
//===----------------------------------------------------------------------===//
namespace {
//===----------------------------------------------------------------------===//
// Region-Block Rewrite Testing
/// This pattern is a simple pattern that inlines the first region of a given
/// operation into the parent region.
struct TestRegionRewriteBlockMovement : public ConversionPattern {
TestRegionRewriteBlockMovement(MLIRContext *ctx)
: ConversionPattern("test.region", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Inline this region into the parent region.
auto &parentRegion = *op->getParentRegion();
if (op->getAttr("legalizer.should_clone"))
rewriter.cloneRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
else
rewriter.inlineRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
// Drop this operation.
rewriter.eraseOp(op);
return matchSuccess();
}
};
/// This pattern is a simple pattern that generates a region containing an
/// illegal operation.
struct TestRegionRewriteUndo : public RewritePattern {
TestRegionRewriteUndo(MLIRContext *ctx)
: RewritePattern("test.region_builder", 1, ctx) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
// Create the region operation with an entry block containing arguments.
OperationState newRegion(op->getLoc(), "test.region");
newRegion.addRegion();
auto *regionOp = rewriter.createOperation(newRegion);
auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
entryBlock->addArgument(rewriter.getIntegerType(64));
// Add an explicitly illegal operation to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
// Drop this operation.
rewriter.eraseOp(op);
return matchSuccess();
}
};
//===----------------------------------------------------------------------===//
// Type-Conversion Rewrite Testing
/// This patterns erases a region operation that has had a type conversion.
struct TestDropOpSignatureConversion : public ConversionPattern {
TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
: ConversionPattern("test.drop_region_op", 1, ctx), converter(converter) {
}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Region &region = op->getRegion(0);
Block *entry = &region.front();
// Convert the original entry arguments.
TypeConverter::SignatureConversion result(entry->getNumArguments());
for (unsigned i = 0, e = entry->getNumArguments(); i != e; ++i)
if (failed(converter.convertSignatureArg(
i, entry->getArgument(i).getType(), result)))
return matchFailure();
// Convert the region signature and just drop the operation.
rewriter.applySignatureConversion(&region, result);
rewriter.eraseOp(op);
return matchSuccess();
}
/// The type converter to use when rewriting the signature.
TypeConverter &converter;
};
/// This pattern simply updates the operands of the given operation.
struct TestPassthroughInvalidOp : public ConversionPattern {
TestPassthroughInvalidOp(MLIRContext *ctx)
: ConversionPattern("test.invalid", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
llvm::None);
return matchSuccess();
}
};
/// This pattern handles the case of a split return value.
struct TestSplitReturnType : public ConversionPattern {
TestSplitReturnType(MLIRContext *ctx)
: ConversionPattern("test.return", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Check for a return of F32.
if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
return matchFailure();
// Check if the first operation is a cast operation, if it is we use the
// results directly.
auto *defOp = operands[0].getDefiningOp();
if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
return matchSuccess();
}
// Otherwise, fail to match.
return matchFailure();
}
};
//===----------------------------------------------------------------------===//
// Multi-Level Type-Conversion Rewrite Testing
struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is I32, change the type to F32.
if (!(*op->result_type_begin()).isInteger(32))
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
return matchSuccess();
}
};
struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is F32, change the type to F64.
if (!(*op->result_type_begin()).isF32())
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
return matchSuccess();
}
};
struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 10, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Always convert to B16, even though it is not a legal type. This tests
// that values are unmapped correctly.
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
return matchSuccess();
}
};
struct TestUpdateConsumerType : public ConversionPattern {
TestUpdateConsumerType(MLIRContext *ctx)
: ConversionPattern("test.type_consumer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Verify that the incoming operand has been successfully remapped to F64.
if (!operands[0].getType().isF64())
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
return matchSuccess();
}
};
//===----------------------------------------------------------------------===//
// Non-Root Replacement Rewrite Testing
/// This pattern generates an invalid operation, but replaces it before the
/// pattern is finished. This checks that we don't need to legalize the
/// temporary op.
struct TestNonRootReplacement : public RewritePattern {
TestNonRootReplacement(MLIRContext *ctx)
: RewritePattern("test.replace_non_root", 1, ctx) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
auto resultType = *op->result_type_begin();
auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
rewriter.replaceOp(illegalOp, {legalOp});
rewriter.replaceOp(op, {illegalOp});
return matchSuccess();
}
};
} // namespace
namespace {
struct TestTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) override {
// Drop I16 types.
if (t.isInteger(16))
return success();
// Convert I64 to F64.
if (t.isInteger(64)) {
results.push_back(FloatType::getF64(t.getContext()));
return success();
}
// Split F32 into F16,F16.
if (t.isF32()) {
results.assign(2, FloatType::getF16(t.getContext()));
return success();
}
// Otherwise, convert the type directly.
results.push_back(t);
return success();
}
/// Override the hook to materialize a conversion. This is necessary because
/// we generate 1->N type mappings.
Operation *materializeConversion(PatternRewriter &rewriter, Type resultType,
ArrayRef<Value> inputs,
Location loc) override {
return rewriter.create<TestCastOp>(loc, resultType, inputs);
}
};
struct TestLegalizePatternDriver
: public ModulePass<TestLegalizePatternDriver> {
/// The mode of conversion to use with the driver.
enum class ConversionMode { Analysis, Full, Partial };
TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
void runOnModule() override {
TestTypeConverter converter;
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
patterns
.insert<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
TestPassthroughInvalidOp, TestSplitReturnType,
TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
TestNonRootReplacement>(&getContext());
patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter);
mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
converter);
// Define the conversion target used for the test.
ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp>();
target
.addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
// Don't allow F32 operands.
return llvm::none_of(op.getOperandTypes(),
[](Type type) { return type.isF32(); });
});
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
// Expect the type_producer/type_consumer operations to only operate on f64.
target.addDynamicallyLegalOp<TestTypeProducerOp>(
[](TestTypeProducerOp op) { return op.getType().isF64(); });
target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
return op.getOperand().getType().isF64();
});
// Check support for marking certain operations as recursively legal.
target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
return static_cast<bool>(
op->getAttrOfType<UnitAttr>("test.recursively_legal"));
});
// Handle a partial conversion.
if (mode == ConversionMode::Partial) {
(void)applyPartialConversion(getModule(), target, patterns, &converter);
return;
}
// Handle a full conversion.
if (mode == ConversionMode::Full) {
(void)applyFullConversion(getModule(), target, patterns, &converter);
return;
}
// Otherwise, handle an analysis conversion.
assert(mode == ConversionMode::Analysis);
// Analyze the convertible operations.
DenseSet<Operation *> legalizedOps;
if (failed(applyAnalysisConversion(getModule(), target, patterns,
legalizedOps, &converter)))
return signalPassFailure();
// Emit remarks for each legalizable operation.
for (auto *op : legalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is legalizable";
}
/// The mode of conversion to use.
ConversionMode mode;
};
} // end anonymous namespace
static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
legalizerConversionMode(
"test-legalize-mode",
llvm::cl::desc("The legalization mode to use with the test driver"),
llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
llvm::cl::values(
clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
"analysis", "Perform an analysis conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
"Perform a full conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
"partial", "Perform a partial conversion")));
static mlir::PassRegistration<TestLegalizePatternDriver>
legalizer_pass("test-legalize-patterns",
"Run test dialect legalization patterns", [] {
return std::make_unique<TestLegalizePatternDriver>(
legalizerConversionMode);
});
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter::getRemappedValue testing. This method is used
// to get the remapped value of a original value that was replaced using
// ConversionPatternRewriter.
namespace {
/// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
/// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
/// operand twice.
///
/// Example:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0)
/// is replaced with:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
struct OneVResOneVOperandOp1Converter
: public OpConversionPattern<OneVResOneVOperandOp1> {
using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
PatternMatchResult
matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto origOps = op.getOperands();
assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
"One operand expected");
Value origOp = *origOps.begin();
SmallVector<Value, 2> remappedOperands;
// Replicate the remapped original operand twice. Note that we don't used
// the remapped 'operand' since the goal is testing 'getRemappedValue'.
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
SmallVector<Type, 1> resultTypes(op.getResultTypes());
rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, resultTypes,
remappedOperands);
return matchSuccess();
}
};
struct TestRemappedValue : public mlir::FunctionPass<TestRemappedValue> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
patterns.insert<OneVResOneVOperandOp1Converter>(&getContext());
mlir::ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>();
// We make OneVResOneVOperandOp1 legal only when it has more that one
// operand. This will trigger the conversion that will replace one-operand
// OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
[](Operation *op) -> bool {
return std::distance(op->operand_begin(), op->operand_end()) > 1;
});
if (failed(mlir::applyFullConversion(getFunction(), target, patterns))) {
signalPassFailure();
}
}
};
} // end anonymous namespace
static PassRegistration<TestRemappedValue> remapped_value_pass(
"test-remapped-value",
"Test public remapped value mechanism in ConversionPatternRewriter");