When computing symbol hashes in BinarySection::hash, we try to find relocations in the section which reference the passed BinaryData. We do so by doing lower_bound on data begin offset and upper_bound on data end offset. Since offsets are relative to the current section, if it is a data from the previous section, we get underflow when computing offset and lower_bound returns Relocations.end(). If this data also ends where current section begins, upper_bound on zero offset will return some valid iterator if we have any relocations after the first byte. Then we'll try to iterate from lower_bound to upper_bound, since they're not equal, which in that case means we'll dereference Relocations.end(), increment it, and try to do so until we reach the second valid iterator. Of course we reach segfault earlier. In this patch we stop BOLT from searching relocations for symbols outside of the current section. Reviewed By: rafauler Differential Revision: https://reviews.llvm.org/D146620
285 lines
10 KiB
C++
285 lines
10 KiB
C++
//===- bolt/Core/BinarySection.cpp - Section in a binary file -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BinarySection class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Core/BinarySection.h"
|
|
#include "bolt/Core/BinaryContext.h"
|
|
#include "bolt/Utils/Utils.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#define DEBUG_TYPE "bolt"
|
|
|
|
using namespace llvm;
|
|
using namespace bolt;
|
|
|
|
namespace opts {
|
|
extern cl::opt<bool> PrintRelocations;
|
|
extern cl::opt<bool> HotData;
|
|
} // namespace opts
|
|
|
|
uint64_t BinarySection::Count = 0;
|
|
|
|
bool BinarySection::isELF() const { return BC.isELF(); }
|
|
|
|
bool BinarySection::isMachO() const { return BC.isMachO(); }
|
|
|
|
uint64_t
|
|
BinarySection::hash(const BinaryData &BD,
|
|
std::map<const BinaryData *, uint64_t> &Cache) const {
|
|
auto Itr = Cache.find(&BD);
|
|
if (Itr != Cache.end())
|
|
return Itr->second;
|
|
|
|
hash_code Hash =
|
|
hash_combine(hash_value(BD.getSize()), hash_value(BD.getSectionName()));
|
|
|
|
Cache[&BD] = Hash;
|
|
|
|
if (!containsRange(BD.getAddress(), BD.getSize()))
|
|
return Hash;
|
|
|
|
uint64_t Offset = BD.getAddress() - getAddress();
|
|
const uint64_t EndOffset = BD.getEndAddress() - getAddress();
|
|
auto Begin = Relocations.lower_bound(Relocation{Offset, 0, 0, 0, 0});
|
|
auto End = Relocations.upper_bound(Relocation{EndOffset, 0, 0, 0, 0});
|
|
const StringRef Contents = getContents();
|
|
|
|
while (Begin != End) {
|
|
const Relocation &Rel = *Begin++;
|
|
Hash = hash_combine(
|
|
Hash, hash_value(Contents.substr(Offset, Begin->Offset - Offset)));
|
|
if (BinaryData *RelBD = BC.getBinaryDataByName(Rel.Symbol->getName()))
|
|
Hash = hash_combine(Hash, hash(*RelBD, Cache));
|
|
Offset = Rel.Offset + Rel.getSize();
|
|
}
|
|
|
|
Hash = hash_combine(Hash,
|
|
hash_value(Contents.substr(Offset, EndOffset - Offset)));
|
|
|
|
Cache[&BD] = Hash;
|
|
|
|
return Hash;
|
|
}
|
|
|
|
void BinarySection::emitAsData(MCStreamer &Streamer,
|
|
const Twine &SectionName) const {
|
|
StringRef SectionContents = getContents();
|
|
MCSectionELF *ELFSection =
|
|
BC.Ctx->getELFSection(SectionName, getELFType(), getELFFlags());
|
|
|
|
Streamer.switchSection(ELFSection);
|
|
Streamer.emitValueToAlignment(getAlign());
|
|
|
|
if (BC.HasRelocations && opts::HotData && isReordered())
|
|
Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("__hot_data_start"));
|
|
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting "
|
|
<< (isAllocatable() ? "" : "non-")
|
|
<< "allocatable data section " << SectionName << '\n');
|
|
|
|
if (!hasRelocations()) {
|
|
Streamer.emitBytes(SectionContents);
|
|
} else {
|
|
uint64_t SectionOffset = 0;
|
|
for (const Relocation &Relocation : relocations()) {
|
|
assert(Relocation.Offset < SectionContents.size() && "overflow detected");
|
|
// Skip undefined symbols.
|
|
if (BC.UndefinedSymbols.count(Relocation.Symbol))
|
|
continue;
|
|
if (SectionOffset < Relocation.Offset) {
|
|
Streamer.emitBytes(SectionContents.substr(
|
|
SectionOffset, Relocation.Offset - SectionOffset));
|
|
SectionOffset = Relocation.Offset;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting relocation for symbol "
|
|
<< (Relocation.Symbol ? Relocation.Symbol->getName()
|
|
: StringRef("<none>"))
|
|
<< " at offset 0x"
|
|
<< Twine::utohexstr(Relocation.Offset) << " with size "
|
|
<< Relocation::getSizeForType(Relocation.Type) << '\n');
|
|
size_t RelocationSize = Relocation.emit(&Streamer);
|
|
SectionOffset += RelocationSize;
|
|
}
|
|
assert(SectionOffset <= SectionContents.size() && "overflow error");
|
|
if (SectionOffset < SectionContents.size())
|
|
Streamer.emitBytes(SectionContents.substr(SectionOffset));
|
|
}
|
|
|
|
if (BC.HasRelocations && opts::HotData && isReordered())
|
|
Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("__hot_data_end"));
|
|
}
|
|
|
|
void BinarySection::flushPendingRelocations(raw_pwrite_stream &OS,
|
|
SymbolResolverFuncTy Resolver) {
|
|
if (PendingRelocations.empty() && Patches.empty())
|
|
return;
|
|
|
|
const uint64_t SectionAddress = getAddress();
|
|
|
|
// We apply relocations to original section contents. For allocatable sections
|
|
// this means using their input file offsets, since the output file offset
|
|
// could change (e.g. for new instance of .text). For non-allocatable
|
|
// sections, the output offset should always be a valid one.
|
|
const uint64_t SectionFileOffset =
|
|
isAllocatable() ? getInputFileOffset() : getOutputFileOffset();
|
|
LLVM_DEBUG(
|
|
dbgs() << "BOLT-DEBUG: flushing pending relocations for section "
|
|
<< getName() << '\n'
|
|
<< " address: 0x" << Twine::utohexstr(SectionAddress) << '\n'
|
|
<< " offset: 0x" << Twine::utohexstr(SectionFileOffset) << '\n');
|
|
|
|
for (BinaryPatch &Patch : Patches)
|
|
OS.pwrite(Patch.Bytes.data(), Patch.Bytes.size(),
|
|
SectionFileOffset + Patch.Offset);
|
|
|
|
for (Relocation &Reloc : PendingRelocations) {
|
|
uint64_t Value = Reloc.Addend;
|
|
if (Reloc.Symbol)
|
|
Value += Resolver(Reloc.Symbol);
|
|
|
|
Value = Relocation::adjustValue(Reloc.Type, Value,
|
|
SectionAddress + Reloc.Offset);
|
|
|
|
OS.pwrite(reinterpret_cast<const char *>(&Value),
|
|
Relocation::getSizeForType(Reloc.Type),
|
|
SectionFileOffset + Reloc.Offset);
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "BOLT-DEBUG: writing value 0x" << Twine::utohexstr(Value)
|
|
<< " of size " << Relocation::getSizeForType(Reloc.Type)
|
|
<< " at section offset 0x" << Twine::utohexstr(Reloc.Offset)
|
|
<< " address 0x"
|
|
<< Twine::utohexstr(SectionAddress + Reloc.Offset)
|
|
<< " file offset 0x"
|
|
<< Twine::utohexstr(SectionFileOffset + Reloc.Offset) << '\n';);
|
|
}
|
|
|
|
clearList(PendingRelocations);
|
|
}
|
|
|
|
BinarySection::~BinarySection() {
|
|
if (isReordered()) {
|
|
delete[] getData();
|
|
return;
|
|
}
|
|
|
|
if (!isAllocatable() && !hasValidSectionID() &&
|
|
(!hasSectionRef() ||
|
|
OutputContents.data() != getContents(Section).data())) {
|
|
delete[] getOutputData();
|
|
}
|
|
}
|
|
|
|
void BinarySection::clearRelocations() { clearList(Relocations); }
|
|
|
|
void BinarySection::print(raw_ostream &OS) const {
|
|
OS << getName() << ", "
|
|
<< "0x" << Twine::utohexstr(getAddress()) << ", " << getSize() << " (0x"
|
|
<< Twine::utohexstr(getOutputAddress()) << ", " << getOutputSize() << ")"
|
|
<< ", data = " << getData() << ", output data = " << getOutputData();
|
|
|
|
if (isAllocatable())
|
|
OS << " (allocatable)";
|
|
|
|
if (isVirtual())
|
|
OS << " (virtual)";
|
|
|
|
if (isTLS())
|
|
OS << " (tls)";
|
|
|
|
if (opts::PrintRelocations)
|
|
for (const Relocation &R : relocations())
|
|
OS << "\n " << R;
|
|
}
|
|
|
|
BinarySection::RelocationSetType
|
|
BinarySection::reorderRelocations(bool Inplace) const {
|
|
assert(PendingRelocations.empty() &&
|
|
"reodering pending relocations not supported");
|
|
RelocationSetType NewRelocations;
|
|
for (const Relocation &Rel : relocations()) {
|
|
uint64_t RelAddr = Rel.Offset + getAddress();
|
|
BinaryData *BD = BC.getBinaryDataContainingAddress(RelAddr);
|
|
BD = BD->getAtomicRoot();
|
|
assert(BD);
|
|
|
|
if ((!BD->isMoved() && !Inplace) || BD->isJumpTable())
|
|
continue;
|
|
|
|
Relocation NewRel(Rel);
|
|
uint64_t RelOffset = RelAddr - BD->getAddress();
|
|
NewRel.Offset = BD->getOutputOffset() + RelOffset;
|
|
assert(NewRel.Offset < getSize());
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: moving " << Rel << " -> " << NewRel
|
|
<< "\n");
|
|
auto Res = NewRelocations.emplace(std::move(NewRel));
|
|
(void)Res;
|
|
assert(Res.second && "Can't overwrite existing relocation");
|
|
}
|
|
return NewRelocations;
|
|
}
|
|
|
|
void BinarySection::reorderContents(const std::vector<BinaryData *> &Order,
|
|
bool Inplace) {
|
|
IsReordered = true;
|
|
|
|
Relocations = reorderRelocations(Inplace);
|
|
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
const char *Src = Contents.data();
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: reorderContents for " << Name << "\n");
|
|
for (BinaryData *BD : Order) {
|
|
assert((BD->isMoved() || !Inplace) && !BD->isJumpTable());
|
|
assert(BD->isAtomic() && BD->isMoveable());
|
|
const uint64_t SrcOffset = BD->getAddress() - getAddress();
|
|
assert(SrcOffset < Contents.size());
|
|
assert(SrcOffset == BD->getOffset());
|
|
while (OS.tell() < BD->getOutputOffset())
|
|
OS.write((unsigned char)0);
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << BD->getName() << " @ " << OS.tell()
|
|
<< "\n");
|
|
OS.write(&Src[SrcOffset], BD->getOutputSize());
|
|
}
|
|
if (Relocations.empty()) {
|
|
// If there are no existing relocations, tack a phony one at the end
|
|
// of the reordered segment to force LLVM to recognize and map this
|
|
// section.
|
|
MCSymbol *ZeroSym = BC.registerNameAtAddress("Zero", 0, 0, 0);
|
|
addRelocation(OS.tell(), ZeroSym, Relocation::getAbs64(), 0xdeadbeef);
|
|
|
|
uint64_t Zero = 0;
|
|
OS.write(reinterpret_cast<const char *>(&Zero), sizeof(Zero));
|
|
}
|
|
auto *NewData = reinterpret_cast<char *>(copyByteArray(OS.str()));
|
|
Contents = OutputContents = StringRef(NewData, OS.str().size());
|
|
OutputSize = Contents.size();
|
|
}
|
|
|
|
std::string BinarySection::encodeELFNote(StringRef NameStr, StringRef DescStr,
|
|
uint32_t Type) {
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
const uint32_t NameSz = NameStr.size() + 1;
|
|
const uint32_t DescSz = DescStr.size();
|
|
OS.write(reinterpret_cast<const char *>(&(NameSz)), 4);
|
|
OS.write(reinterpret_cast<const char *>(&(DescSz)), 4);
|
|
OS.write(reinterpret_cast<const char *>(&(Type)), 4);
|
|
OS << NameStr << '\0';
|
|
for (uint64_t I = NameSz; I < alignTo(NameSz, 4); ++I)
|
|
OS << '\0';
|
|
OS << DescStr;
|
|
for (uint64_t I = DescStr.size(); I < alignTo(DescStr.size(), 4); ++I)
|
|
OS << '\0';
|
|
return OS.str();
|
|
}
|