Files
clang-p2996/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp
Quinn Dawkins 435f7d4c2e [mlir][vector] Add unroll pattern for vector.gather
This pattern is useful for SPIR-V to unroll to a supported vector size
before later lowerings. The unrolling pattern is closer to an
elementwise op than the transfer ops because the index values from which
to extract elements are captured by the index vector and thus there is
no need to update the base offsets when unrolling gather.

Differential Revision: https://reviews.llvm.org/D149066
2023-04-24 14:02:59 -04:00

710 lines
30 KiB
C++

//===- VectorUnrollDistribute.cpp - patterns to do vector unrolling -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to do vector unrolling and vector distribution.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include <numeric>
#include <optional>
#define DEBUG_TYPE "vector-unrolling"
using namespace mlir;
using namespace mlir::vector;
/// During unrolling from `originalShape` to `targetShape` return the offset for
/// the slice `index`.
static SmallVector<int64_t> getVectorOffset(ArrayRef<int64_t> ratioStrides,
int64_t index,
ArrayRef<int64_t> targetShape) {
return computeElementwiseMul(delinearize(index, ratioStrides), targetShape);
}
/// A functor that accomplishes the same thing as `getVectorOffset` but
/// allows for reordering the traversal of the dimensions. The order of
/// traversal is given in "for loop order" (outer to inner).
namespace {
class DecomposeShapeIterator {
private:
SmallVector<int64_t> vectorShape;
SmallVector<int64_t> loopOrder;
SmallVector<int64_t> sliceStrides;
int64_t maxIndexVal{1};
public:
DecomposeShapeIterator(ArrayRef<int64_t> originalShape,
ArrayRef<int64_t> targetShape,
ArrayRef<int64_t> loopOrder)
: vectorShape(targetShape.begin(), targetShape.end()),
loopOrder(loopOrder.begin(), loopOrder.end()),
sliceStrides(originalShape.size()) {
assert(originalShape.size() >= targetShape.size());
assert(loopOrder.size() == originalShape.size());
// Compute the count for each dimension.
auto maybeShapeRatio = computeShapeRatio(originalShape, targetShape);
assert(maybeShapeRatio && "Shape does not evenly divide");
// Pad `sliceDimCounts` with leading 1s so that all sizes match.
SmallVector<int64_t> sliceDimCounts = *maybeShapeRatio;
maxIndexVal = computeMaxLinearIndex(sliceDimCounts);
// Reversing "loop order" gives dimensions from fastest varying to slowest
// varying (smallest stride to largest stride).
int64_t accum = 1;
for (auto idx : llvm::reverse(loopOrder)) {
sliceStrides[idx] = accum;
accum *= sliceDimCounts[idx];
}
}
// Turn the linear index into a d-tuple based on units of vectors of size
// `vectorShape`. The linear index is assumed to represent traversal of the
// dimensions based on `order`.
SmallVector<int64_t> delinearize(int64_t index) const {
// Traverse in for loop order (largest stride to smallest stride).
SmallVector<int64_t> vectorOffsets(sliceStrides.size());
for (auto idx : loopOrder) {
vectorOffsets[idx] = index / sliceStrides[idx];
index %= sliceStrides[idx];
}
return vectorOffsets;
}
int64_t maxIndex() const { return maxIndexVal; }
/// Return the offset within d-tuple based on the ordering given by
/// `loopOrder`.
SmallVector<int64_t> getVectorOffset(int64_t index) const {
SmallVector<int64_t> vectorOffsets = delinearize(index);
SmallVector<int64_t> elementOffsets =
computeElementwiseMul(vectorShape, vectorOffsets);
return elementOffsets;
}
};
} // namespace
/// Compute the indices of the slice `index` for a tranfer op.
static SmallVector<Value> sliceTransferIndices(ArrayRef<int64_t> elementOffsets,
ArrayRef<Value> indices,
AffineMap permutationMap,
Location loc,
OpBuilder &builder) {
MLIRContext *ctx = builder.getContext();
auto isBroadcast = [](AffineExpr expr) {
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>())
return constExpr.getValue() == 0;
return false;
};
// Compute 'sliceIndices' by adding 'sliceOffsets[i]' to 'indices[i]'.
SmallVector<Value> slicedIndices(indices.begin(), indices.end());
for (const auto &dim : llvm::enumerate(permutationMap.getResults())) {
if (isBroadcast(dim.value()))
continue;
unsigned pos = dim.value().cast<AffineDimExpr>().getPosition();
auto expr = getAffineDimExpr(0, builder.getContext()) +
getAffineConstantExpr(elementOffsets[dim.index()], ctx);
auto map = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
slicedIndices[pos] =
builder.create<affine::AffineApplyOp>(loc, map, indices[pos]);
}
return slicedIndices;
}
// Clones `op` into a new operations that takes `operands` and returns
// `resultTypes`.
static Operation *cloneOpWithOperandsAndTypes(OpBuilder &builder, Location loc,
Operation *op,
ArrayRef<Value> operands,
ArrayRef<Type> resultTypes) {
return builder.create(loc, op->getName().getIdentifier(), operands,
resultTypes, op->getAttrs());
}
/// Return the target shape for unrolling for the given `op`. Return
/// std::nullopt if the op shouldn't be or cannot be unrolled.
static std::optional<SmallVector<int64_t>>
getTargetShape(const vector::UnrollVectorOptions &options, Operation *op) {
if (options.filterConstraint && failed(options.filterConstraint(op)))
return std::nullopt;
assert(options.nativeShape &&
"vector unrolling expects the native shape or native"
"shape call back function to be set");
auto unrollableVectorOp = dyn_cast<VectorUnrollOpInterface>(op);
if (!unrollableVectorOp)
return std::nullopt;
auto maybeUnrollShape = unrollableVectorOp.getShapeForUnroll();
if (!maybeUnrollShape)
return std::nullopt;
std::optional<SmallVector<int64_t>> targetShape = options.nativeShape(op);
if (!targetShape)
return std::nullopt;
auto maybeShapeRatio = computeShapeRatio(*maybeUnrollShape, *targetShape);
if (!maybeShapeRatio ||
llvm::all_of(*maybeShapeRatio, [](int64_t v) { return v == 1; }))
return std::nullopt;
return targetShape;
}
static SmallVector<int64_t>
getUnrollOrder(unsigned numLoops, Operation *op,
const vector::UnrollVectorOptions &options) {
SmallVector<int64_t> loopOrder =
llvm::to_vector(llvm::seq<int64_t>(0, static_cast<int64_t>(numLoops)));
if (options.traversalOrderCallback != nullptr) {
std::optional<SmallVector<int64_t>> order =
options.traversalOrderCallback(op);
if (order) {
loopOrder = std::move(*order);
}
}
return loopOrder;
}
namespace {
struct UnrollTransferReadPattern
: public OpRewritePattern<vector::TransferReadOp> {
UnrollTransferReadPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransferReadOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (readOp.getTransferRank() == 0)
return failure();
if (readOp.getMask())
return failure();
auto targetShape = getTargetShape(options, readOp);
if (!targetShape)
return failure();
auto sourceVectorType = readOp.getVectorType();
SmallVector<int64_t> strides(targetShape->size(), 1);
Location loc = readOp.getLoc();
ArrayRef<int64_t> originalSize = readOp.getVectorType().getShape();
// Prepare the result vector;
Value result = rewriter.create<arith::ConstantOp>(
loc, sourceVectorType, rewriter.getZeroAttr(sourceVectorType));
auto targetType =
VectorType::get(*targetShape, sourceVectorType.getElementType());
SmallVector<Value> originalIndices(readOp.getIndices().begin(),
readOp.getIndices().end());
SmallVector<int64_t> loopOrder =
getUnrollOrder(originalSize.size(), readOp, options);
DecomposeShapeIterator indexToOffsets(originalSize, *targetShape,
loopOrder);
for (int64_t i = 0; i < indexToOffsets.maxIndex(); i++) {
SmallVector<int64_t> elementOffsets = indexToOffsets.getVectorOffset(i);
SmallVector<Value> indices =
sliceTransferIndices(elementOffsets, originalIndices,
readOp.getPermutationMap(), loc, rewriter);
auto slicedRead = rewriter.create<vector::TransferReadOp>(
loc, targetType, readOp.getSource(), indices,
readOp.getPermutationMapAttr(), readOp.getPadding(), readOp.getMask(),
readOp.getInBoundsAttr());
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, slicedRead, result, elementOffsets, strides);
}
rewriter.replaceOp(readOp, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct UnrollTransferWritePattern
: public OpRewritePattern<vector::TransferWriteOp> {
UnrollTransferWritePattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransferWriteOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (writeOp.getTransferRank() == 0)
return failure();
if (writeOp.getMask())
return failure();
auto targetShape = getTargetShape(options, writeOp);
if (!targetShape)
return failure();
auto sourceVectorType = writeOp.getVectorType();
SmallVector<int64_t> strides(targetShape->size(), 1);
Location loc = writeOp.getLoc();
ArrayRef<int64_t> originalSize = sourceVectorType.getShape();
SmallVector<Value> originalIndices(writeOp.getIndices().begin(),
writeOp.getIndices().end());
SmallVector<int64_t> loopOrder =
getUnrollOrder(originalSize.size(), writeOp, options);
DecomposeShapeIterator indexToOffsets(originalSize, *targetShape,
loopOrder);
Value resultTensor;
for (int64_t i = 0; i < indexToOffsets.maxIndex(); i++) {
SmallVector<int64_t> elementOffsets = indexToOffsets.getVectorOffset(i);
Value slicedVector = rewriter.create<vector::ExtractStridedSliceOp>(
loc, writeOp.getVector(), elementOffsets, *targetShape, strides);
SmallVector<Value> indices =
sliceTransferIndices(elementOffsets, originalIndices,
writeOp.getPermutationMap(), loc, rewriter);
Operation *slicedWrite = rewriter.create<vector::TransferWriteOp>(
loc, slicedVector, resultTensor ? resultTensor : writeOp.getSource(),
indices, writeOp.getPermutationMapAttr(), writeOp.getInBoundsAttr());
// For the tensor case update the destination for the next transfer write.
if (!slicedWrite->getResults().empty())
resultTensor = slicedWrite->getResult(0);
}
if (resultTensor)
rewriter.replaceOp(writeOp, resultTensor);
else
rewriter.eraseOp(writeOp);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct OffsetMapInfo {
static SmallVector<int64_t> getEmptyKey() { return {int64_t(-1)}; }
static SmallVector<int64_t> getTombstoneKey() { return {int64_t(-2)}; }
static unsigned getHashValue(const SmallVector<int64_t> &v) {
return static_cast<unsigned>(llvm::hash_combine_range(v.begin(), v.end()));
}
static bool isEqual(const SmallVector<int64_t> &lhs,
const SmallVector<int64_t> &rhs) {
return lhs == rhs;
}
};
struct UnrollContractionPattern
: public OpRewritePattern<vector::ContractionOp> {
UnrollContractionPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::ContractionOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
PatternRewriter &rewriter) const override {
auto targetShape = getTargetShape(options, contractOp);
if (!targetShape)
return failure();
auto dstVecType = contractOp.getResultType().cast<VectorType>();
SmallVector<int64_t> originalSize = *contractOp.getShapeForUnroll();
Location loc = contractOp.getLoc();
unsigned accIndex = vector::ContractionOp::getAccOperandIndex();
AffineMap dstAffineMap = contractOp.getIndexingMapsArray()[accIndex];
llvm::MapVector<
SmallVector<int64_t>, Value,
llvm::DenseMap<SmallVector<int64_t>, unsigned, OffsetMapInfo>>
accCache;
SmallVector<int64_t> loopOrder = getUnrollOrder(
contractOp.getIteratorTypes().size(), contractOp, options);
DecomposeShapeIterator indexToOffsets(originalSize, *targetShape,
loopOrder);
const int64_t sliceCount = indexToOffsets.maxIndex();
for (int64_t i = 0; i < sliceCount; i++) {
SmallVector<int64_t> offsets = indexToOffsets.getVectorOffset(i);
SmallVector<Value> slicesOperands(contractOp.getNumOperands());
// Helper to compute the new shape of each operand and extract the slice.
auto extractOperand = [&](unsigned index, Value operand,
AffineMap permutationMap,
ArrayRef<int64_t> operandOffets) {
SmallVector<int64_t> operandShape = applyPermutationMap(
permutationMap, ArrayRef<int64_t>(*targetShape));
SmallVector<int64_t> operandStrides(operandOffets.size(), 1);
slicesOperands[index] = rewriter.create<vector::ExtractStridedSliceOp>(
loc, operand, operandOffets, operandShape, operandStrides);
};
// Extract the new lhs operand.
AffineMap lhsPermutationMap = contractOp.getIndexingMapsArray()[0];
SmallVector<int64_t> lhsOffets =
applyPermutationMap(lhsPermutationMap, ArrayRef<int64_t>(offsets));
extractOperand(0, contractOp.getLhs(), lhsPermutationMap, lhsOffets);
// Extract the new rhs operand.
AffineMap rhsPermutationMap = contractOp.getIndexingMapsArray()[1];
SmallVector<int64_t> rhsOffets =
applyPermutationMap(rhsPermutationMap, ArrayRef<int64_t>(offsets));
extractOperand(1, contractOp.getRhs(), rhsPermutationMap, rhsOffets);
AffineMap accPermutationMap = contractOp.getIndexingMapsArray()[2];
SmallVector<int64_t> accOffets =
applyPermutationMap(accPermutationMap, ArrayRef<int64_t>(offsets));
// If a version of the accumulator has already been computed, use it
// otherwise extract the first version from the original operand.
auto accIt = accCache.find(accOffets);
if (accIt != accCache.end())
slicesOperands[2] = accIt->second;
else
extractOperand(2, contractOp.getAcc(), accPermutationMap, accOffets);
SmallVector<int64_t> dstShape =
applyPermutationMap(dstAffineMap, ArrayRef<int64_t>(*targetShape));
auto targetType = VectorType::get(dstShape, dstVecType.getElementType());
Operation *newOp = cloneOpWithOperandsAndTypes(
rewriter, loc, contractOp, slicesOperands, targetType);
SmallVector<int64_t> dstOffets =
applyPermutationMap(dstAffineMap, ArrayRef<int64_t>(offsets));
// Save the accumulated value untill all the loops are unrolled since
// reduction loop keep updating the accumulator.
accCache[dstOffets] = newOp->getResult(0);
}
// Assemble back the accumulator into a single vector.
Value result = rewriter.create<arith::ConstantOp>(
loc, dstVecType, rewriter.getZeroAttr(dstVecType));
for (const auto &it : accCache) {
SmallVector<int64_t> dstStrides(it.first.size(), 1);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, it.second, result, it.first, dstStrides);
}
rewriter.replaceOp(contractOp, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct UnrollMultiReductionPattern
: public OpRewritePattern<vector::MultiDimReductionOp> {
UnrollMultiReductionPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::MultiDimReductionOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::MultiDimReductionOp reductionOp,
PatternRewriter &rewriter) const override {
std::optional<SmallVector<int64_t>> targetShape =
getTargetShape(options, reductionOp);
if (!targetShape)
return failure();
SmallVector<int64_t> originalSize = *reductionOp.getShapeForUnroll();
SmallVector<int64_t> ratio = *computeShapeRatio(originalSize, *targetShape);
llvm::MapVector<
SmallVector<int64_t>, Value,
llvm::DenseMap<SmallVector<int64_t>, unsigned, OffsetMapInfo>>
accCache;
// Compute shape ratio of 'shape' and 'sizes'.
int64_t sliceCount = computeMaxLinearIndex(ratio);
Location loc = reductionOp.getLoc();
// Stride of the ratios, this gives us the offsets of sliceCount in a basis
// of multiples of the targetShape.
auto ratioStrides = computeStrides(ratio);
for (int64_t i = 0; i < sliceCount; i++) {
SmallVector<int64_t> offsets =
getVectorOffset(ratioStrides, i, *targetShape);
SmallVector<Value> operands;
SmallVector<int64_t> operandStrides(offsets.size(), 1);
Value slicedOperand = rewriter.create<vector::ExtractStridedSliceOp>(
loc, reductionOp.getSource(), offsets, *targetShape, operandStrides);
operands.push_back(slicedOperand);
SmallVector<int64_t> dstShape;
SmallVector<int64_t> destOffset;
for (size_t i : llvm::seq(size_t(0), targetShape->size())) {
if (!reductionOp.isReducedDim(i)) {
destOffset.push_back(offsets[i]);
dstShape.push_back((*targetShape)[i]);
}
}
Value acc;
SmallVector<int64_t> accStrides(destOffset.size(), 1);
// If a version of the accumulator has already been computed, use it
// otherwise extract the first version from the original operand.
auto accIt = accCache.find(destOffset);
if (accIt != accCache.end())
acc = accIt->second;
else
acc = rewriter.create<vector::ExtractStridedSliceOp>(
loc, reductionOp.getAcc(), destOffset, dstShape, accStrides);
operands.push_back(acc);
auto targetType = VectorType::get(
dstShape, reductionOp.getSourceVectorType().getElementType());
Operation *newOp = cloneOpWithOperandsAndTypes(rewriter, loc, reductionOp,
operands, targetType);
Value result = newOp->getResult(0);
accCache[destOffset] = result;
}
// Assemble back the accumulator into a single vector.
Value result = rewriter.create<arith::ConstantOp>(
loc, reductionOp.getDestType(),
rewriter.getZeroAttr(reductionOp.getDestType()));
for (const auto &it : accCache) {
SmallVector<int64_t> dstStrides(it.first.size(), 1);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, it.second, result, it.first, dstStrides);
}
rewriter.replaceOp(reductionOp, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct UnrollElementwisePattern : public RewritePattern {
UnrollElementwisePattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: RewritePattern(MatchAnyOpTypeTag(), benefit, context),
options(options) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1)
return failure();
auto targetShape = getTargetShape(options, op);
if (!targetShape)
return failure();
auto dstVecType = op->getResult(0).getType().cast<VectorType>();
SmallVector<int64_t> originalSize =
*cast<VectorUnrollOpInterface>(op).getShapeForUnroll();
SmallVector<int64_t> ratio = *computeShapeRatio(originalSize, *targetShape);
int64_t sliceCount = computeMaxLinearIndex(ratio);
Location loc = op->getLoc();
// Prepare the result vector.
Value result = rewriter.create<arith::ConstantOp>(
loc, dstVecType, rewriter.getZeroAttr(dstVecType));
SmallVector<int64_t> strides(targetShape->size(), 1);
VectorType newVecType =
VectorType::get(*targetShape, dstVecType.getElementType());
// Stride of the ratios, this gives us the offsets of sliceCount in a basis
// of multiples of the targetShape.
auto ratioStrides = computeStrides(ratio);
for (int64_t i = 0; i < sliceCount; i++) {
SmallVector<int64_t> offsets =
getVectorOffset(ratioStrides, i, *targetShape);
SmallVector<Value> extractOperands;
for (OpOperand &operand : op->getOpOperands()) {
auto vecType = operand.get().getType().template dyn_cast<VectorType>();
if (!vecType) {
extractOperands.push_back(operand.get());
continue;
}
extractOperands.push_back(
rewriter.create<vector::ExtractStridedSliceOp>(
loc, operand.get(), offsets, *targetShape, strides));
}
Operation *newOp = cloneOpWithOperandsAndTypes(
rewriter, loc, op, extractOperands, newVecType);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, newOp->getResult(0), result, offsets, strides);
}
rewriter.replaceOp(op, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct UnrollReductionPattern : public OpRewritePattern<vector::ReductionOp> {
UnrollReductionPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::ReductionOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::ReductionOp reductionOp,
PatternRewriter &rewriter) const override {
std::optional<SmallVector<int64_t>> targetShape =
getTargetShape(options, reductionOp);
if (!targetShape)
return failure();
SmallVector<int64_t> originalSize = *reductionOp.getShapeForUnroll();
auto ratio = *computeShapeRatio(originalSize, *targetShape);
int64_t sliceCount = ratio[0];
// Create unrolled vector reduction.
Location loc = reductionOp.getLoc();
Value accumulator = nullptr;
// Stride of the ratios, this gives us the offsets of sliceCount in a basis
// of multiples of the targetShape.
auto ratioStrides = computeStrides(ratio);
for (int64_t i = 0; i < sliceCount; ++i) {
SmallVector<int64_t> offsets =
getVectorOffset(ratioStrides, i, *targetShape);
SmallVector<int64_t> strides(offsets.size(), 1);
Value slicedOperand = rewriter.create<vector::ExtractStridedSliceOp>(
loc, reductionOp.getVector(), offsets, *targetShape, strides);
Operation *newOp = cloneOpWithOperandsAndTypes(
rewriter, loc, reductionOp, slicedOperand, reductionOp.getType());
Value result = newOp->getResult(0);
if (!accumulator) {
// This is the first reduction.
accumulator = result;
} else {
// On subsequent reduction, combine with the accumulator.
accumulator = makeArithReduction(rewriter, loc, reductionOp.getKind(),
accumulator, result);
}
}
rewriter.replaceOp(reductionOp, accumulator);
return success();
}
private:
const vector::UnrollVectorOptions options;
};
struct UnrollTransposePattern : public OpRewritePattern<vector::TransposeOp> {
UnrollTransposePattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransposeOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
PatternRewriter &rewriter) const override {
if (transposeOp.getResultVectorType().getRank() == 0)
return failure();
auto targetShape = getTargetShape(options, transposeOp);
if (!targetShape)
return failure();
auto originalVectorType = transposeOp.getResultVectorType();
SmallVector<int64_t> strides(targetShape->size(), 1);
Location loc = transposeOp.getLoc();
ArrayRef<int64_t> originalSize = originalVectorType.getShape();
SmallVector<int64_t> ratio = *computeShapeRatio(originalSize, *targetShape);
int64_t sliceCount = computeMaxLinearIndex(ratio);
// Prepare the result vector;
Value result = rewriter.create<arith::ConstantOp>(
loc, originalVectorType, rewriter.getZeroAttr(originalVectorType));
SmallVector<int64_t> permutation;
transposeOp.getTransp(permutation);
// Stride of the ratios, this gives us the offsets of sliceCount in a basis
// of multiples of the targetShape.
auto ratioStrides = computeStrides(ratio);
for (int64_t i = 0; i < sliceCount; i++) {
SmallVector<int64_t> elementOffsets =
getVectorOffset(ratioStrides, i, *targetShape);
SmallVector<int64_t> permutedOffsets(elementOffsets.size());
SmallVector<int64_t> permutedShape(elementOffsets.size());
// Compute the source offsets and shape.
for (auto indices : llvm::enumerate(permutation)) {
permutedOffsets[indices.value()] = elementOffsets[indices.index()];
permutedShape[indices.value()] = (*targetShape)[indices.index()];
}
Value slicedOperand = rewriter.create<vector::ExtractStridedSliceOp>(
loc, transposeOp.getVector(), permutedOffsets, permutedShape,
strides);
Value transposedSlice =
rewriter.create<vector::TransposeOp>(loc, slicedOperand, permutation);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, transposedSlice, result, elementOffsets, strides);
}
rewriter.replaceOp(transposeOp, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct UnrollGatherPattern : public OpRewritePattern<vector::GatherOp> {
UnrollGatherPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::GatherOp>(context, benefit), options(options) {
}
LogicalResult matchAndRewrite(vector::GatherOp gatherOp,
PatternRewriter &rewriter) const override {
VectorType sourceVectorType = gatherOp.getVectorType();
if (sourceVectorType.getRank() == 0)
return failure();
auto targetShape = getTargetShape(options, gatherOp);
if (!targetShape)
return failure();
SmallVector<int64_t> strides(targetShape->size(), 1);
Location loc = gatherOp.getLoc();
ArrayRef<int64_t> originalSize = gatherOp.getVectorType().getShape();
// Prepare the result vector;
Value result = rewriter.create<arith::ConstantOp>(
loc, sourceVectorType, rewriter.getZeroAttr(sourceVectorType));
auto targetType =
VectorType::get(*targetShape, sourceVectorType.getElementType());
SmallVector<int64_t> loopOrder =
getUnrollOrder(originalSize.size(), gatherOp, options);
DecomposeShapeIterator indexToOffsets(originalSize, *targetShape,
loopOrder);
for (int64_t i = 0, e = indexToOffsets.maxIndex(); i < e; ++i) {
// To get the unrolled gather, extract the same slice based on the
// decomposed shape from each of the index, mask, and pass-through
// vectors.
SmallVector<int64_t> elementOffsets = indexToOffsets.getVectorOffset(i);
Value indexSubVec = rewriter.create<vector::ExtractStridedSliceOp>(
loc, gatherOp.getIndexVec(), elementOffsets, *targetShape, strides);
Value maskSubVec = rewriter.create<vector::ExtractStridedSliceOp>(
loc, gatherOp.getMask(), elementOffsets, *targetShape, strides);
Value passThruSubVec = rewriter.create<vector::ExtractStridedSliceOp>(
loc, gatherOp.getPassThru(), elementOffsets, *targetShape, strides);
auto slicedGather = rewriter.create<vector::GatherOp>(
loc, targetType, gatherOp.getBase(), gatherOp.getIndices(),
indexSubVec, maskSubVec, passThruSubVec);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, slicedGather, result, elementOffsets, strides);
}
rewriter.replaceOp(gatherOp, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
} // namespace
void mlir::vector::populateVectorUnrollPatterns(
RewritePatternSet &patterns, const UnrollVectorOptions &options,
PatternBenefit benefit) {
patterns.add<UnrollTransferReadPattern, UnrollTransferWritePattern,
UnrollContractionPattern, UnrollElementwisePattern,
UnrollReductionPattern, UnrollMultiReductionPattern,
UnrollTransposePattern, UnrollGatherPattern>(
patterns.getContext(), options, benefit);
}