Files
clang-p2996/llvm/unittests/CodeGen/PassManagerTest.cpp
Reid Kleckner 89b57061f7 Move TargetRegistry.(h|cpp) from Support to MC
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.

This allows us to ensure that Support doesn't have includes from MC/*.

Differential Revision: https://reviews.llvm.org/D111454
2021-10-08 14:51:48 -07:00

310 lines
10 KiB
C++

//===- llvm/unittest/CodeGen/PassManager.cpp - PassManager tests ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachinePassManager.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class TestFunctionAnalysis : public AnalysisInfoMixin<TestFunctionAnalysis> {
public:
struct Result {
Result(int Count) : InstructionCount(Count) {}
int InstructionCount;
};
/// Run the analysis pass over the function and return a result.
Result run(Function &F, FunctionAnalysisManager &AM) {
int Count = 0;
for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI)
for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
++II)
++Count;
return Result(Count);
}
private:
friend AnalysisInfoMixin<TestFunctionAnalysis>;
static AnalysisKey Key;
};
AnalysisKey TestFunctionAnalysis::Key;
class TestMachineFunctionAnalysis
: public AnalysisInfoMixin<TestMachineFunctionAnalysis> {
public:
struct Result {
Result(int Count) : InstructionCount(Count) {}
int InstructionCount;
};
/// Run the analysis pass over the machine function and return a result.
Result run(MachineFunction &MF, MachineFunctionAnalysisManager::Base &AM) {
auto &MFAM = static_cast<MachineFunctionAnalysisManager &>(AM);
// Query function analysis result.
TestFunctionAnalysis::Result &FAR =
MFAM.getResult<TestFunctionAnalysis>(MF.getFunction());
// + 5
return FAR.InstructionCount;
}
private:
friend AnalysisInfoMixin<TestMachineFunctionAnalysis>;
static AnalysisKey Key;
};
AnalysisKey TestMachineFunctionAnalysis::Key;
const std::string DoInitErrMsg = "doInitialization failed";
const std::string DoFinalErrMsg = "doFinalization failed";
struct TestMachineFunctionPass : public PassInfoMixin<TestMachineFunctionPass> {
TestMachineFunctionPass(int &Count, std::vector<int> &BeforeInitialization,
std::vector<int> &BeforeFinalization,
std::vector<int> &MachineFunctionPassCount)
: Count(Count), BeforeInitialization(BeforeInitialization),
BeforeFinalization(BeforeFinalization),
MachineFunctionPassCount(MachineFunctionPassCount) {}
Error doInitialization(Module &M, MachineFunctionAnalysisManager &MFAM) {
// Force doInitialization fail by starting with big `Count`.
if (Count > 10000)
return make_error<StringError>(DoInitErrMsg, inconvertibleErrorCode());
// + 1
++Count;
BeforeInitialization.push_back(Count);
return Error::success();
}
Error doFinalization(Module &M, MachineFunctionAnalysisManager &MFAM) {
// Force doFinalization fail by starting with big `Count`.
if (Count > 1000)
return make_error<StringError>(DoFinalErrMsg, inconvertibleErrorCode());
// + 1
++Count;
BeforeFinalization.push_back(Count);
return Error::success();
}
PreservedAnalyses run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
// Query function analysis result.
TestFunctionAnalysis::Result &FAR =
MFAM.getResult<TestFunctionAnalysis>(MF.getFunction());
// 3 + 1 + 1 = 5
Count += FAR.InstructionCount;
// Query module analysis result.
MachineModuleInfo &MMI =
MFAM.getResult<MachineModuleAnalysis>(*MF.getFunction().getParent());
// 1 + 1 + 1 = 3
Count += (MMI.getModule() == MF.getFunction().getParent());
// Query machine function analysis result.
TestMachineFunctionAnalysis::Result &MFAR =
MFAM.getResult<TestMachineFunctionAnalysis>(MF);
// 3 + 1 + 1 = 5
Count += MFAR.InstructionCount;
MachineFunctionPassCount.push_back(Count);
return PreservedAnalyses::none();
}
int &Count;
std::vector<int> &BeforeInitialization;
std::vector<int> &BeforeFinalization;
std::vector<int> &MachineFunctionPassCount;
};
struct TestMachineModulePass : public PassInfoMixin<TestMachineModulePass> {
TestMachineModulePass(int &Count, std::vector<int> &MachineModulePassCount)
: Count(Count), MachineModulePassCount(MachineModulePassCount) {}
Error run(Module &M, MachineFunctionAnalysisManager &MFAM) {
MachineModuleInfo &MMI = MFAM.getResult<MachineModuleAnalysis>(M);
// + 1
Count += (MMI.getModule() == &M);
MachineModulePassCount.push_back(Count);
return Error::success();
}
PreservedAnalyses run(MachineFunction &MF,
MachineFunctionAnalysisManager &AM) {
llvm_unreachable(
"This should never be reached because this is machine module pass");
}
int &Count;
std::vector<int> &MachineModulePassCount;
};
std::unique_ptr<Module> parseIR(LLVMContext &Context, const char *IR) {
SMDiagnostic Err;
return parseAssemblyString(IR, Err, Context);
}
class PassManagerTest : public ::testing::Test {
protected:
LLVMContext Context;
std::unique_ptr<Module> M;
std::unique_ptr<TargetMachine> TM;
public:
PassManagerTest()
: M(parseIR(Context, "define void @f() {\n"
"entry:\n"
" call void @g()\n"
" call void @h()\n"
" ret void\n"
"}\n"
"define void @g() {\n"
" ret void\n"
"}\n"
"define void @h() {\n"
" ret void\n"
"}\n")) {
// MachineModuleAnalysis needs a TargetMachine instance.
llvm::InitializeAllTargets();
std::string TripleName = Triple::normalize(sys::getDefaultTargetTriple());
std::string Error;
const Target *TheTarget =
TargetRegistry::lookupTarget(TripleName, Error);
if (!TheTarget)
return;
TargetOptions Options;
TM.reset(TheTarget->createTargetMachine(TripleName, "", "",
Options, None));
}
};
TEST_F(PassManagerTest, Basic) {
if (!TM)
GTEST_SKIP();
LLVMTargetMachine *LLVMTM = static_cast<LLVMTargetMachine *>(TM.get());
M->setDataLayout(TM->createDataLayout());
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
PassBuilder PB(TM.get());
PB.registerModuleAnalyses(MAM);
PB.registerFunctionAnalyses(FAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
FAM.registerPass([&] { return TestFunctionAnalysis(); });
FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
MAM.registerPass([&] { return MachineModuleAnalysis(LLVMTM); });
MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
MachineFunctionAnalysisManager MFAM;
{
// Test move assignment.
MachineFunctionAnalysisManager NestedMFAM(FAM, MAM);
NestedMFAM.registerPass([&] { return PassInstrumentationAnalysis(); });
NestedMFAM.registerPass([&] { return TestMachineFunctionAnalysis(); });
MFAM = std::move(NestedMFAM);
}
int Count = 0;
std::vector<int> BeforeInitialization[2];
std::vector<int> BeforeFinalization[2];
std::vector<int> TestMachineFunctionCount[2];
std::vector<int> TestMachineModuleCount[2];
MachineFunctionPassManager MFPM;
{
// Test move assignment.
MachineFunctionPassManager NestedMFPM;
NestedMFPM.addPass(TestMachineModulePass(Count, TestMachineModuleCount[0]));
NestedMFPM.addPass(TestMachineFunctionPass(Count, BeforeInitialization[0],
BeforeFinalization[0],
TestMachineFunctionCount[0]));
NestedMFPM.addPass(TestMachineModulePass(Count, TestMachineModuleCount[1]));
NestedMFPM.addPass(TestMachineFunctionPass(Count, BeforeInitialization[1],
BeforeFinalization[1],
TestMachineFunctionCount[1]));
MFPM = std::move(NestedMFPM);
}
ASSERT_FALSE(errorToBool(MFPM.run(*M, MFAM)));
// Check first machine module pass
EXPECT_EQ(1u, TestMachineModuleCount[0].size());
EXPECT_EQ(3, TestMachineModuleCount[0][0]);
// Check first machine function pass
EXPECT_EQ(1u, BeforeInitialization[0].size());
EXPECT_EQ(1, BeforeInitialization[0][0]);
EXPECT_EQ(3u, TestMachineFunctionCount[0].size());
EXPECT_EQ(10, TestMachineFunctionCount[0][0]);
EXPECT_EQ(13, TestMachineFunctionCount[0][1]);
EXPECT_EQ(16, TestMachineFunctionCount[0][2]);
EXPECT_EQ(1u, BeforeFinalization[0].size());
EXPECT_EQ(31, BeforeFinalization[0][0]);
// Check second machine module pass
EXPECT_EQ(1u, TestMachineModuleCount[1].size());
EXPECT_EQ(17, TestMachineModuleCount[1][0]);
// Check second machine function pass
EXPECT_EQ(1u, BeforeInitialization[1].size());
EXPECT_EQ(2, BeforeInitialization[1][0]);
EXPECT_EQ(3u, TestMachineFunctionCount[1].size());
EXPECT_EQ(24, TestMachineFunctionCount[1][0]);
EXPECT_EQ(27, TestMachineFunctionCount[1][1]);
EXPECT_EQ(30, TestMachineFunctionCount[1][2]);
EXPECT_EQ(1u, BeforeFinalization[1].size());
EXPECT_EQ(32, BeforeFinalization[1][0]);
EXPECT_EQ(32, Count);
// doInitialization returns error
Count = 10000;
MFPM.addPass(TestMachineFunctionPass(Count, BeforeInitialization[1],
BeforeFinalization[1],
TestMachineFunctionCount[1]));
std::string Message;
llvm::handleAllErrors(MFPM.run(*M, MFAM), [&](llvm::StringError &Error) {
Message = Error.getMessage();
});
EXPECT_EQ(Message, DoInitErrMsg);
// doFinalization returns error
Count = 1000;
MFPM.addPass(TestMachineFunctionPass(Count, BeforeInitialization[1],
BeforeFinalization[1],
TestMachineFunctionCount[1]));
llvm::handleAllErrors(MFPM.run(*M, MFAM), [&](llvm::StringError &Error) {
Message = Error.getMessage();
});
EXPECT_EQ(Message, DoFinalErrMsg);
}
} // namespace